1
|
Shiriaev A, Brizzolara S, Sorce C, Meoni G, Vergata C, Martinelli F, Maza E, Djari A, Pirrello J, Pezzarossa B, Malorgio F, Tonutti P. Selenium Biofortification Impacts the Tomato Fruit Metabolome and Transcriptional Profile at Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13554-13565. [PMID: 37638888 PMCID: PMC10510400 DOI: 10.1021/acs.jafc.3c02031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
In the present work, the effects of enriching tomatoes with selenium were studied in terms of physiological, metabolic, and molecular processes in the last stages of fruit development, particularly during ripening. A selenium concentration of 10 mg L-1 with sodium selenate and selenium nanoparticles was used in the spray treatments on the whole plants. No significant effects of selenium enrichment were detected in terms of ethylene production or color changes in the ripening fruit. However, selenium enrichment had an influence on both the primary and secondary metabolic processes and thus the biochemical composition of ripe tomatoes. Selenium decreased the amount of β-carotene, increased the accumulation of naringenin and chlorogenic acid, and decreased the coumaric acid level. Selenium also affected the volatile organic compound profile, with changes in the level of specific apocarotenoid compounds, such as β-ionone. These metabolomic changes may, to some extent, be due to the impact of selenium treatment on the transcription of genes involved in the metabolism of these compounds. RNA-seq analysis showed that the selenium application mostly impacted the expression of the genes involved in hormonal signaling, secondary metabolism, flavonoid biosynthesis, and glycosaminoglycan degradation.
Collapse
Affiliation(s)
- Anton Shiriaev
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
- Research
Institute on Terrestrial Ecosystems, CNR, 56124 Pisa, Italy
| | - Stefano Brizzolara
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
| | - Carlo Sorce
- Department
of Biology, University of Pisa, 56126 Pisa, Italy
| | - Gaia Meoni
- Magnetic
Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Chiara Vergata
- Department
of Biology, University of Florence, 50122 Florence, Italy
| | | | - Elie Maza
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | - Anis Djari
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | - Julien Pirrello
- Laboratoire
de Recherche en Sciences Végétales-Génomique
et Biotechnologie des Fruits − UMR 5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, 31062 Toulouse, France
| | | | - Fernando Malorgio
- Department
of Agriculture, Food and Environment, University
of Pisa, 56124 Pisa, Italy
| | - Pietro Tonutti
- Crop
Science Research Center, Sant’Anna
School of Advanced Studies, 56127 Pisa, Italy
| |
Collapse
|
2
|
Identification and Expression Analysis of Stilbene Synthase Genes in Arachis hypogaea in Response to Methyl Jasmonate and Salicylic Acid Induction. PLANTS 2022; 11:plants11131776. [PMID: 35807728 PMCID: PMC9268999 DOI: 10.3390/plants11131776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Stilbene synthase is an important enzyme of the phenylpropanoid pathway, regulating the production of several biologically active stilbenoids. These compounds have antioxidant, anti-inflammatory, and anti-cancer properties. However, the detailed characterization of stilbene synthase genes in Arachis hypogaea has not yet been performed. In this study, the comprehensive characterization of stilbene synthase genes in A. hypogaea was conducted, commencing with identification, phylogenetic analysis, and study of their expression in response to exogenous hormonal treatment. We identified and isolated five AhSTSs genes and recorded their expression pattern in peanut (BARD-479) in response to methyl jasmonate (MeJA) and salicylic acid (SA) treatment. The presence of Chal_sti_synt, ACP_syn_III, and FAE1_CUT1_rppA domains in all AhSTSs indicated their role in the biosynthesis of stilbene and lipid metabolism. Cis-regulatory element analysis indicated their role in light responsiveness, defense responses, regulation of seed development, plant growth, and development. Despite close structural and functional similarities, expression and correlational analysis suggested that these genes may have a specific role in peanut, as individual AhSTS exhibited differential expression upon hormonal treatment in a genotype dependent manner. Further studies on functional characterization involving the transcriptional regulation of AhSTSs can clearly explain the differential expression of stilbene synthase genes to hormonal treatment.
