1
|
Shirai M, Hara T, Kaji T, Yamamoto C. Cadmium promotes hyaluronan synthesis by inducing hyaluronan synthase 3 expression in cultured vascular endothelial cells via the c-Jun N-terminal kinase-c-Jun pathway. Toxicology 2025; 511:154062. [PMID: 39837363 DOI: 10.1016/j.tox.2025.154062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Cadmium is a heavy metal risk factor for various cardiovascular diseases, such as atherosclerosis. In atherosclerotic lesions, hyaluronan, a glycosaminoglycan consisting of β4-glucuronic acid-β3-N-acetylglucosamine disaccharides repeats, is highly accumulated, regulating signal transduction, cell migration, and angiogenesis. Hyaluronan is synthesized by hyaluronan synthase (HAS)1-3 in the plasma membrane and secreted into the extracellular space. Hyaluronan derived from HAS3 promotes inflammatory responses. Recently, we found that cadmium elongates chondroitin/dermatan sulfate chains in vascular endothelial cells and that glycosaminoglycan sugar chains are potential targets for the vascular toxicity of cadmium. Therefore, hyaluronan, a glycosaminoglycan sugar chain, may also affected by cadmium; however, this has not yet been clarified. In this study, we aimed to analyze the effect of cadmium on hyaluronan synthesis using cultured aortic endothelial cells. Cadmium at a concentration of 2 µM upregulated hyaluronan synthesis in the medium and specifically induced HAS3 mRNA and protein expression. However, cadmium-mediated HAS3 induction was abolished by the inhibition of the c-Jun N-terminal kinase (JNK)-c-Jun pathway. Moreover, JNK inhibition prevented the increase in hyaluronan levels in the medium. These results revealed that the JNK-c-Jun pathway was involved in HAS3-mediated hyaluronan synthesis by cadmium in vascular endothelial cells, suggesting that endothelial HAS3 induction contributes to atherosclerotic lesion formation by promoting inflammatory responses.
Collapse
Affiliation(s)
- Misaki Shirai
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Takato Hara
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chika Yamamoto
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
2
|
Chandrasekaran R, Mathieu C, Sheth R, Cheng AP, Fong D, McCormack R, El-Gabalawy H, Alishetty S, Paige M, Hoemann CD. UDP-glucose dehydrogenase (UGDH) activity is suppressed by peroxide and promoted by PDGF in fibroblast-like synoviocytes: Evidence of a redox control mechanism. PLoS One 2022; 17:e0274420. [PMID: 36107941 PMCID: PMC9477357 DOI: 10.1371/journal.pone.0274420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) generates essential precursors of hyaluronic acid (HA) synthesis, however mechanisms regulating its activity are unclear. We used enzyme histostaining and quantitative image analysis to test whether cytokines that stimulate HA synthesis upregulate UGDH activity. Fibroblast-like synoviocytes (FLS, from N = 6 human donors with knee pain) were cultured, freeze-thawed, and incubated for 1 hour with UDP-glucose, NAD+ and nitroblue tetrazolium (NBT) which allows UGDH to generate NADH, and NADH to reduce NBT to a blue stain. Compared to serum-free medium, FLS treated with PDGF showed 3-fold higher UGDH activity and 6-fold higher HA release, but IL-1beta/TGF-beta1 induced 27-fold higher HA release without enhancing UGDH activity. In selected proliferating cells, UGDH activity was lost in the cytosol, but preserved in the nucleus. Cell-free assays led us to discover that diaphorase, a cytosolic enzyme, or glutathione reductase, a nuclear enzyme, was necessary and sufficient for NADH to reduce NBT to a blue formazan dye in a 1-hour timeframe. Primary synovial fibroblasts and transformed A549 fibroblasts showed constitutive diaphorase/GR staining activity that varied according to supplied NADH levels, with relatively stronger UGDH and diaphorase activity in A549 cells. Unilateral knee injury in New Zealand White rabbits (N = 3) stimulated a coordinated increase in synovial membrane UGDH and diaphorase activity, but higher synovial fluid HA in only 2 out of 3 injured joints. UGDH activity (but not diaphorase) was abolished by N-ethyl maleimide, and inhibited by peroxide or UDP-xylose. Our results do not support the hypothesis that UGDH is a rate-liming enzyme for HA synthesis under catabolic inflammatory conditions that can oxidize and inactivate the UGDH active site cysteine. Our novel data suggest a model where UGDH activity is controlled by a redox switch, where intracellular peroxide inactivates, and high glutathione and diaphorase promote UGDH activity by maintaining the active site cysteine in a reduced state, and by recycling NAD+ from NADH.
