1
|
Peng D, Wang A, Shi W, Lin L. Pentacyclic triterpenes, potential novel therapeutic approaches for cardiovascular diseases. Arch Pharm Res 2024; 47:709-735. [PMID: 39048758 DOI: 10.1007/s12272-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Cardiovascular diseases (CVDs) involve dysfunction of the heart and blood vessels and have become major health concerns worldwide. Multiple mechanisms may be involved in the occurrence and development of CVDs. Although therapies for CVDs are constantly being developed and applied, the incidence and mortality of CVDs remain high. The roles of natural compounds in CVD treatment are being explored, providing new approaches for the treatment of CVD. Pentacyclic triterpenes are natural compounds with a basic nucleus of 30 carbon atoms, and they have been widely studied for their potential applications in the treatment of CVDs, to which various pharmacological activities contribute, including anti-inflammatory, antioxidant, and antitumor effects. This review introduces the roles of triterpenoids in the prevention and treatment of CVDs, summarizes their potential underlying mechanisms, and provides a comprehensive overview of the therapeutic potential of triterpenoids in the management of CVDs.
Collapse
Affiliation(s)
- Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Aizan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
2
|
Salama A, Elgohary R, M Amin M, Elwahab SA. Immunomodulatory effect of protocatechuic acid on cyclophosphamide induced brain injury in rat: Modulation of inflammosomes NLRP3 and SIRT1. Eur J Pharmacol 2022; 932:175217. [PMID: 36007603 DOI: 10.1016/j.ejphar.2022.175217] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
Modulation of the inflammasome NLRP3 and SIRT1 are new combat strategy for brain injury protection. The inflammasome activates proinflammatory cytokines releasing interleukin-1β and interleukin-18 which in turn affect the toxins release from immune cells. In addition, SIRT1 controls many biological functions, such as immune response and oxidative stress. Protocatechuic has versatile biological activities and possesses antioxidant, anti-inflammatory and neuroprotective effects. So this work aims to study immunomodulatory effect of protocatechuic acid on cyclophosphamide chemotherapy drug-induced brain injury via modulation of inflammosomes NLRP3 and SIRT1. Rats were randomly assigned to four experimental groups. Normal control group was injected with a single i.p injection of saline. Cyclophosphamide group was injected with a single i.p injection of cyclophosphamide (200 mg/kg). Protocatechuic acid groups were orally administered (50 &100 mg/kg) once daily for 10 consecutive days after cyclophosphamide injection. Protocatechuic acid administration exhibited improvements of the cognition function and memory, a reduction in brain contents of MDA, NLRP3, IL-1 β, NF-κB, IKBKB and Galectin 3 and an elevation of GSH and SIRT1 compared to cyclophosphamide group. In addition, protocatechuic acid administration ameliorated the elevation of caspase 3 and iNOS gene expression and alleviated the neuron degeneration caused by cyclophosphamide. In conclusion, the therapeutic action of protocatechuic acid and its cellular and molecular mechanisms are new insights against various human ailments, especially, neuroprotective disease as brain injury induced by cyclophosphamide chemotherapy drug in rats through modulation of inflammosomes NLRP3 and SIRT1.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt.
| | - Mohamed M Amin
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Sahar Abd Elwahab
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Panja SK, Patra S, Bag BG. Self-assembly of the monohydroxy triterpenoid lupeol yielding nano-fibers, sheets and gel: environmental and drug delivery applications. RSC Adv 2021; 11:33500-33510. [PMID: 35497535 PMCID: PMC9042272 DOI: 10.1039/d1ra06137b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
Lupeol is a medicinally important naturally abundant triterpenoid having a 6-6-6-6-5 fused pentacyclic backbone and one polar secondary "-OH" group at the C3 position of the "A" ring. It was extracted from the dried outer bark of Bombax ceiba and its self-assembly properties were investigated in different neat organic as well as aquous-organic binary liquid mixtures. The triterpenoid having only one polar "-OH" group and a rigid lipophilic backbone self-assembled in neat organic non-polar liquids like n-hexane, n-heptane, n-octane and polar liquids like DMSO, DMF, DMSO-H2O, DMF-H2O, and EtOH-H2O yielding supramolecular gels via formation of nano to micrometre long self-assembled fibrillar networks (SAFINs). Morphological investigation of the self-assemblies was carried out by field emission scanning electron microscopy, high resolution transmission electron microscopy, atomic force microscopy, optical microscopy, concentration dependent FTIR and wide angle X-ray diffraction studies. The mechanical properties of the gels were studied by concentration dependent rheological studies in different solvents. The gels were capable of removing toxic micro-pollutants like rhodamine-B and 5,6-carboxyfluorescein as well as the toxic heavy metal Cr(vi) from contaminated water. Moreover release of the chemotherapeutic drug doxorubicin from a drug loaded gel in PBS buffer at pH 7.2 has also been demonstrated by spectrophotometry.