Collapse
|
3
|
Lee C, Hong WJ, Jung KH, Hong HC, Kim DY, Ok HC, Choi MS, Park SK, Kim J, Koh HJ. Arachis hypogaea resveratrol synthase 3 alters the expression pattern of UDP-glycosyltransferase genes in developing rice seeds. PLoS One 2021; 16:e0245446. [PMID: 33444365 PMCID: PMC7808588 DOI: 10.1371/journal.pone.0245446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
The resveratrol-producing rice (Oryza sativa L.) inbred lines, Iksan 515 (I.515) and Iksan 526 (I.526), developed by the expression of the groundnut (Arachis hypogaea) resveratrol synthase 3 (AhRS3) gene in the japonica rice cultivar Dongjin, accumulated both resveratrol and its glucoside, piceid, in seeds. Here, we investigated the effect of the AhRS3 transgene on the expression of endogenous piceid biosynthesis genes (UGTs) in the developing seeds of the resveratrol-producing rice inbred lines. Ultra-performance liquid chromatography (UPLC) analysis revealed that I.526 accumulates significantly higher resveratrol and piceid in seeds than those in I.515 seeds and, in I.526 seeds, the biosynthesis of resveratrol and piceid reached peak levels at 41 days after heading (DAH) and 20 DAH, respectively. Furthermore, RNA-seq analysis showed that the expression patterns of UGT genes differed significantly between the 20 DAH seeds of I.526 and those of Dongjin. Quantitative real-time PCR (RT-qPCR) analyses confirmed the data from RNA-seq analysis in seeds of Dongjin, I.515 and I.526, respectively, at 9 DAH, and in seeds of Dongjin and I.526, respectively, at 20 DAH. A total of 245 UGTs, classified into 31 UGT families, showed differential expression between Dongjin and I.526 seeds at 20 DAH. Of these, 43 UGTs showed more than 2-fold higher expression in I.526 seeds than in Dongjin seeds. In addition, the expression of resveratrol biosynthesis genes (PAL, C4H and 4CL) was also differentially expressed between Dongjin and I.526 developing seeds. Collectively, these data suggest that AhRS3 altered the expression pattern of UGT genes, and PAL, C4H and 4CL in developing rice seeds.
Collapse
Affiliation(s)
- Choonseok Lee
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | - Ha-Cheol Hong
- National Institute of Agricultural Sciences, Wanju, Jeollabuk-do, Republic of Korea
| | - Dool-Yi Kim
- National Institute of Crop Science, Wanju, Jeollabuk-do, Republic of Korea
| | - Hyun-Choong Ok
- Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Man-Soo Choi
- National Institute of Crop Science, Wanju, Jeollabuk-do, Republic of Korea
| | - Soo-Kwon Park
- Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jaehyun Kim
- National Institute of Crop Science, Wanju, Jeollabuk-do, Republic of Korea
- * E-mail: (JK); (HJK)
| | - Hee-Jong Koh
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- * E-mail: (JK); (HJK)
| |
Collapse
|
4
|
Jeandet P, Vannozzi A, Sobarzo-Sánchez E, Uddin MS, Bru R, Martínez-Márquez A, Clément C, Cordelier S, Manayi A, Nabavi SF, Rasekhian M, El-Saber Batiha G, Khan H, Morkunas I, Belwal T, Jiang J, Koffas M, Nabavi SM. Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat Prod Rep 2021; 38:1282-1329. [PMID: 33351014 DOI: 10.1039/d0np00030b] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1976 to 2020. Although constituting a limited chemical family, phytostilbenes represent an emblematic group of molecules among natural compounds. Ever since their discovery as antifungal compounds in plants and their ascribed role in human health and disease, phytostilbenes have never ceased to arouse interest for researchers, leading to a huge development of the literature in this field. Owing to this, the number of references to this class of compounds has reached the tens of thousands. The objective of this article is thus to offer an overview of the different aspects of these compounds through a large bibliography analysis of more than 500 articles. All the aspects regarding phytostilbenes will be covered including their chemistry and biochemistry, regulation of their biosynthesis, biological activities in plants, molecular engineering of stilbene pathways in plants and microbes as well as their biotechnological production by plant cell systems.