Collapse
Affiliation(s)
- Ramya Chandrasekaran
- Department of Bioengineering, George Mason University, Manassas, Virginia, United States of America
| | - Colleen Mathieu
- Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Rishi Sheth
- Department of Bioengineering, George Mason University, Manassas, Virginia, United States of America
| | - Alexandre P. Cheng
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - David Fong
- Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Robert McCormack
- Department of Orthopedic Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Hani El-Gabalawy
- Department of Medicine and Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Suman Alishetty
- Department of Bioengineering, George Mason University, Manassas, Virginia, United States of America
| | - Mikell Paige
- Department of Chemistry & Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Caroline D. Hoemann
- Department of Bioengineering, George Mason University, Manassas, Virginia, United States of America
- Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- * E-mail:
| |
Collapse
|
3
|
Therapeutic Effect of Gypenosides on Antioxidant Stress Injury in Orbital Fibroblasts of Graves’ Orbitopathy. J Immunol Res 2022; 2022:4432584. [PMID: 36157877 PMCID: PMC9499793 DOI: 10.1155/2022/4432584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose To examine the impact of gypenosides (Gyps) on oxidative stress damage of orbital fibroblasts (OFs) from Graves' ophthalmopathy (GO) patients. Methods The relationship between Gyps and GO oxidative stress was understood by bioinformatics analysis. Orbital connective tissues of GO and non-GO patients were obtained for primary OF culture. The proliferation level of OFs was measured by Cell Counting Kit-8 method, and the appropriate intervention concentration of Gyps and H2O2 was obtained. The expression of apoptosis-related protein mRNA was analyzed by RT-qPCR technique. ROS and SOD test suites were employed to detect the oxidative stress level in OFs. Flow cytometry apoptosis detection, TUNEL detection, and lactate dehydrogenase detection were used to analyze the level of apoptosis. Western blotting detection was utilized to examine the regulatory pathway of oxidative stress, apoptosis, and autophagy-related proteins. The changes of cell morphology, autophagosome, and autophagy lysosome were observed by transmission electron microscope. Results The suitable intervention concentration of Gyps is 100 μg/mL, and the suitable intervention concentration of high concentration H2O2 is 350 μM. In comparison with the blank control group, the H2O2 intervention group enhanced the expression of apoptosis-related mRNA, the expression of ROS and SOD, the apoptosis rate, the expression of autophagy activation-related protein and Nrf2/ERK/HO-1 protein, and the number of autophagosomes and autophagy lysosomes. Compared with H2O2 intervention group, the expression of apoptosis-related mRNA decreased, ROS expression decreased, SOD expression increased, apoptosis rate decreased, autophagy activation-related protein expression decreased, Nrf2/ERK/HO-1 protein expression increased, and the quantity of autophagosomes and autophagy lysosomes decreased in H2O2 + Gyps intervention group. Conclusion Gyps can decrease the oxidative stress level of OFs generated by H2O2, reduce cell autophagy, and reduce apoptosis. Gyps may regulate the oxidative stress response of OFs in GO patients via the Nrf2/ERK/HO-1 signaling pathway.
Collapse
|
4
|
Yildirim R, Cansu DÜ, Korkmaz C. A Case of Scleromyxedema Development Following Intravesical Bacillus Calmette-Guérin Administration. J Rheumatol 2022; 49:858-859. [PMID: 35169063 DOI: 10.3899/jrheum.211010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Reşit Yildirim
- Division of Rheumatology, Department of Internal Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey.
| | - Döndü Üsküdar Cansu
- Division of Rheumatology, Department of Internal Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Cengiz Korkmaz
- Division of Rheumatology, Department of Internal Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
5
|
Kainulainen K, Takabe P, Heikkinen S, Aaltonen N, Motte CDL, Rauhala L, Durst FC, Oikari S, Hukkanen T, Rahunen E, Ikonen E, Hartikainen JM, Ketola K, Pasonen-Seppänen S. M1 macrophages induce pro-tumor inflammation in melanoma cells via TNFR–NF-κB signaling. J Invest Dermatol 2022; 142:3041-3051.e10. [PMID: 35580697 DOI: 10.1016/j.jid.2022.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/23/2023]
|
6
|
Umeda Y, Ito K, Ansai S, Hoashi T, Saeki H, Kanda N. Lupus Erythematosus Tumidus with Pseudolymphomatous Infiltrates: A Case Report. J NIPPON MED SCH 2020; 87:100-103. [PMID: 32418941 DOI: 10.1272/jnms.jnms.2020_87-208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A 39-year-old Japanese woman presented with a pruritic infiltrated erythematous plaque on the right cheek. Histopathologic analysis of the erythema showed dermal edema, separation of collagen bundles, and nodular perivascular and periadnexal infiltration of lymphocytes in the whole dermis, without epidermal changes. Alcian blue staining intensity was elevated between the collagen bundles, indicating dermal mucinosis. The nodular infiltrates consisted of CD3+ T cell clusters and CD20+ B cell clusters (ratio, approximately 3:1) and included numerous CD123+ cells, indicative of plasmacytoid dendritic cells. Blood analysis revealed serum antinuclear antibody at a titer of 1:160 (homogeneous, speckled pattern). Lupus erythematosus tumidus with pseudolymphomatous infiltrates was diagnosed. Hydroxychloroquine treatment partially improved symptoms; however, the addition of prednisolone was required for complete resolution. Lupus erythematosus tumidus is sometimes accompanied by pseudolymphomatous infiltrates. Dermal mucinosis and the presence of numerous plasmacytoid dendritic cells are useful in differentiating lupus erythematosus tumidus from pseudolymphoma.