Collapse
Affiliation(s)
- Saikat Kumar Panja
- Department of Chemistry and Chemical Technology, Vidyasagar University Midnapore 721102 West Bengal India
| | - Soumen Patra
- Department of Chemistry and Chemical Technology, Vidyasagar University Midnapore 721102 West Bengal India
| | - Braja Gopal Bag
- Department of Chemistry and Chemical Technology, Vidyasagar University Midnapore 721102 West Bengal India
| |
Collapse
|
4
|
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res 2020; 164:105373. [PMID: 33316380 DOI: 10.1016/j.phrs.2020.105373] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Lupeol is a natural triterpenoid that widely exists in edible fruits and vegetables, and medicinal plants. In the last decade, a plethora of studies on the pharmacological activities of lupeol have been conducted and have demonstrated that lupeol possesses an extensive range of pharmacological activities such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. Pharmacokinetic studies have indicated that absorption of lupeol by animals was rapid despite its nonpolar characteristics, and lupeol belongs to class II BCS (biopharmaceutics classification system) compounds. Moreover, the bioactivities of some isolated or synthesized lupeol derivatives have been investigated, and these results showed that, with modification to C-3 or C-19, some derivatives exhibit stronger activities, e.g., antiprotozoal or anticancer activity. This review aims to summarize the advances in pharmacological and pharmacokinetic studies of lupeol in the last decade with an emphasis on its anticancer and anti-inflammatory activities, as well as the research progress of lupeol derivatives thus far, to provide researchers with the latest information, point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
5
|
Simultaneous determination of lupeol and β-sitosterol by high-performance thin-layer chromatographic method in Crataeva nurvala Buch-Ham. stem bark. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-020-00043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
El kiki SM, Omran MM, Mansour HH, Hasan HF. Metformin and/or low dose radiation reduces cardiotoxicity and apoptosis induced by cyclophosphamide through SIRT-1/SOD and BAX/Bcl-2 pathways in rats. Mol Biol Rep 2020; 47:5115-5126. [DOI: 10.1007/s11033-020-05582-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022]
|
7
|
Omole JG, Ayoka OA, Alabi QK, Adefisayo MA, Asafa MA, Olubunmi BO, Fadeyi BA. Protective Effect of Kolaviron on Cyclophosphamide-Induced Cardiac Toxicity in Rats. J Evid Based Integr Med 2019; 23:2156587218757649. [PMID: 29468886 PMCID: PMC5871040 DOI: 10.1177/2156587218757649] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cyclophosphamide (CP) is a nitrogen mustard alkylating drug used for the treatment of chronic and acute malignant lymphomas, myeloma, leukemia, neuroblastoma, adenocarcinoma, retinoblastoma, breast carcinoma, and immunosuppressive therapy. Despite its vast therapeutic uses, it is known to cause severe cardiac toxicity. Kolaviron (KV), a Garcinia kola seed extract containing a mixture of flavonoids, is reputed for its antioxidant and membrane stabilizing properties. OBJECTIVE This study investigated the protective effect of KV on CP-induced cardiotoxicity in rats. METHODS Thirty rats were used, and they were divided into 6 groups of 5 rats each. Group I received 2 mL/kg propylene glycol orally for 14 days; group II received CP (50 mg/kg/d, intraperitoneally [i.p.]) for 3 days; groups III and IV received 200 and 400 mg/kg/d KV, respectively, orally for 14 days and groups V and VI were pretreated with 200 and 400 mg/kg/d KV, respectively, orally for 14 days followed by CP (50 mg/kg/d, i.p.) for 3 days. RESULTS CP treatment resulted in a significantly lower food consumption and body weight in rats. The lactate dehydrogenase and creatine kinase enzymes in cardiac tissues of rats treated with CP were significantly higher. In cardiac tissues, 3-day doses of CP resulted in significantly higher heart weight, cardiac troponin I, myeloperoxidase, malondialdehyde, hydrogen peroxide and lower superoxide dismutase, catalase, glutathione peroxidase activities, and reduced glutathione levels. Histological examination of cardiac tissues showed sign of necrosis of myocardium after CP treatment. However, administration of KV at 200 and 400 mg/kg for 14 days prior to CP treatment, increase food consumption, body weight, and attenuates the biochemical and histological changes induced by CP. CONCLUSIONS These results revealed that KV attenuates CP-induced cardiotoxicity by inhibiting oxidative stress and preserving the activity of antioxidant enzymes.