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain and Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh and Neuroscience Research Network, Dhaka, Bangladesh
| | - Roque Bru
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Ascension Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Christophe Clément
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Sylvain Cordelier
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, The People's Republic of China
| | - Jingjie Jiang
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Mattheos Koffas
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| |
Collapse
|
5
|
Naini R, Pavankumar P, Prabhakar S, Kancha RK, Rao KV, Reddy VD. Evolvement of nutraceutical onion plants engineered for resveratrol biosynthetic pathway. PLANT CELL REPORTS 2019; 38:1127-1137. [PMID: 31154513 DOI: 10.1007/s00299-019-02432-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Genetically engineered onion expressing codon-optimized VvSTS1 gene accumulated stilbenes and extended life span in yeast and can serve as potential nutraceutical. Resveratrol (RV) is a natural polyphenolic compound found in certain plant species including grapes. RV is well known for its nutraceutical properties and to assuage several disease conditions. Onion is the second most consumed vegetable worldwide and contains large quantities of precursor molecules, malonyl-CoA and para-coumaroyl-CoA that are needed for RV biosynthesis. The present study reports the development of nutraceutical onion by engineering RV biosynthetic pathway. A codon-optimized grapevine synthetic stilbene synthase gene (VvSTS1) was synthesized using native grapevine sequence. Six-week-old healthy yellowish compact nodular calli were co-cultivated with Agrobacterium tumefaciens harbouring pCAMBIA1300-hpt II-CaMV35S-VvSTS1-nos. PCR analysis revealed the presence of VvSTS1 and hpt II genes in putative transgenics. Southern blot analysis confirmed the integration of VvSTS1 gene and independent nature of transformants. LC-ESI-HRMS analysis revealed the accumulation of variable quantities of RV (24.98-50.18 µg/g FW) and its glycosylated form polydatin (33.6-67.15 µg/g FW) in both leaves and bulbs, respectively, indicating the successful engineering of RV biosynthetic pathway into onion. The transgenic onion bulb extracts extended the life span in haploid yeast. The transgenic onion accumulating RV and polydatin, developed for the first of its kind, may serve as a potential nutraceutical resource.
Collapse
Affiliation(s)
- Raju Naini
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India
| | - P Pavankumar
- Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
- Acadamy of Scientific and Innovative Research, CSIR-IICT, Hyderabad, India
| | - S Prabhakar
- Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
- Acadamy of Scientific and Innovative Research, CSIR-IICT, Hyderabad, India
| | - Rama Krishna Kancha
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India
| | | | - Vudem Dashavantha Reddy
- Centre for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
6
|
Huang L, Yin X, Sun X, Yang J, Rahman MZ, Chen Z, Wang X. Expression of a Grape VqSTS36-Increased Resistance to Powdery Mildew and Osmotic Stress in Arabidopsis but Enhanced Susceptibility to Botrytis cinerea in Arabidopsis and Tomato. Int J Mol Sci 2018; 19:E2985. [PMID: 30274342 PMCID: PMC6213015 DOI: 10.3390/ijms19102985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 11/19/2022] Open
Abstract
Stilbene synthase genes make a contribution to improving the tolerances of biotic and abiotic stress in plants. However, the mechanisms mediated by these STS genes remain unclear. To provide insight into the role of STS genes defense against biotic and abiotic stress, we overexpressed VqSTS36 in Arabidopsis thaliana and tomato (Micro-Tom) via Agrobacterium-mediated transformation. VqSTS36-transformed Arabidopsis lines displayed an increased resistance to powdery mildew, but both VqSTS36-transformed Arabidopsis and tomato lines showed the increased susceptibility to Botrytis cinerea. Besides, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress in seed and seedlings. When transgenic plants were treated with a different stress, qPCR assays of defense-related genes in transgenic Arabidopsis and tomato suggested that VqSTS36 played a specific role in different phytohormone-related pathways, including salicylic acid, jasmonic acid, and abscisic acid signaling pathways. All of these results provided a better understanding of the mechanism behind the role of VqSTS36 in biotic and abiotic stress.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Xiangjing Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Xiaomeng Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Jinhua Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Mohammad Zillur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Zhiping Chen
- Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Yin X, Huang L, Zhang X, Guo C, Wang H, Li Z, Wang X. Expression patterns and promoter characteristics of the Vitis quinquangularis VqSTS36 gene involved in abiotic and biotic stress response. PROTOPLASMA 2017; 254:2247-2261. [PMID: 28470373 DOI: 10.1007/s00709-017-1116-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 04/23/2017] [Indexed: 05/13/2023]
Abstract
Resveratrol is a stilbene compound that is synthesized by plants in response to biotic stress and has been linked to health benefits associated with the consumption of certain foods and food products, such as grapes and wine. The final step in the biosynthesis of resveratrol is catalyzed by the enzyme stilbene synthase (STS). Here, we assessed the expression of two STS genes (VqSTS36 and VpSTS36) from the wild grape species Vitis quinquangularis (accession 'Shang-24'; powdery mildew (PM) resistant) and Vitis pseudoreticulata (accession 'Hunan-1'; PM susceptible) following infection by Uncinula necator (Schw.) Burr, the causal agent of PM disease. Some correlation was observed between the relative levels of STS36 transcript and disease resistance. We also cloned the 5' upstream sequence of both VpSTS36 and VqSTS36 and generated a series of 5' VqSTS36 promoter deletions fused to the GUS reporter gene in order to analyze expression in response to wounding, the application of exogenous stress-associated hormones, and biotic stress in tobacco leaves. The promoter was shown to be induced by the hormone salicylic acid (SA), inoculation with the fungal pathogen Erysiphe cichoracearum, and by wounding. These results suggest that VqSTS36 is regulated by biotic stresses and that it plays an important role in mediating disease resistance in grape.