Collapse
Affiliation(s)
- Yuki Umeda
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital
| | - Keigo Ito
- Department of Dermatology, Nippon Medical School Musashi Kosugi Hospital
| | - Shinichi Ansai
- Department of Dermatology, Nippon Medical School Musashi Kosugi Hospital
| | | | | | - Naoko Kanda
- Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital
| |
Collapse
|
7
|
Plasma Glycosaminoglycan Profiles in Systemic Sclerosis: Associations with MMP-3, MMP-10, TIMP-1, TIMP-2, and TGF-Beta. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6416514. [PMID: 32382564 PMCID: PMC7196135 DOI: 10.1155/2020/6416514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/09/2020] [Indexed: 11/18/2022]
Abstract
The aim of the study was to determine whether plasma levels of total glycosaminoglycans (GAGs), matrix metalloproteinases (MMPs) (MMP-3, MMP-10), and their tissue inhibitors (TIMPs) (TIMP-1, TIMP-2) as well as transforming growth factor β (TGF-β) differ in the patients with systemic sclerosis (SSc) in relation to the healthy subjects. Plasma samples were obtained from 106 people (64 patients with SSc and 42 healthy individuals) and measured for MMP-3, MMP-10, TIMP-1, TIMP-2, and TGF-β levels using ELISA methods. GAGs isolated from plasma samples were quantified using a hexuronic acid assay. The plasma levels of total GAGs, TIMP-1, TIMP-2, and TGF-β were significantly higher, while MMP-3 was significantly decreased in SSc patients compared to the controls. We have revealed a significant correlation between plasma GAGs and TGF-β (r = -0.47) and TIMP-2 (r = 0.38), respectively. The results of this study revealed that remodeling of the extracellular matrix, reflected by quantitative changes in plasma glycosaminoglycans, occurs during systemic sclerosis. Thus, the alterations in GAG metabolism connected with SSc may lead to systemic changes in the properties of the connective tissue extracellular matrix.
Collapse
|
8
|
Nakai H, Hirose Y, Murosaki S, Yoshikai Y. Lactobacillus plantarum L-137 upregulates hyaluronic acid production in epidermal cells and fibroblasts in mice. Microbiol Immunol 2019; 63:367-378. [PMID: 31273816 DOI: 10.1111/1348-0421.12725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/20/2019] [Accepted: 06/27/2019] [Indexed: 01/16/2023]
Abstract
Heat-killed Lactobacillus plantarum L-137 (HK L-137), an immunobiotic lactic acid bacterium, has been reported to enhance IFN-γ production through induction of IL-12. In this study, we investigated the effects of HK L-137 on skin moisturizing and production of hyaluronic acid (HA), an extracellular matrix associated with the retention of skin moisture. Oral administration of HK L-137 suppressed the loss of water content in the stratum corneum in hairless mice. Treatment of primary epidermal cells with HK L-137 increased HA production. Supernatant from immune cells stimulated by HK L-137, which contained proinflammatory cytokines such as IL-12, TNF-α, and IFN-γ, upregulated HA production and hyaluronan synthase 2 (HAS2) messenger RNA expression by BALB/3T3 fibroblasts via activation of transcription factor nuclear factor κB (NFκB). Although treatment of the supernatant with anti-TNF-α antibody (Ab) alone did not inhibit the HA production, combination of anti-TNF-α Ab with anti-IFN-γ Ab significantly inhibited the HA production. Thus, HK L-137-induced IFN-γ plays a critical role in upregulated HA production in collaboration with TNF-α. HK L-137 may be useful for improvement of skin functions such as moisture retention by inducing HA production.
Collapse
Affiliation(s)
- Hiroko Nakai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Hirose
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Shinji Murosaki
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Tominaga T, Sharma I, Fujita Y, Doi T, Wallner AK, Kanwar YS. Myo-inositol oxygenase accentuates renal tubular injury initiated by endoplasmic reticulum stress. Am J Physiol Renal Physiol 2018; 316:F301-F315. [PMID: 30539651 DOI: 10.1152/ajprenal.00534.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Besides oxidant stress, endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of various metabolic disorders affecting the kidney. These two forms of stresses are not mutually exclusive to each other and may operate by a feedback loop in worsening the cellular injury. To attest to this contention, studies were performed to assess whether in such a setting, there is worsening of tubulointerstitial injury. We employed tunicamycin as a model of ER stress and used tubular cells and mice overexpressing myo-inositol oxygenase (MIOX), an enzyme involved in glycolytic events with excessive generation of ROS. Concomitant treatment of tunicamycin and transfection of cells with MIOX-pcDNA led to a marked generation of ROS, which was reduced by MIOX-siRNA. Likewise, an accentuated expression of ER stress sensors, GRP78, XBP1, and CHOP, was observed, which was reduced with MIOX-siRNA. These sensors were markedly elevated in MIOX-TG mice compared with WT treated with tunicamycin. This was accompanied with marked deterioration of tubular morphology, along with impairment of renal functions. Interestingly, minimal damage and elevation of ER stressors was observed in MIOX-KO mice. Downstream events that were more adversely affected in MIOX-TG mice included accentuated expression of proapoptogenic proteins, proinflammatory cytokines, and extracellular matrix constituents, although expression of these molecules was unaffected in MIOX-KO mice. Also, their tunicamycin-induced accentuated expression in tubular cells was notably reduced with MIOX-siRNA. These studies suggest that the biology of MIOX-induced oxidant stress and tunicamycin-induced ER stress are interlinked, and both of the events may feed into each other to amplify the tubulointerstitial injury.