Collapse
Affiliation(s)
| | | | - Quadri Kunle Alabi
- 1 Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.,2 Afe-Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Modinat Adebukola Adefisayo
- 1 Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.,3 University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | | | | | - Benson Akinloye Fadeyi
- 1 Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.,4 Federal Teaching Hospital, Ido-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
8
|
Yang X, Li X, Yuan M, Tian C, Yang Y, Wang X, Zhang X, Sun Y, He T, Han S, Chen G, Liu N, Gao Y, Hu D, Xing Y, Shang H. Anticancer Therapy-Induced Atrial Fibrillation: Electrophysiology and Related Mechanisms. Front Pharmacol 2018; 9:1058. [PMID: 30386232 PMCID: PMC6198283 DOI: 10.3389/fphar.2018.01058] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
Some well-established immunotherapy, radiotherapy, postoperation, anticancer drugs such as anthracyclines, antimetabolites, human epidermal growth factor receptor 2 blockers, tyrosine kinase inhibitors, alkylating agents, checkpoint inhibitors, and angiogenesis inhibitors, are significantly linked to cardiotoxicity. Cardiotoxicity is a common complication of several cancer treatments. Some studies observed complications of cardiac arrhythmia associated with the treatment of cancer, including atrial fibrillation (AF), supraventricular arrhythmias, and cardiac repolarization abnormalities. AF increases the risk of cardiovascular morbidity and mortality; it is associated with an almost doubled risk of mortality and a nearly 5-fold increase in the risk of stroke. The occurrence of AF is also usually researched in patients with advanced cancer and those undergoing active cancer treatments. During cancer treatments, the incidence rate of AF affects the prognosis of tumor treatment and challenges the treatment strategy. The present article is mainly focused on the cardiotoxicity of cancer treatments. In our review, we discuss these anticancer therapies and how they induce AF and consequently provide information on the precaution of AF during cancer treatment.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xinye Li
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Mengchen Yuan
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chao Tian
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tianmai He
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Songjie Han
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Guang Chen
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing An Zhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanwei Xing
- Guang'an men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Protective Effects of Fullerene C 60 Nanoparticles and Virgin Olive Oil against Genotoxicity Induced by Cyclophosphamide in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1261356. [PMID: 30116471 PMCID: PMC6079351 DOI: 10.1155/2018/1261356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/31/2022]
Abstract
The potential effects of the fullerene C60 nanoparticle (C60) as well as virgin olive oil (VOO) against the cyclophosphamide- (CP-) induced cytotoxic and mutagenic effects were evaluated by two main methods: molecular intersimple sequence repeat (ISSR) assay and cytogenetic biomarkers. Thirty adult male rats were divided to five groups (control, CP, C60, CP + C60, and CP + VOO). CP was i.p. injected with a single dose of 200 mg/kg; C60 and VOO were given orally (4 mg/kg dissolved in VOO and 1 ml, resp.) in alternative days for 20 days. The ISSR analysis revealed an increased in the DNA fragmentation level for liver and heart tissues represented by 21.2% and 32.6%, respectively, in the CP group. The DNA polymorphism levels were modulated and improved in CP + C60 (8.9% and 12%) and CP + VOO (9.8% and 12.7%) for hepatic and cardiac tissues, respectively. The bone marrow cytogenetic analysis revealed that C60 and VOO had significantly decreased the frequency of CP-induced chromosomal aberrations (chromosomal ring, deletion, dicentric chromosome, fragmentation, and polyploidy). Fullerene C60 and VOO have ability to reduce DNA damage and decrease chromosomal aberrations. In conclusion, fullerene C60 and VOO have protective effects against the CP-induced mutagenicity and genotoxicity. Fullerene C60 and VOO open an interesting field concerning their potential antigenotoxic agents against deleterious side effects of chemotherapeutics.
Collapse
|
10
|
Liu W, Zhai X, Wang W, Zheng B, Zhang Z, Fan X, Chen Y, Wang J. Aldehyde dehydrogenase 2 activation ameliorates cyclophosphamide-induced acute cardiotoxicity via detoxification of toxic aldehydes and suppression of cardiac cell death. J Mol Cell Cardiol 2018; 121:134-144. [PMID: 29981795 DOI: 10.1016/j.yjmcc.2018.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/03/2018] [Accepted: 07/04/2018] [Indexed: 01/27/2023]
Abstract
Cyclophosphamide (CY)-induced acute cardiotoxicity is a common side effect which is dose dependent. It is reported that up to 20% of patients received high dose of CY treatment suffered from acute cardiac dysfunction. However, the effective intervention strategies and related mechanisms are still largely unknown. We aimed to investigate the effects of aldehyde dehydrogenase 2 (ALDH2), an important endogenous cardioprotective enzyme, on CY-induced acute cardiotoxicity and the underlying mechanisms. It was found that ALDH2 knockout (KO) mice were more sensitive to CY-induced acute cardiotoxicity, presenting as higher serum levels of creatine kinase-MB isoform and lactate dehydrogenase, and significantly reduced myocardial contractility compared with C57BL/6 (WT) mice. In addition, cardiac cell death, especially necrosis, was obviously increased in ALDH2 KO mice compared with WT mice after CY treatment. Furthermore, accumulation of toxic aldehydes such as acrolein and 4-HNE and reactive oxygen species (ROS) in the myocardium were significantly elevated after CY in ALDH2 KO mice. Importantly, ALDH2 activation by Alda-1 pretreatment markedly attenuated CY-induced accumulation of toxic aldehydes, cardiac cell death and cardiac dysfunction, without affecting CY's anti-tumor efficacy. In conclusion, the cardioprotective effects of ALDH2 activation against CY-induced acute cardiotoxicity are exerted via reducing toxic aldehydes accumulation and potentially interrupting the acrolein-ROS-aldehydes vicious circles, and thus alleviates myocardial cell death, without antagonizing the anti-tumor efficacy of CY. Therefore, ALDH2 might be a promising prevention and treatment target for CY-induced acute cardiotoxicity.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjun Wang
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Boyuan Zheng
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zhenxiao Zhang
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China; Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xinhui Fan
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| | - Jiali Wang
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
11
|
Das J, Sarkar A, Ghosh P. Friedelane triterpenoids: transformations toward A-ring modifications including 2-homoderivatives. NEW J CHEM 2018. [DOI: 10.1039/c8nj00009c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Common reaction strategies were employed on suitable substrates to achieve a series of C2,C3-; C3,C4- and C2,C3,C4-functionalized (including 2-homo-) friedelane triterpenoids with just one to four efficient steps.