Collapse
Affiliation(s)
- Xiangjing Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuming Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Li Q, Tang M, Zhou A. In vitro detection of diesel exhaust particles induced human lung carcinoma epithelial cells damage and the effect of resveratrol. J Appl Toxicol 2016; 37:747-757. [PMID: 27933654 DOI: 10.1002/jat.3423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 02/05/2023]
Abstract
People are taking up antioxidants in their daily diet and being exposed to a potential diesel exhaust particles (DEP)-containing environment. Thus it is important to study in vitro cellular responses when cells are exposed to DEP with or without antioxidant treatment. The investigation of DEP and resveratrol (RES) on cellular biophysical and biochemical changes is needed to better understand the mechanisms of DEP and RES in mammalian cells. A combination of two non-invasive techniques (atomic force microscopy, AFM, and Raman spectroscopy, RM) and multimodal tools were applied to evaluate the biophysical, biochemical alterations and cytokine, membrane potential and cell cycle of cells with or without RES pretreatment to different times of DEP exposure. AFM results indicated that RES protected cells from DEP-induced damage to cytoskeleton and cell architectures, and noted that RES treatments also attenuated DEP-induced alterations in cell elasticity and surface adhesion force over DEP incubation time. RM monitored the changes in characteristic Raman peak intensities of DNA and protein over the DEP exposure time for both RES and non-RES treated groups. The cytokine and chemokine changes quantified by Multiplex ELISA revealed that the inflammatory responses were enhanced with the increase in DEP exposure time and that RES enhanced the expression levels of cytokine and chemokine. This work demonstrated that significant biophysical and biochemical changes in cells might be relevant to early pathological changes induced by DEP damage. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Qifei Li
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Mingjie Tang
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
9
|
Jeong YJ, An CH, Woo SG, Park JH, Lee KW, Lee SH, Rim Y, Jeong HJ, Ryu YB, Kim CY. Enhanced production of resveratrol derivatives in tobacco plants by improving the metabolic flux of intermediates in the phenylpropanoid pathway. PLANT MOLECULAR BIOLOGY 2016; 92:117-29. [PMID: 27338256 DOI: 10.1007/s11103-016-0497-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4'-O-β-D-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104-240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis.
Collapse
Affiliation(s)
- Yu Jeong Jeong
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Chul Han An
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
- Department of Bioscience and Biotechnology, Chungnam National University, Daejeon, 305-806, Republic of Korea
| | - Su Gyeong Woo
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Ji Hye Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Ki-Won Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 331-801, Republic of Korea
| | - Sang-Hoon Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 331-801, Republic of Korea
| | - Yeonggil Rim
- Division of Applied Life Science (BK21plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Hyung Jae Jeong
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Young Bae Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea
| | - Cha Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 580-185, Republic of Korea.
| |
Collapse
|
10
|
Dobrzyńska MM, Gajowik A, Radzikowska J. The effect ofin vivoresveratrol supplementation in irradiated mice on the induction of micronuclei in peripheral blood and bone marrow reticulocytes. Mutagenesis 2015; 31:393-9. [DOI: 10.1093/mutage/gev084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Zheng S, Zhao S, Li Z, Wang Q, Yao F, Yang L, Pan J, Liu W. Evaluating the Effect of Expressing a Peanut Resveratrol Synthase Gene in Rice. PLoS One 2015; 10:e0136013. [PMID: 26302213 PMCID: PMC4547805 DOI: 10.1371/journal.pone.0136013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/29/2015] [Indexed: 11/24/2022] Open
Abstract
Resveratrol (Res) is a type of natural plant stilbenes and phytoalexins that only exists in a few plant species. Studies have shown that the Res could be biosynthesized and accumulated within plants, once the complete metabolic pathway and related enzymes, such as the key enzyme resveratrol synthase (RS), existed. In this study, a RS gene named PNRS1 was cloned from the peanut, and the activity was confirmed in E. coli. Using transgenic approach, the PNRS1 transgenic rice was obtained. In T3 generation, the Res production and accumulation were further detected by HPLC. Our data revealed that compared to the wild type rice which trans-resveratrol was undetectable, in transgenic rice, the trans-resveratrol could be synthesized and achieved up to 0.697 μg/g FW in seedlings and 3.053 μg/g DW in seeds. Furthermore, the concentration of trans-resveratrol in transgenic rice seedlings could be induced up to eight or four-fold higher by ultraviolet (UV-C) or dark, respectively. Simultaneously, the endogenous increased of Res also showed the advantages in protecting the host plant from UV-C caused damage or dark-induced senescence. Our data indicated that Res was involved in host-defense responses against environmental stresses in transgenic rice. Here the results describes the processes of a peanut resveratrol synthase gene transformed into rice, and the detection of trans-resveratrol in transgenic rice, and the role of trans-resveratrol as a phytoalexin in transgenic rice when treated by UV-C and dark. These findings present new outcomes of transgenic approaches for functional genes and their corresponding physiological functions, and shed some light on broadening available resources of Res, nutritional improvement of crops, and new variety cultivation by genetic engineering.