Collapse
Affiliation(s)
- Tatsuya Tominaga
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yui Fujita
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Toshio Doi
- Department of Nephrology, Tokushima University , Tokushima , Japan
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
10
|
Abstract
PURPOSE To review the in vitro and in vivo studies supporting a role of selenium for the treatment of mild Graves orbitopathy. METHODS Review of the current literature on the role of selenium in the management of Graves orbitopathy. RESULTS Graves orbitopathy (GO) is a disfiguring and disabling disorder usually observed in patients with Graves hyperthyroidism, and more rarely in patients with hypothyroid autoimmune thyroiditis or in the absence of overt thyroid dysfunction. Noninvasive treatments include intravenous glucocorticoids and orbital radiotherapy and are generally offered to patients with moderately severe GO. In contrast, patients with mild GO are generally treated only with local measures. Thus, the benefits of intravenous glucocorticoids in mild GO are limited and do not justify the risks that the treatment carries. However, a medical treatment for mild GO is heavily wanted, as a relevant proportion of patients have a significant decrease in their quality of life, and GO can progress into more severe forms. Because of the role of oxidative stress in the pathogenesis of GO, an antioxidant approach has been proposed and the antioxidant agent selenium has been shown to be effective for GO. CONCLUSION Studies have shown that a 6-month course of sodium selenite can improve the course of mild GO and prevent deterioration when compared with placebo.
Collapse
|
11
|
Rotondo Dottore G, Ionni I, Menconi F, Casini G, Sellari-Franceschini S, Nardi M, Vitti P, Marcocci C, Marinò M. Action of three bioavailable antioxidants in orbital fibroblasts from patients with Graves' orbitopathy (GO): a new frontier for GO treatment? J Endocrinol Invest 2018; 41:193-201. [PMID: 28656526 DOI: 10.1007/s40618-017-0718-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/13/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Oxidative stress is involved in the pathogenesis of Graves' orbitopathy (GO) and an antioxidant approach has been advocated for GO treatment. Here, we investigated the action of three antioxidants in orbital fibroblasts, namely, vitamin C, N-acetyl-L-cysteine, and melatonin. METHODS Primary cultures of orbital fibroblasts from six GO patients and six control subjects were established. Cells were treated with H2O2 to induce oxidative stress. Cell vitality assays were performed to determine the non-cytotoxic dose of each antioxidant. The following assays were performed: glutathione disulfide (GSSG), as a measure of oxidative stress, cell proliferation, hyaluronic acid (HA), TNFα, IFNγ, and IL1β. RESULTS H2O2 induced oxidative stress (augmented GSSG), increased cell proliferation as well as cytokine release, but did not affect HA release. All of the three antioxidant substances reduced H2O2-dependent oxidative stress. Vitamin C reduced proliferation in GO, but not in control fibroblasts. N-acetyl-L-cysteine reduced proliferation and IFNγ in GO, and HA and IL1β in both GO and control fibroblasts. Melatonin reduced IL1β and HA in GO and control fibroblasts, and IFNγ only in GO fibroblasts. CONCLUSIONS Our study provides evidence in support of an antioxidant role of vitamin C, N-acetyl-L-cysteine and melatonin in orbital fibroblasts. Some of the effects of these compounds are exclusive to GO fibroblasts, whereas some other are observed also in control fibroblasts. Our observations provide a basis for a possible clinical use of these substances in patients with GO.
Collapse
Affiliation(s)
- G Rotondo Dottore
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - I Ionni
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - F Menconi
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - G Casini
- Ophthalmopathy Unit I, Department of Surgical, Medical and Molecular Pathology, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - S Sellari-Franceschini
- ENT Unit I, Department of Surgical, Medical and Molecular Pathology, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - M Nardi
- Ophthalmopathy Unit I, Department of Surgical, Medical and Molecular Pathology, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - P Vitti
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - C Marcocci
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - M Marinò
- Endocrinology Unit I, Department of Clinical and Experimental Medicine, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
12
|
Kuo YZ, Fang WY, Huang CC, Tsai ST, Wang YC, Yang CL, Wu LW. Hyaluronan synthase 3 mediated oncogenic action through forming inter-regulation loop with tumor necrosis factor alpha in oral cancer. Oncotarget 2017; 8:15563-15583. [PMID: 28107185 PMCID: PMC5362506 DOI: 10.18632/oncotarget.14697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022] Open
Abstract
Hyaluronan (HA) is a major extracellular matrix component. However, its role and mediation in oral cancer remains elusive. Hyaluronan synthase 3 (HAS3), involved in pro-inflammatory short chain HA synthesis, was the predominant synthase in oral cancer cells and tissues. HAS3 overexpression significantly increased oral cancer cell migration, invasion and xenograft tumorigenesis accompanied with the increased expression of tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Conversely, HAS3 depletion abrogated HAS3-mediated stimulation. HAS3 induced oncogenic actions partly through activating EGFR-SRC signaling. HAS3-derived HA release into extracellular milieu enhanced transendothelial monocyte migration and MCP-1 expression, which was attenuated by anti-HAS3 antibodies or a HAS inhibitor, 4-Methylumbelliferone (4-MU). The NF-κB-binding site III at -1692 to -1682 bp upstream from the transcript 1 start site in HAS3 proximal promoter was the most responsive to TNF-α-stimulated transcription. ChIP-qPCR analysis confirmed the highest NF-κB-p65 enrichment on site III. Increased HAS3 mRNA expression was negatively correlated with the overall survival of oral cancer patients. A concomitant increase of TNF-α, a stimulus for HAS3 expression, with HAS3 expression was not only associated with lymph node metastasis but also negated clinical outcome. Together, HAS3 and TNF-α formed an inter-regulation loop to enhance tumorigenesis in oral cancer.