Collapse
Affiliation(s)
- Jayanta Das
- Natural Products and Polymer Chemistry Laboratory
- Department of Chemistry
- North Bengal University
- Darjeeling-734013
- India
| | - Antara Sarkar
- Natural Products and Polymer Chemistry Laboratory
- Department of Chemistry
- North Bengal University
- Darjeeling-734013
- India
| | - Pranab Ghosh
- Natural Products and Polymer Chemistry Laboratory
- Department of Chemistry
- North Bengal University
- Darjeeling-734013
- India
| |
Collapse
|
12
|
Tsai FS, Lin LW, Wu CR. Lupeol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 929:145-175. [PMID: 27771924 DOI: 10.1007/978-3-319-41342-6_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lupeol belongs to pentacyclic lupane-type triterpenes and exhibits in edible vegetables, fruits and many plants. Many researches indicated that lupeol possesses many beneficial pharmacological activities including antioxidant, anti-inflammatory, anti-hyperglycemic, anti-dyslipidemic and anti-mutagenic effects. From various disease-targeted animal models, these reports indicated that lupeol has anti-diabetic, anti-asthma, anti-arthritic, cardioprotective, hepatoprotective, nephroprotective, neuroprotective and anticancer efficiency under various routes of administration such as topical, oral, subcutaneous, intraperitoneal and intravenous. It is worth mentioning that clinical trials of lupeol were performed to treat canine oral malignant melanoma and human moderate skin acne in Japan and Korea. The detailed mechanism of anti-inflammatory, anti-diabetic, hepatoprotective and anticancer activities was further reviewed from published papers. These evidence indicate that lupeol is a multi-target agent to exert diverse pharmacological potency with many potential targeting proteins such as α-glucosidase, α-amylase, protein tyrosine phosphatase 1B (PTP 1B) and TCA cycle enzymes and targeting pathway such as IL-1 receptor-associated kinase-mediated toll-like receptor 4 (IRAK-TLR4), Bcl-2 family, nuclear factor kappa B (NF-kB), phosphatidylinositol-3-kinase (PI3-K)/Akt and Wnt/β-catenin signaling pathways. This review also provides suggestion that lupeol might be a valuable and potential lead compound to develop as anti-inflammatory, anti-diabetic, hepatoprotective and anticancer drugs.
Collapse
Affiliation(s)
- Fan-Shiu Tsai
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Li-Wei Lin
- School of Chinese Medicines for Post-Baccalaureate, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Chi-Rei Wu
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
13
|
Ogunsanwo OR, Oyagbemi AA, Omobowale TO, Asenuga ER, Saba AB. Biochemical and electrocardiographic studies on the beneficial effects of gallic acid in cyclophosphamide-induced cardiorenal dysfunction. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 14:/j/jcim.ahead-of-print/jcim-2016-0161/jcim-2016-0161.xml. [PMID: 28333655 DOI: 10.1515/jcim-2016-0161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/23/2017] [Indexed: 01/18/2023]
Abstract
Background Cardiac toxicity is one of the life-threatening complications of cancer therapy. Cyclophosphamide (CYP) is an alkylating agent with potent antineoplastic and immunosuppressive properties and possibly the most widely used antineoplastic agent. Chronic cardiotoxicity associated with CYP is characterized by progressive heart failure developing from weeks to years after therapy. Methods In this study, rats were administered with (60 mg/kg and 120 mg/kg) alone or in combination with single intraperitoneal (200 mg/kg) administration of CYP for 7 days. CYP was only administered on day 1. Results The administration of CYP led to a significant (p<0.05) increase in cardiac and renal malondialdehyde (MDA) contents and hydrogen peroxide (H2O2) generation. Also, the activities of catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and reduced glutathione (GSH) levels were significantly (p<0.05) reduced following CYP treatment. A significant (p<0.05) increase in serum myeloperoxidase (MPO) activity was recorded in rats administered CYP only. Electrocardiogram (ECG) showed a significant (p<0.05) increase in heart rate (HR) accompanied by transient decrease in QRS duration. Histologic examination revealed architectural anarchy of both heart and kidney of rats that received only CYP. Conclusions In this study, treatment with gallic acid (60 mg/kg and 120 mg/kg) restored the enzymic and non-enzymic antioxidants and also attenuated cardiotoxic and nephrotoxic effect of CYP through free radical scavenging activity, anti-inflammatory and improvement of antioxidant defence system.