Collapse
Affiliation(s)
- Shigang Zheng
- Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Department of Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Shandong Province, Jinan, Shandong, People's Republic of China
- Department of Life Science, Qingdao Agricultural University, Tsingtao, Shandong, People's Republic of China
| | - Shanchang Zhao
- Department of Agricultural Quality Standards and Testing Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, People's Republic of China
| | - Zhen Li
- Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Department of Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Shandong Province, Jinan, Shandong, People's Republic of China
| | - Qingguo Wang
- Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Department of Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Shandong Province, Jinan, Shandong, People's Republic of China
| | - Fangyin Yao
- Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Department of Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Shandong Province, Jinan, Shandong, People's Republic of China
| | - Lianqun Yang
- Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Department of Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Shandong Province, Jinan, Shandong, People's Republic of China
| | - Jiaowen Pan
- Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Department of Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Shandong Province, Jinan, Shandong, People's Republic of China
| | - Wei Liu
- Department of Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Department of Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Shandong Province, Jinan, Shandong, People's Republic of China
| |
Collapse
|
12
|
Baek SH, Shin WC, Ryu HS, Lee DW, Moon E, Seo CS, Hwang E, Lee HS, Ahn MH, Jeon Y, Kang HJ, Lee SW, Kim SY, D’Souza R, Kim HJ, Hong ST, Jeon JS. Creation of resveratrol-enriched rice for the treatment of metabolic syndrome and related diseases. PLoS One 2013; 8:e57930. [PMID: 23483945 PMCID: PMC3587571 DOI: 10.1371/journal.pone.0057930] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/30/2013] [Indexed: 11/18/2022] Open
Abstract
Resveratrol has been clinically shown to possess a number of human health benefits. As a result, many attempts have been made to engineer resveratrol production in major cereal grains but have been largely unsuccessful. In this study, we report the creation of a transgenic rice plant that accumulates 1.9 µg resveratrol/g in its grain, surpassing the previously reported anti-metabolic syndrome activity of resveratrol through a synergistic interaction between the transgenic resveratrol and the endogenous properties of the rice. Consumption of our transgenic resveratrol-enriched rice significantly improved all aspects of metabolic syndrome and related diseases in animals fed a high-fat diet. Compared with the control animals, the resveratrol-enriched rice reduced body weight, blood glucose, triglycerides, total cholesterol, and LDL-cholesterol by 24.7%, 22%, 37.4%, 27%, and 59.6%, respectively. The resveratrol-enriched rice from our study may thus provide a safe and convenient means of preventing metabolic syndrome and related diseases without major lifestyle changes or the need for daily medications. These results also suggest that future transgenic plants could be improved if the synergistic interactions of the transgene with endogenous traits of the plant are considered in the experimental design.