Collapse
Affiliation(s)
- Yi-Zih Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Wei-Yu Fang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Cheng-Chih Huang
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan 70428, Taiwan, R.O.C
| | - Sen-Tien Tsai
- Department of Otolaryngology, National Cheng Kung University Hospital, Tainan 70428, Taiwan, R.O.C.,Department of Radiation Oncology, National Cheng Kung University Hospital, Tainan 70428, Taiwan, R.O.C
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Chih-Li Yang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Li-Wha Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| |
Collapse
|
13
|
Rotondo Dottore G, Leo M, Casini G, Latrofa F, Cestari L, Sellari-Franceschini S, Nardi M, Vitti P, Marcocci C, Marinò M. Antioxidant Actions of Selenium in Orbital Fibroblasts: A Basis for the Effects of Selenium in Graves' Orbitopathy. Thyroid 2017; 27:271-278. [PMID: 27824294 DOI: 10.1089/thy.2016.0397] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND A recent clinical trial has shown a beneficial effect of the antioxidant agent selenium in Graves' orbitopathy (GO). In order to shed light on the cellular mechanisms on which selenium may act, this study investigated its effects in cultured orbital fibroblasts. METHODS Primary cultures of orbital fibroblasts from six GO patients and six control subjects were established. Cells were treated with H2O2 to induce oxidative stress, after pre-incubation with selenium-(methyl)selenocysteine (SeMCys). The following assays were performed: glutathione disulfide (GSSG), as a measure of oxidative stress, glutathione peroxidase (GPX) activity, cell proliferation, hyaluronic acid (HA), and pro-inflammatory cytokines. RESULTS H2O2 induced an increase in cell GSSG and fibroblast proliferation, which were reduced by SeMCys. Incubation of H2O2-treated cells with SeMCys was followed by an increase in glutathione peroxidase activity, one of the antioxidant enzymes into which selenium is incorporated. At the concentrations used (5 μM), H2O2 did not significantly affect HA release, but it was reduced by SeMCys. H2O2 determined an increase in endogenous cytokines involved in the response to oxidative stress and GO pathogenesis, namely tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma. The increases in tumor necrosis factor alpha and interferon gamma were blocked by SeMCys. While the effects of SeMCys on oxidative stress and cytokines were similar in GO and control fibroblasts, they were exclusive to GO fibroblasts in terms of inhibiting proliferation and HA secretion. CONCLUSIONS Selenium, in the form of SeMCys, abolishes some of the effects of oxidative stress in orbital fibroblasts, namely increased proliferation and secretion of pro-inflammatory cytokines. SeMCys reduces HA release in GO fibroblasts in a manner that seems at least in part independent from H2O2-induced oxidative stress. Some effects of SeMCys are specific for GO fibroblasts. These findings reveal some cellular mechanisms by which selenium may act in patients with GO.
Collapse
Affiliation(s)
- Giovanna Rotondo Dottore
- 1 Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa , Pisa, Italy
| | - Marenza Leo
- 1 Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa , Pisa, Italy
| | - Giamberto Casini
- 2 Department of Surgical, Medical and Molecular Pathology, Ophthalmopathy Unit I, University of Pisa and University Hospital of Pisa , Pisa, Italy
| | - Francesco Latrofa
- 1 Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa , Pisa, Italy
| | - Luca Cestari
- 2 Department of Surgical, Medical and Molecular Pathology, Ophthalmopathy Unit I, University of Pisa and University Hospital of Pisa , Pisa, Italy
| | - Stefano Sellari-Franceschini
- 3 Department of Surgical, Medical and Molecular Pathology, ENT Unit I, University of Pisa and University Hospital of Pisa , Pisa, Italy
| | - Marco Nardi
- 2 Department of Surgical, Medical and Molecular Pathology, Ophthalmopathy Unit I, University of Pisa and University Hospital of Pisa , Pisa, Italy
| | - Paolo Vitti
- 1 Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa , Pisa, Italy
| | - Claudio Marcocci
- 1 Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa , Pisa, Italy
| | - Michele Marinò
- 1 Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa and University Hospital of Pisa , Pisa, Italy
| |
Collapse
|
14
|
Fouladi-Nashta AA, Raheem KA, Marei WF, Ghafari F, Hartshorne GM. Regulation and roles of the hyaluronan system in mammalian reproduction. Reproduction 2017; 153:R43-R58. [PMID: 27799626 DOI: 10.1530/rep-16-0240] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2025]
Abstract
Hyaluronan (HA) is a non-sulphated glycosaminoglycan polymer naturally occurring in many tissues and fluids of mammals, including the reproductive system. Its biosynthesis by HA synthase (HAS1-3) and catabolism by hyaluronidases (HYALs) are affected by ovarian steroid hormones. Depending upon its molecular size, HA functions both as a structural component of tissues in the form of high-molecular-weight HA or as a signalling molecule in the form of small HA molecules or HA fragments with effects mediated through interaction with its specific cell-membrane receptors. HA is produced by oocytes and embryos and in various segments of the reproductive system. This review provides information about the expression and function of members of the HA system, including HAS, HYALs and HA receptors. We examine their role in various processes from folliculogenesis through oocyte maturation, fertilisation and early embryo development, to pregnancy and cervical dilation, as well as its application in assisted reproduction technologies. Particular emphasis has been placed upon the role of the HA system in pre-implantation embryo development and embryo implantation, for which we propose a hypothetical sequential model.