Collapse
|
14
|
Cheng WL, Kao YH, Chen SA, Chen YJ. Pathophysiology of cancer therapy-provoked atrial fibrillation. Int J Cardiol 2016; 219:186-94. [PMID: 27327505 DOI: 10.1016/j.ijcard.2016.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/11/2016] [Indexed: 02/07/2023]
Abstract
Atrial fibrillation (AF) occurs with increased frequency in cancer patients, especially in patients who undergo surgery or chemotherapy. AF disturbs the prognosis of cancer patients and challenges therapeutic outcomes of cancer treatment. Elucidating the mechanisms of cancer-induced AF would help identify specific strategies for preventing AF occurrence. In addition to concurrent risk factors of cancer and AF, cancer surgery, side effects of anticancer agents, and cancer-associated immune responses play critical roles in the genesis of AF. In this review, we provide succinct potential mechanisms of AF genesis in cancer patients.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Brindha E, Rajasekapandiyan M. Preventive effect of phytic acid on lysosomal hydrolases in normal and isoproterenol-induced myocardial infarction in Wistar rats. Toxicol Mech Methods 2015; 25:150-4. [PMID: 25560919 DOI: 10.3109/15376516.2014.1003421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study was aimed to evaluate the preventive role of phytic acid on lysosomal enzymes in isoproterenol (ISO)-induced myocardial infarction (MI) in male Wistar rats. Rats subcutaneously injected with ISO (85 mg/kg) at an interval of 24 h for two days showed a significant increase in the activities of lysosomal enzymes (glucuronidase, N-acetyl glucosaminidase, galactosidase, cathepsin-B and cathepsin-D) were increased significantly in serum and the heart of ISO-induced rats, but the activities of glucuronidase and cathepsin-D were decreased significantly in the lysosomal fraction of the heart. Pretreatment with phytic acid (25 and 50 mg/kg) daily for a period of 56 d positively altered activities of lysosomal hydrolases in ISO-induced rats. Thus, phytic acid possesses a cardioprotective effect in ISO-induced MI in rats.
Collapse
Affiliation(s)
- E Brindha
- Department of Biotechnology, Muthaymmal College of Arts and Science , Rasipuram, Namakkal DT, Tamil Nadu , India and
| | | |
Collapse
|
16
|
Kusumoto S, Kawano H, Hayashi T, Satoh O, Yonekura T, Eguchi M, Takeno M, Tsuneto A, Koide Y, Jo T, Maemura K. Cyclophosphamide-induced cardiotoxicity with a prolonged clinical course diagnosed on an endomyocardial biopsy. Intern Med 2013; 52:2311-5. [PMID: 24126391 DOI: 10.2169/internalmedicine.52.0347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 31-year-old woman with primary mediastinal large B-cell lymphoma refractory to conventional chemotherapy was treated with high-dose chemotherapy containing cyclophosphamide (CY). Subsequently, she was treated with auto peripheral blood stem cell transplantation. Although a complete remission was obtained, heart failure developed two months later. Echocardiography showed an impaired systolic function with pericardial effusion. A biopsy of the endomyocardial region from the left ventricle demonstrated spotty myocardial hemorrhage and myocardial fibrosis with disruption and aggregation of mitochondrial cristae. Based on these findings, CY-induced cardiotoxicity was diagnosed. The patient was treated with conventional therapy for heart failure, which required approximately one year to improve her condition.
Collapse
Affiliation(s)
- Saburo Kusumoto
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Baliga MS, Thilakchand KR, Rai MP, Rao S, Venkatesh P. Aegle marmelos (L.) Correa (Bael) and Its Phytochemicals in the Treatment and Prevention of Cancer. Integr Cancer Ther 2012; 12:187-96. [DOI: 10.1177/1534735412451320] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aegle marmelos, commonly known as Bael and belonging to the family Rutaceae is an important medicinal plant in the traditional Indian system of medicine, the Ayurveda. The extract prepared by boiling the bark, leaves or roots in water is useful as laxative, febrifuge, and expectorant. The extract is also useful in ophthalmia, deafness, inflammations, catarrh, diabetes, and asthmatic complaints. The fruits are used in treating diarrhea, dysentery, stomach ache, and cardiac ailments. Scientific studies have validated many of Bael’s ethnomedicinal properties and its potential antimicrobial effects, hypoglycemic, astringent, antidiarrheal, antidysenteric, demulcent, analgesic, anti-inflammatory, antipyretic, wound-healing, insecticidal, and gastroprotective properties. In addition, studies have also shown that Bael and some of the Bael phytochemicals possess antineoplastic, radioprotective, chemoprotective, and chemopreventive effects, properties efficacious in the treatment and prevention of cancer. For the first time, the current review summarizes the results related to these properties and emphasizes aspects that require further investigation for Bael’s safe and effective use in the near future.