Collapse
Affiliation(s)
- So-Hyeon Baek
- National Institute of Crop Science, Rural Development Administration, Iksan, Chonbuk, Korea
| | - Woon-Chul Shin
- National Institute of Crop Science, Rural Development Administration, Iksan, Chonbuk, Korea
| | - Hak-Seung Ryu
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Korea
- Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Dae-Woo Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Korea
- Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Eunjung Moon
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Chun-Sun Seo
- National Institute of Crop Science, Rural Development Administration, Iksan, Chonbuk, Korea
| | - Eunson Hwang
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Hyun-Seo Lee
- Laboratory of Genetics and Department of Microbiology, Chonbuk National University Medical School, Jeonju, Chonbuk, Korea
| | - Mi-Hyun Ahn
- Laboratory of Genetics and Department of Microbiology, Chonbuk National University Medical School, Jeonju, Chonbuk, Korea
| | - Youngju Jeon
- Laboratory of Genetics and Department of Microbiology, Chonbuk National University Medical School, Jeonju, Chonbuk, Korea
| | - Hyeon-Jung Kang
- National Institute of Crop Science, Rural Development Administration, Iksan, Chonbuk, Korea
| | - Sang-Won Lee
- Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi, Korea
- Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Korea
| | - Sun Yeou Kim
- College of pharmacy, Gachon University, Incheon, Korea
| | - Roshan D’Souza
- BDRD Research Institute, JINIS Biopharmaceuticals Inc., Wanju, Chonbuk, Korea
| | - Hyeon-Jin Kim
- BDRD Research Institute, JINIS Biopharmaceuticals Inc., Wanju, Chonbuk, Korea
| | - Seong-Tshool Hong
- Laboratory of Genetics and Department of Microbiology, Chonbuk National University Medical School, Jeonju, Chonbuk, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Korea
- Crop Biotech Institute, Kyung Hee University, Yongin, Gyeonggi, Korea
| |
Collapse
|
13
|
Großkinsky DK, van der Graaff E, Roitsch T. Phytoalexin transgenics in crop protection--fairy tale with a happy end? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 195:54-70. [PMID: 22920999 DOI: 10.1016/j.plantsci.2012.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 05/19/2023]
Abstract
Phytoalexins are pathogen induced low molecular weight compounds with antimicrobial activities derived from secondary metabolism. Following their identification, phytoalexins were directly incorporated into the network of plant defense responses. Due to their heterogeneity, the metabolic pathways involved in phytoalexin formation and in particular the regulatory mechanisms remained elusive. Consequently, research focus shifted to the characterization of other components of plant immunity such as defense signaling and resistance mechanisms, including components of systemic acquired and induced systemic resistance, effector and pathogen-associated molecular pattern triggered immunity as well as R-gene resistance. Despite the obtained knowledge on these immunity mechanisms, genetic engineering employing these mechanisms and classical breeding reached too low improvements in crop protection, probably because classical breeding focused on yield performance and taste, rather than pathogen resistance. The increasing demand for disease resistant crop species and the aim to reduce pesticide application therefore requires alternative approaches. Recent advances in the understanding of phytoalexin function, biosynthesis and regulation, in combination with novel methods of molecular engineering and advances in instrumental analysis, returned attention to phytoalexins as a potent target for improving crop protection. Based on this, the advantages as well as potential bottlenecks for molecular approaches of modulating inducible phytoalexins to improve crop protection are discussed.
Collapse
Affiliation(s)
- Dominik K Großkinsky
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, Schubertstraße 51, 8010 Graz, Austria.
| | | | | |
Collapse
|
14
|
Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. J Biomed Biotechnol 2012; 2012:579089. [PMID: 22654481 PMCID: PMC3359829 DOI: 10.1155/2012/579089] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 03/04/2012] [Indexed: 02/06/2023] Open
Abstract
Resveratrol, a stilbenic compound deriving from the phenyalanine/polymalonate route, being stilbene synthase the last and key enzyme of this pathway, recently has become the focus of a number of studies in medicine and plant physiology. Increased demand for this molecule for nutraceutical, cosmetic and possibly pharmaceutic uses, makes its production a necessity. In this context, the use of biotechnology through recombinant microorganisms and plants is particularly promising. Interesting results can indeed arise from the potential of genetically modified microorganisms as an alternative mechanism for producing resveratrol. Strategies used to tailoring yeast as they do not possess the genes that encode for the resveratrol pathway, will be described. On the other hand, most interest has centered in recent years, on STS gene transfer experiments from various origins to the genome of numerous plants. This work also presents a comprehensive review on plant molecular engineering with the STS gene, resulting in disease resistance against microorganisms and the enhancement of the antioxidant activities of several fruits in transgenic lines.
Collapse
|
15
|
Pan LP, Yu SL, Chen CJ, Li H, Wu YL, Li HH. Cloning a peanut resveratrol synthase gene and its expression in purple sweet potato. PLANT CELL REPORTS 2012; 31:121-131. [PMID: 21932029 DOI: 10.1007/s00299-011-1145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 07/14/2011] [Accepted: 08/31/2011] [Indexed: 05/31/2023]
Abstract
A resveratrol synthase gene was cloned from the peanut plant (Arachis hypogaea) by RT-PCR and was transformed into purple sweet potato (Ipomoea batatas) by Agrobacterium-mediated transformation. Stem sections were infected with bacterial solution of OD(600) = 0.4 for 20 min and then cocultured for 2 days. Infected explants were cultured on MS media containing 50 mg/l kanamycin, 0.02 mg/l NAA and 1 mg/l 6-BA for bud induction or containing 75 mg/l kanamycin, 1.0 mg/l NAA and 0.1 mg/l 6-BA for root formation. The bud and root induction rates were 37.5 and 25.0%, respectively. 105 regenerated plants were obtained, with 11 positive plants by PCR and Southern blotting analyses. A high level of resveratrol glucoside (340 μg/g dry weight), but no resveratrol, was detected in the transformed plants by HPLC. This study also provides a stable genetic transformation and plant regeneration method for metabolic modification of purple sweet potato.