Collapse
Affiliation(s)
- Ali A Fouladi-Nashta
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Kabir A Raheem
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of Veterinary Surgery and TheriogenologyMichael Okpara University of Agriculture, Umudike, Nigeria
| | - Waleed F Marei
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of TheriogenologyFaculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fataneh Ghafari
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Geraldine M Hartshorne
- Warwick Medical SchoolUniversity of Warwick, Coventry, UK and Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| |
Collapse
|
15
|
Saha P, Ghosh I, Datta K. Increased hyaluronan levels in HABP1/p32/gC1qR overexpressing HepG2 cells inhibit autophagic vacuolation regulating tumor potency. PLoS One 2014; 9:e103208. [PMID: 25061661 PMCID: PMC4111551 DOI: 10.1371/journal.pone.0103208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022] Open
Abstract
Tumor growth and development is influenced by its microenvironment. A major extracellular matrix molecule involved in cancer progression is hyaluronan (HA). Hyaluronan and expression of a number of hyaladherin family proteins are dramatically increased in many cancer malignancies. One such hyaladherin, hyaluronan-binding protein 1 (HABP1/p32/gC1qR) has been considered to be a biomarker for tumor progression. Interestingly, overexpression of HABP1 in fibroblast has been shown to increase autophagy via generation of excess reactive oxygen species (ROS) and depletion of HA leading to apoptosis. Cancerous cells are often found to exhibit decreased rate of proteolysis/autophagy in comparison to their normal counterparts. To determine if HABP1 levels alter tumorigenicity of cancerous cells, HepR21, the stable transfectant overexpressing HABP1 in HepG2 cell line was derived. HepR21 has been shown to have increased proliferation rate than HepG2, intracellular HA cable formation and enhanced tumor potency without any significant alteration of intracellular ROS. In this paper we have observed that HepR21 cells containing higher endogenous HA levels, have downregulated expression of the autophagic marker, MAP-LC3, consistent with unaltered levels of endogenous ROS. In fact, HepR21 cells seem to have significant resistance to exogenous ROS stimuli and glutathione depletion. HepR21 cells were also found to be more resilient to nutrient starvation in comparison to its parent cell line. Decline in intracellular HA levels and HA cables in HepR21 cells upon treatment with HAS inhibitor (4-MU), induced a surge in ROS levels leading to increased expression of MAP-LC3 and tumor suppressors Beclin 1 and PTEN. This suggests the importance of HABP1 induced HA cable formation in enhancing tumor potency by maintaining the oxidant levels and subsequent autophagic vacuolation.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilora Ghosh
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (IG); (KD)
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (IG); (KD)
| |
Collapse
|
16
|
Ricciardelli C, Ween MP, Lokman NA, Tan IA, Pyragius CE, Oehler MK. Chemotherapy-induced hyaluronan production: a novel chemoresistance mechanism in ovarian cancer. BMC Cancer 2013; 13:476. [PMID: 24124770 PMCID: PMC3852938 DOI: 10.1186/1471-2407-13-476] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022] Open
Abstract
Background Hyaluronan (HA) an important component of the extracellular matrix, has been linked to tumor progression and drug resistance in several malignancies. However, limited data is available for ovarian cancer. This study investigated the role of hyaluronan (HA) and a potential link between the HA-CD44 pathway and membrane ATP binding cassette (ABC) transporter proteins in ovarian cancer chemoresistance. Methods We investigated the ability of HA to block the cytotoxic effects of the chemotherapy drug carboplatin, and to regulate the expression of ABC transporters in ovarian cancer cells. We also examined HA serum levels in ovarian cancer patients prior to and following chemotherapy and assessed its prognostic relevance. Results HA increased the survival of carboplatin treated ovarian cancer cells expressing the HA receptor, CD44 (OVCAR-5 and OV-90). Carboplatin significantly increased expression of HAS2, HAS3 and ABCC2 and HA secretion in ovarian cancer cell conditioned media. Serum HA levels were significantly increased in patients following platinum based chemotherapy and at both 1st and 2nd recurrence when compared with HA levels prior to treatment. High serum HA levels (>50 μg/ml) prior to chemotherapy treatment were associated with significantly reduced progression-free (P = 0.014) and overall survival (P = 0.036). HA production in ovarian cancer cells was increased in cancer tissues collected following chemotherapy treatment and at recurrence. Furthermore HA treatment significantly increased the expression of ABC drug transporters (ABCB3, ABCC1, ABCC2, and ABCC3), but only in ovarian cancer cells expressing CD44. The effects of HA and carboplatin on ABC transporter expression in ovarian cancer cells could be abrogated by HA oligomer treatment. Importantly, HA oligomers increased the sensitivity of chemoresistant SKOV3 cells to carboplatin. Conclusions Our findings indicate that carboplatin chemotherapy induces HA production which can contribute to chemoresistance by regulating ABC transporter expression. The HA-CD44 signaling pathway is therefore a promising target in platinum resistant ovarian cancer.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Research Centre for Reproductive Health, Robinson Institute, University of Adelaide, Adelaide 5005, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