Collapse
Affiliation(s)
| | | | | | - Suresh Rao
- Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka, India
| | | |
Collapse
|
18
|
Sheng H, Sun H. Synthesis, biology and clinical significance of pentacyclic triterpenes: a multi-target approach to prevention and treatment of metabolic and vascular diseases. Nat Prod Rep 2011; 28:543-93. [DOI: 10.1039/c0np00059k] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Asiri YA. Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:308-16. [PMID: 21150336 PMCID: PMC3154034 DOI: 10.4161/oxim.3.5.13107] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/19/2022]
Abstract
Cyclophosphamide (CP) is a widely used in cancer chemotherapy and immunosuppression, which could cause toxicity of the normal cells due to its toxic metabolites. Probucol, cholesterol-lowering drug, acts as potential inhibitor of DNA damage and shows to protect against doxorubicin-induced cardiomyopathy by enhancing the endogenous antioxidant system including glutathione peroxidase, catalase and superoxide dismutase. This study examined the possible protective effects of probucol, a lipid-lowering compound with strong antioxidant properties, against CP-induced cardiotoxicity. This objective could be achieved through studying the gene expression-based on the possible protective effects of probucol against CP-induced cardiac failure in rats. Adult male Wistar albino rats were assigned into 4 treatment groups: Animals in the first (control) and second (probucol) groups were injected intraperitoneally with corn oil and probucol (61 mg/kg/day), respectively, for two weeks. Animals in the third (CP) and fourth (probucol plus CP) groups were injected with the same doses of corn oil and probucol (61 mg/kg/day), respectively, for one week before and one week after a single dose of CP (200 mg/kg, I.P.). The p53, Bax, Bcl2 and oxidative genes signal expression were measured by real time PCR. CP-induced cardiotoxicity was clearly observed by a significant increase in serum creatine phosphokinase isoenzyme (CK-MB) (117%), lactate dehydrogenase (LDH) (64%), free (69%) and esterified cholesterol (42%) and triglyceride (69%) compared to control group. In cardiac tissues, CP significantly increases the mRNA expression levels of apoptotic genes, p53 with 2 folds and Bax with 1.6 fold, and decreases the anti-apoptotic gene Bcl2 with 0.5 fold. Moreover, CP caused down-regulation of antioxidant genes, glutathione peroxidase, catalase, and superoxide dismutase and increased the lipid peroxidation and decreased adenosine triphosphate (ATP) (40%) and ATP/ADP (44%) in cardiac tissues. Probucol pretreatment not only counteracted significantly the CP-induced increase in cardiac enzymes and apoptosis but also it induced a significant increase in mRNA expression of antioxidant enzymes and improved ATP, ATP/ADP, glutathione (GSH) in cardiac tissues. In conclusion, data from the present study suggest that probucol prevents the development of CP-induced cardiotoxicity by a mechanism related, at least in part, to its ability to increase mRNA expression of antioxidant genes and to decrease apoptosis in cardiac tissues with the consequent improvement in mitochondrial oxidative phosphorylation and energy production.
Collapse
Affiliation(s)
- Yosef A Asiri
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
20
|
Manjeshwar Shrinath Baliga. Alstonia scholaris Linn R Br in the treatment and prevention of cancer: past, present, and future. Integr Cancer Ther 2010; 9:261-9. [PMID: 20702494 DOI: 10.1177/1534735410376068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alstonia scholaris, commonly known as devil's tree, is an important medicinal plant in the various folk and traditional systems of medicine in Asia, Australia, and Africa. The decoction, mostly prepared from the bark, is used to treat a variety of diseases of which the most important is malaria. Furthermore, ethnomedicinal practices also suggest it to be of use in treating cancer, and preclinical studies performed with cultured neoplastic cells and tumor-bearing animals having validated these observations. Additionally, the phytochemicals like echitamine, alstonine, pleiocarpamine, O-methylmacralstonine, macralstonine, and lupeol are also reported to possess antineoplastic effects. In addition to the cytotoxic effects, A scholaris is also observed to possess radiomodulatory, chemomodulatory, and chemopreventive effects and free-radical scavenging, antioxidant, anti-inflammatory, antimutagenic, and immunomodulatory activities, all of which are properties efficacious in the treatment and prevention of cancer. The current review for the first time summarizes the results related to these properties. An attempt is also made to address the lacunae in these published studies and emphasize aspects that need further investigations for it to be of use in clinics in the future.
Collapse
|
21
|
Kvasnica M, Rudovska I, Hajduch M, Sarek J. Preparation of new 18α-oleanane alcohols: synthesis, characterization, and cytotoxic activity. MONATSHEFTE FUR CHEMIE 2010. [DOI: 10.1007/s00706-009-0249-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Jayachandran KS, Vasanthi HR, Rajamanickam GV. Antilipoperoxidative and membrane stabilizing effect of diosgenin, in experimentally induced myocardial infarction. Mol Cell Biochem 2009; 327:203-10. [DOI: 10.1007/s11010-009-0058-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/04/2009] [Indexed: 11/30/2022]
|
23
|
Hudes ML, McCann JC, Ames BN. Unusual clustering of coefficients of variation in published articles from a medical biochemistry department in India. FASEB J 2008; 23:689-703. [DOI: 10.1096/fj.08-108910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mark L. Hudes
- Children's Hospital Oakland Research InstituteOaklandCaliforniaUSA
| | - Joyce C. McCann
- Children's Hospital Oakland Research InstituteOaklandCaliforniaUSA
| | - Bruce N. Ames
- Children's Hospital Oakland Research InstituteOaklandCaliforniaUSA
| |
Collapse
|
24
|
Martelanc M, Vovk I, Simonovska B. Determination of three major triterpenoids in epicuticular wax of cabbage (Brassica oleracea L.) by high-performance liquid chromatography with UV and mass spectrometric detection. J Chromatogr A 2007; 1164:145-52. [PMID: 17692861 DOI: 10.1016/j.chroma.2007.06.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/29/2007] [Accepted: 06/29/2007] [Indexed: 01/24/2023]
Abstract
Lupeol, together with alpha- and beta-amyrins in smaller quantities, has been found for the first time in the epicuticular wax of white cabbage (Brassica oleracea L. convar. capitata (L.) Alef. var. alba DC) leaf surface extract. The three triterpenoids were identified by a new high-performance liquid chromatographic (HPLC) method with UV and mass spectrometric (MS) detection using atmospheric pressure chemical ionization (APCI). All three isomeric compounds gave a parent ion peak at m/z 409 [M+H-18](+) and the relative intensities of some characteristic fragment ion peaks in tandem mass spectrometric (MS-MS) spectra of this parent ion enabled differentiation between the isomers. An additional peak at m/z 439 [M+H](+), which could be oleanonic or ursonic aldehyde, was detected by HPLC-APCI-MS. Saponification of cabbage leaf surface extract with 20% NaOH in methanol at 65 degrees C for 2h had no influence on lupeol, or alpha- or beta-amyrins, but lead to the formation of three additional compounds, which were not identified.