Collapse
Affiliation(s)
- Li-Ping Pan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
16
|
LU D, ZHAO W, ZHAO S. Relevant Enzymes, Genes and Regulation Mechanisms in Biosynthesis Pathway of Stilbenes. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojmc.2012.22003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Xu W, Yu Y, Zhou Q, Ding J, Dai L, Xie X, Xu Y, Zhang C, Wang Y. Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2745-61. [PMID: 21504880 DOI: 10.1093/jxb/erq447] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The gene encoding stilbene synthase (STS) plays a central role in many biochemical and physiological actions, and its metabolite resveratrol possesses broad-spectrum resistance to pathogens, as well as diverse pharmacological properties, notably an anticancer effect. Here, we report the expression analysis of the gene encoding STS and its promoter function from a powdery mildew (PM)-resistant Chinese wild Vitis pseudoreticulata, and compare it with two PM-susceptible cultivated grapevines, Vitis vinifera cvs. Carignane and Thompson Seedless. We show an unusual expression pattern of STS in V. pseudoreticulata, which differs markedly from that of the cultivated species. Sequence comparisons reveal that the genomic DNA sequences encoding STS in the three grapevines are highly conserved, but a novel residue mutation within the key motif of STS is solely present in V. pseudoreticulata. Moreover, the STS promoter in V. pseudoreticulata displays a significantly different structure from that found in the two V. vinifera. The three promoter-driven GUS differential expression patterns in transformed tobacco plants induced with Alternaria alternata, methyl jasmonate, and wounding indicated that the structurally different STS promoter of V. pseudoreticulata is responsible for its specific regulatory function. We also demonstrate that the expression of STS genes from their native promoters are functional in transformed tobacco and retain pathogen inducibility. Importantly, the genomic DNA-2 of V. pseudoreticulata under its native promoter shows good induction and the maximum level of resveratrol content. These findings further our understanding of the regulation of STS expression in a resistant grapevine and provide a new pathogen-inducible promoter system for the genetic improvement of plant disease resistance.
Collapse
Affiliation(s)
- Weirong Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Longevity nutrients resveratrol, wines and grapes. GENES AND NUTRITION 2009; 5:55-60. [PMID: 19730919 DOI: 10.1007/s12263-009-0145-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
A mild-to-moderate wine drinking has been linked with reduced cardiovascular, cerebrovascular, and peripheral vascular risk as well as reduced risk due to cancer. The reduced risk of cardiovascular disease associated with wine drinking is popularly known as French Paradox. A large number of reports exist in the literature indicating that resveratrol present in wine is primarily responsible for the cardioprotection associated with wine. Recently, resveratrol was shown to extend life span in yeast through the activation of longevity gene SirT1, which is also responsible for the longevity mediated by calorie restriction. This review summarizes the reports available on the functional and molecular biological aspects of resveratrol, wine and grapes in potentiating the longevity genes.
Collapse
|
19
|
Flores-Sanchez IJ, Verpoorte R. Plant polyketide synthases: a fascinating group of enzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:167-74. [PMID: 19071029 DOI: 10.1016/j.plaphy.2008.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 10/06/2008] [Accepted: 11/08/2008] [Indexed: 05/22/2023]
Abstract
The polyketide synthases (PKSs) are condensing enzymes which form a myriad of polyketide compounds. Several PKSs have been identified and studied in plants. This mini-review summarizes what is known about plant PKSs and some of their aspects such as specificity, reaction mechanisms, structure, as well as their possible evolution are highlighted.