17
|
Inhibition of Putative Hyalurosome Platform in Keratinocytes as a Mechanism for Corticosteroid-Induced Epidermal Atrophy. J Invest Dermatol 2013; 133:1017-26. [PMID: 23223147 DOI: 10.1038/jid.2012.439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Yoshizaki A, Yanaba K, Ogawa A, Iwata Y, Ogawa F, Takenaka M, Shimizu K, Asano Y, Kadono T, Sato S. The specific free radical scavenger edaravone suppresses fibrosis in the bleomycin-induced and tight skin mouse models of systemic sclerosis. ACTA ACUST UNITED AC 2013; 63:3086-97. [PMID: 21618208 DOI: 10.1002/art.30470] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Patients with systemic sclerosis (SSc) exhibit enhanced production of free radicals due to ischemia and reperfusion injury following Raynaud's phenomenon, an initial clinical manifestation. Oxidative stress induces cytokine production, inflammatory cell recruitment, and tissue injury in several inflammatory diseases. The aim of this study was to examine the effect of edaravone, a free radical scavenger, on the development of fibrosis and autoimmunity in two different mouse models of SSc. METHODS The bleomycin-induced SSc model in mice and the tight skin mouse model were used to evaluate the effect of edaravone on fibrosis and immunologic abnormalities. To assess the reaction of fibroblasts to stimulation with free radicals, fibroblasts from these mice were cultured with NONOate, a nitric oxide-releasing agent, and hydrogen peroxide. RESULTS Treatment with edaravone reduced fibrosis in mice with bleomycin-induced SSc and in TSK/+ mice. The production of free radicals was also attenuated by edaravone in both models. In addition, production of fibrogenic cytokines such as interleukin-6 and transforming growth factor β1, production of anti-topoisomerase I antibody, and the degree of hypergammaglobulinemia were reduced by edaravone. Furthermore, bleomycin induced the production of H2O2 and nitric oxide from inflammatory cells, and collagen production was increased in fibroblasts cultured with H2O2 and NONOate. CONCLUSION This study is the first to show that edaravone has a significant inhibitory effect on fibrosis both in the bleomycin-induced SSc model and in TSK/+ mice. These results indicate that edaravone should be further evaluated for potential use as an antifibrotic agent in SSc.
Collapse
Affiliation(s)
- Ayumi Yoshizaki
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Campo GM, Avenoso A, D'Ascola A, Scuruchi M, Prestipino V, Calatroni A, Campo S. 6-Mer hyaluronan oligosaccharides increase IL-18 and IL-33 production in mouse synovial fibroblasts subjected to collagen-induced arthritis. Innate Immun 2012; 18:675-684. [PMID: 22278935 DOI: 10.1177/1753425911435953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hyaluronan (HA) oligosaccharides stimulate pro-inflammatory responses in different cell types by modulating both cluster determinant 44 (CD44) and TLR4. The activation of these receptors is also mediated by collagen-induced arthritis (CIA) that, via two different pathways, culminates in the liberation of NF-κB. This then stimulates the production of pro-inflammatory cytokines, including IL-18 and IL-33, that are greatly involved in rheumatoid arthritis. The aim of this study was to investigate the effects of 6-mer HA oligosaccharides on mouse synovial fibroblasts obtained from normal DBA/J1 mice or mice subjected to CIA. Compared with normal synovial fibroblasts (NSF), rheumatoid arthritis synovial fibroblasts (RASF) showed no up-regulation of CD44 and TLR4 mRNA expression and the related proteins, as well as no activation of NF-κB. Very low levels of both mRNA and related proteins were also detected for IL-18 and IL-33. Treatment of NSF and RASF with 6-mer HA oligosaccharides significantly increased all the parameters in both fibroblast groups, although to a greater extent in RASF. The addition of hyaluronan binding protein to both NSF and RASF inhibited HA activity and was able to reduce the effects of 6-mer HA oligosaccharides and the consequent inflammatory response.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, School of Medicine, University of Messina, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Campo GM, Avenoso A, D'Ascola A, Scuruchi M, Prestipino V, Nastasi G, Calatroni A, Campo S. The inhibition of hyaluronan degradation reduced pro-inflammatory cytokines in mouse synovial fibroblasts subjected to collagen-induced arthritis. J Cell Biochem 2012; 113:1852-1867. [PMID: 22234777 DOI: 10.1002/jcb.24054] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyaluronan (HA) degradation produces small oligosaccharides that are able to increase pro-inflammatory cytokines in rheumatoid arthritis synovial fibroblasts (RASF) by activating both CD44 and the toll-like receptor 4 (TLR-4). CD44 and TLR-4 stimulation in turn activate the NF-kB that induces the production of pro-inflammatory cytokines. Degradation of HA occurs via two mechanisms: one exerted by reactive oxygen species (ROS) and one controlled by different enzymes in particular