Collapse
Affiliation(s)
- Mitja Martelanc
- National Institute of Chemistry, Laboratory for Food Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | | | | |
Collapse
|
25
|
Coghlan JG, Handler CE, Kottaridis PD. Cardiac assessment of patients for haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 2007; 20:247-63. [PMID: 17448960 DOI: 10.1016/j.beha.2006.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The expanding role of haematopoietic stem-cell transplantation (HSCT) renders the previous policy of avoiding transplantation in high-risk cardiac patients obsolete. Patients with amyloid, autoimmune conditions, sickle-cell disease, or thalassaemia, and patients over the age of 60 years are increasingly being offered HSCT. It is evident that the policy of avoiding transplantation in patients with impaired systolic function fails to identify all high-risk patients in such groups, and will deprive some patients of the benefits of HSCT unnecessarily. The development of an appropriate algorithm for cardiac pre-assessment and peri-transplant management is hampered by an inadequate understanding of the predictive value of various tests of cardiovascular function, the rapid evolution of advanced management strategies for cardiac dysfunction, and the development of non-cardiotoxic conditioning regimens. To meet this need we propose that an algorithm based on evidence from other clinical situations - already been found to be successful in the management of HSCT in patients with systemic sclerosis - should be used uniformly, and registry studies should be undertaken to distinguish those aspects of the algorithm that positively help to expand the remit of HSCT from those that add little of value.
Collapse
Affiliation(s)
- J G Coghlan
- Department of Cardiology, Royal Free Hospital, Pond Street, Hampstead, London NW3 2QG, UK.
| | | | | |
Collapse
|
26
|
Catalano O, Antonaci S, Moro G, Baldi M, Cobelli F, Opasich C. Contrast-enhanced cardiac magnetic resonance in a patient with chemotoxic cardiomyopathy. J Cardiovasc Med (Hagerstown) 2007; 8:214-5. [PMID: 17312442 DOI: 10.2459/jcm.0b013e3280104155] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gadolinium-enhanced cardiac magnetic resonance was performed in a patient with chemotoxic cardiomyopathy. Intramyocardial midwall linear delayed hyperenhancement was found. Such a finding is consistent with midwall fibrosis and/or myocardial cell loss due to cardiotoxic effect of chemotherapy.
Collapse
Affiliation(s)
- Oronzo Catalano
- Division of Cardiology, IRCCS Salvatore Maugeri Foundation, Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Rajadurai M, Stanely Mainzen Prince P. Preventive effect of naringin on cardiac markers, electrocardiographic patterns and lysosomal hydrolases in normal and isoproterenol-induced myocardial infarction in Wistar rats. Toxicology 2006; 230:178-88. [PMID: 17188415 DOI: 10.1016/j.tox.2006.11.053] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 11/10/2006] [Accepted: 11/10/2006] [Indexed: 02/04/2023]
Abstract
Diets rich in natural antioxidants are associated with reduced risk of heart diseases. This study was aimed to evaluate the preventive role of naringin on cardiac troponin T (cTnT), lactate dehydrogenase (LDH)-isoenzyme, cardiac marker enzymes, electrocardiographic (ECG)-patterns and lysosomal enzymes in isoproterenol (ISO)-induced myocardial infarction (MI) in male Wistar rats. Rats subcutaneously injected with ISO (85mg/kg) at an interval of 24h for 2 days showed a significant increase in the levels of cTnT, intensity of the bands of LDH-isoenzyme (LDH1 and LDH2) and the activities of cardiac marker enzymes such as creatine kinase-MB (CK-MB), creatine kinase (CK), LDH, aspartate transaminase (AST) and alanine transaminase (ALT) in serum with subsequent decrease in the activities of CK, LDH, AST and ALT in the heart and alterations in ECG-patterns. The activities of lysosomal enzymes (beta-glucuronidase, beta-N-acetyl glucosaminidase, beta-galactosidase, cathepsin-B and cathepsin-D) were increased significantly in serum and the heart of ISO-induced rats, but the activities of beta-glucuronidase and cathepsin-D were decreased significantly in the lysosomal fraction of the heart. Pretreatment with naringin (10, 20 or 40mg/kg) daily for a period of 56 days positively altered the levels of cTnT, intensity of the bands of the LDH1 and LDH2-isoenzyme and the activities of cardiac marker enzymes, ECG-patterns and lysosomal hydrolases in ISO-induced rats. Thus, naringin possess cardioprotective effect in ISO-induced MI in rats.