Collapse
Affiliation(s)
- Isvett J Flores-Sanchez
- Pharmacognosy Department/Metabolomics, Institute of Biology, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
20
|
Delaunois B, Cordelier S, Conreux A, Clément C, Jeandet P. Molecular engineering of resveratrol in plants. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:2-12. [PMID: 19021877 DOI: 10.1111/j.1467-7652.2008.00377.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The grapevine phytoalexin resveratrol, the synthesis of which is achieved by stilbene synthase (STS), displays a wide range of biological effects. Most interest has centred, in recent years, on STS gene transfer experiments from grapevine to the genome of numerous plants. This work presents a comprehensive review on plant molecular engineering with the STS gene. Gene and promoter options are discussed, namely the different promoters used to drive the transgene, as well as the enhancer elements and/or heterologous promoters used to improve transcriptional activity in the transformed lines. Factors modifying transgene expression and epigenetic modifications, for instance transgene copy number, are also presented. Resveratrol synthesis in plants, together with that of its glucoside as a result of STS expression, is described, as is the incidence of these compounds on plant metabolism and development. The ectopic production of resveratrol can lead to broad-spectrum resistance against fungi in transgenic lines, and to the enhancement of the antioxidant activities of several fruits, highlighting the potential role of this compound in health promotion and plant disease control.
Collapse
Affiliation(s)
- Bertrand Delaunois
- Laboratory of Oenology and Applied Chemistry, Research Unit 'Vines and Wines of Champagne-Stress and Environment', UPRES EA 2069, Faculty of Sciences, University of Reims, PO Box 1039, 51687 Reims cedex 02, France
| | | | | | | | | |
Collapse
|
21
|
Kode A, Rajendrasozhan S, Caito S, Yang SR, Megson IL, Rahman I. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2007; 294:L478-88. [PMID: 18162601 DOI: 10.1152/ajplung.00361.2007] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nuclear erythroid-related factor 2 (Nrf2), a redox-sensitive transcription factor, is involved in transcriptional regulation of many antioxidant genes, including glutamate-cysteine ligase (GCL). Cigarette smoke (CS) is known to cause oxidative stress and deplete glutathione (GSH) levels in alveolar epithelial cells. We hypothesized that resveratrol, a polyphenolic phytoalexin, has antioxidant signaling properties by inducing GSH biosynthesis via the activation of Nrf2 and protects lung epithelial cells against CS-mediated oxidative stress. Treatment of human primary small airway epithelial and human alveolar epithelial (A549) cells with CS extract (CSE) dose dependently decreased GSH levels and GCL activity, effects that were associated with enhanced production of reactive oxygen species. Resveratrol restored CSE-depleted GSH levels by upregulation of GCL via activation of Nrf2 and also quenched CSE-induced release of reactive oxygen species. Interestingly, CSE failed to induce nuclear translocation of Nrf2 in A549 and small airway epithelial cells. On the contrary, Nrf2 was localized in the cytosol of alveolar and airway epithelial cells due to CSE-mediated posttranslational modifications such as aldehyde/carbonyl adduct formation and nitration. On the other hand, resveratrol attenuated CSE-mediated Nrf2 modifications, thereby inducing its nuclear translocation associated with GCL gene transcription, as demonstrated by GCL-promoter reporter and Nrf2 small interfering RNA approaches. Thus resveratrol attenuates CSE-mediated GSH depletion by inducing GSH synthesis and protects epithelial cells by reversing CSE-induced posttranslational modifications of Nrf2. These data may have implications in dietary modulation of antioxidants in treatment of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Aruna Kode
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Box 850,601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
22
|
Lee HS, Lee DH. Relationship Among Body Mass Index, Nutrient Intake and Antioxidant Enzyme Activity of Postmenopausal Women. Prev Nutr Food Sci 2007. [DOI: 10.3746/jfn.2007.12.2.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Ragab AS, Van Fleet J, Jankowski B, Park JH, Bobzin SC. Detection and quantitation of resveratrol in tomato fruit (Lycopersicon esculentum Mill.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:7175-9. [PMID: 16968079 DOI: 10.1021/jf0609633] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Resveratrol is a stilbene phytoalexin well-known for its presence in grape, wine, and peanut. As a result of its antioxidant and chemopreventative properties, it has gained much attention as a functional food ingredient. A gas chromatography-mass spectrometry method for the detection of resveratrol, its 3-glucopyranoside piceid, and the cis isomers of both compounds has been developed and used to quantitate the levels of these compounds in the skin of commercially available tomato fruit (Lycopersicon esculentum Mill.). The resveratrol concentration remains relatively stable during fruit maturation, reaching a maximum concentration in the skin of 18.4 +/- 1.6 microg/g dry weight at 4 weeks postbreaker. No stilbenes were detected in the flesh of tomato fruit.
Collapse
Affiliation(s)
- Amr S Ragab
- Ceres, Inc., 1535 Rancho Conejo Boulevard, Thousand Oaks, California 91320, USA
| | | | | | | | | |
Collapse
|