Collapse
Affiliation(s)
- M Rajadurai
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | | |
Collapse
|
28
|
Sudharsan PT, Mythili Y, Selvakumar E, Varalakshmi P. Lupeol and its ester inhibit alteration of myocardial permeability in cyclophosphamide administered rats. Mol Cell Biochem 2006; 292:39-44. [PMID: 17009100 DOI: 10.1007/s11010-006-9171-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Cyclophosphamide (CP), an alkylating agent widely used in cancer chemotherapy causes cardiac membrane damage. Lupeol, a pentacyclic triterpene, isolated from Crataeva nurvala stem bark and its ester, lupeol linoleate possess a wide range of medicinal properties. The effect of lupeol and its ester was evaluated in CP induced alterations in cardiac electrolytes in rats. Male albino rats of Wistar strain were categorized into 6 groups. Group I served as control. Rats in groups II, V and VI were injected intraperitoneally with a single dose of CP (200 mg/kg body weight) dissolved in saline. CP treated groups V and VI received lupeol and lupeol linoleate (50 mg/kg body weight) respectively, dissolved in olive oil for 10 days by oral gavage. At the end of the experimental period, urinary risk factors, activities of ATPases and electrolytes were measured using standard procedures. CP administered rats showed a significant decrease (P < 0.001) in the activities of ATPases. It was associated with significant alterations (P < 0.001) of electrolytes both in serum and cardiac tissue. The levels of urea, uric acid and creatinine were also significantly (P < 0.001) altered in the serum and urine. Lupeol and its ester showed reversal of the above alterations induced by CP. These findings demonstrate that the supplementation with lupeol and its ester could preserve membrane permeability, highlighting their protective effect against CP induced cardiotoxicity.
Collapse
Affiliation(s)
- Periyasamy Thandavan Sudharsan
- Department of Medical Biochemistry, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | | | | | | |
Collapse
|
29
|
Abstract
This review will detail progress made in the previous decade on the chemistry and bioactivity of birch bark extractive products. Current and future applications of birch bark natural products in pharmaceuticals, cosmetics, and dietary supplements for the prevention and treatment of cancer, HIV,and other human pathogens are reviewed. Current developments in the technology of birch bark processing are discussed. New approaches for the synthesis of potentially valuable birch bark triterpenoid derivatives are also reviewed.
Collapse
Affiliation(s)
- Pavel A Krasutsky
- University of Minnesota-Duluth, Natural Resources Research Institute, 5013 Miller Trunk Highway, Duluth, Minnesota 55811-1442, USA.
| |
Collapse
|
30
|
Sudharsan PT, Mythili Y, Selvakumar E, Varalakshmi P. Lupeol and its ester exhibit protective role against cyclophosphamide-induced cardiac mitochondrial toxicity. J Cardiovasc Pharmacol 2006; 47:205-10. [PMID: 16495757 DOI: 10.1097/01.fjc.0000200658.89629.ba] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclophosphamide (CP), an anti-cancer and immunosuppressant drug, causes fatal cardiotoxicity during high dose chemotherapy. Lupeol, a pentacyclic triterpene, isolated from Crataeva nurvala stem bark and its ester, lupeol linoleate, possess wide range of medicinal properties. The objective of this study was to establish the pharmacological efficacy of lupeol and its ester against CP-induced mitochondrial-cardiomyopathy. Male albino rats of Wistar strain were injected with a single dose of CP (200 mg/kg body weight, i.p.). A decrease in the activities of TCA cycle enzymes such as succinate dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase were noted in CP-treated rats. Simultaneously there was a decrease in the activities of mitochondrial complexes of electron transport chain. Electron microscopical observations were also in agreement with the above changes. Mitochondria were swollen with numerous electron dense granules and showed damaged cristae, revealing the cytotoxic effect of CP. Lupeol (50 mg/kg body weight for 10 days orally) and its ester, lupeol linoleate (50 mg/kg body weight for 10 days orally) showed reversal of the above alterations induced by CP. These data suggest that the protective effects of lupeol and its ester against CP-induced cardiac damage were achieved by restoration of mitochondrial structure and function.
Collapse
Affiliation(s)
- Periyasamy Thandavan Sudharsan
- Department of Medical Biochemistry, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | | | | | | |
Collapse
|
31
|
Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep 2006; 23:394-411. [PMID: 16741586 DOI: 10.1039/b515312n] [Citation(s) in RCA: 473] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Petr Dzubak
- Laboratory of Experimental Medicine, Department of Pediatrics, Faculty of Medicine, Palacky University and Faculty Hospital in Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|