hyaluronidases (HYALs). We aimed to investigate the effects of inhibiting HA degradation (which prevents the formation of small HA fragments) on synovial fibroblasts obtained from normal DBA/J1 mice (NSF) and on synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA), both fibroblast types stimulated with tumor necrosis factor alpha (TNF-α). TNF-α stimulation produced high mRNA expression and the related protein production of CD44 and TLR-4 in both NSF and RASF, and activation of NF-kB was also found in all fibroblasts. TNF-α also up-regulated the inflammatory cytokines, interleukin-1beta (IL-1beta) and interleukin-6 (IL-6), and other pro-inflammatory mediators, such as matrix metalloprotease-13 (MMP-13), inducible nitric oxide synthase (iNOS), as well as HA levels and small HA fragment production. Treatment of RASF with antioxidants and specific HYAL1, HYAL2, and HYAL3 small interference RNA (siRNAs) significantly reduced TLR-4 and CD44 increase in the mRNA expression and the related protein synthesis, as well as the release of inflammatory mediators up-regulated by TNF-α. These data suggest that the inhibition of HA degradation during arthritis may contribute to reducing TLR-4 and CD44 activation and the inflammatory mediators response.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, 98125-Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Campo GM, Avenoso A, D'Ascola A, Prestipino V, Scuruchi M, Nastasi G, Calatroni A, Campo S. Inhibition of hyaluronan synthesis reduced inflammatory response in mouse synovial fibroblasts subjected to collagen-induced arthritis. Arch Biochem Biophys 2012; 518:42-52. [PMID: 22197458 DOI: 10.1016/j.abb.2011.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 02/07/2023]
Abstract
Hyaluronan (HA) fragments are able to induce inflammation by stimulating both CD44 and toll-like receptor 4 (TLR-4). CD44 and TLR-4 activation stimulates the liberation of NF-kB and pro-inflammatory cytokine responses. The aim of this study was to investigate the effects of hyaluronidase (HYAL) treatment, which depolymerises HA into small fragments, and of the addition of specific hyaluronan synthases-1, 2, and 3 small interference RNA (HASs siRNA), which silence HASs activity, on normal mouse synovial fibroblasts (NSF) and on rheumatoid arthritis synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA). The addition of HYAL to NSF and/or RASF significantly increased the TLR-4, CD44 and NF-kB activity, as well as the pro-inflammatory cytokines, interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-33 (IL-33) in both groups, but to a greater extent in RASF. The addition to NSF and/or RASF of the HASs siRNA, which block HASs activity and therefore the availability of HA substrate for HYAL, was able to reduce HYAL effects in both NSF and RASF. Finally, the HA evaluation confirmed the increment of HA at low molecular weight after HYAL treatment.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/genetics
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cytokines/genetics
- Cytokines/metabolism
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Expression Regulation/drug effects
- Gene Knockdown Techniques
- Glucuronosyltransferase/deficiency
- Glucuronosyltransferase/genetics
- Hyaluronan Receptors/genetics
- Hyaluronan Synthases
- Hyaluronic Acid/biosynthesis
- Hyaluronic Acid/chemistry
- Hyaluronic Acid/metabolism
- Hyaluronoglucosaminidase/pharmacology
- Hyaluronoglucosaminidase/therapeutic use
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Male
- Mice
- Molecular Weight
- NF-kappa B/metabolism
- Oligosaccharides/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Synovial Membrane/cytology
- Synovial Membrane/drug effects
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Toll-Like Receptor 4/genetics
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Willenberg A, Saalbach A, Simon JC, Anderegg U. Melanoma Cells Control HA Synthesis in Peritumoral Fibroblasts via PDGF-AA and PDGF-CC: Impact on Melanoma Cell Proliferation. J Invest Dermatol 2012; 132:385-93. [DOI: 10.1038/jid.2011.325] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Kim JS, Werth VP. Identification of specific chondroitin sulfate species in cutaneous autoimmune disease. J Histochem Cytochem 2011; 59:780-90. [PMID: 21804080 DOI: 10.1369/0022155411411304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cutaneous lupus erythematosus and dermatomyositis (DM) are chronic inflammatory diseases of the skin with accumulated dermal mucin. Earlier work has shown chondroitin sulfate (CS) accumulation within the dermis of discoid lupus erythematosus (DLE), subacute cutaneous lupus erythematosus (SCLE), and DM lesions compared with control skin. Immunohistochemistry for C4S revealed a greater density in DLE and DM lesions, whereas SCLE lesions did not differ from controls. Scleredema and scleromyxedema are attributed to increased hyaluronic acid, and lesional samples from these diseases also demonstrated accumulated dermal C4S. Interferon-γ and interleukin-1α, but not interferon-α, treatment of cultured dermal fibroblasts induced mRNA expression of CHST-11, which attaches sulfates to the 4-position of unsulfated chondroitin. These studies on possible CS core proteins revealed that serglycin, known to have C6S side chains in endothelial cells, had greater density within DM dermal endothelia but not in DLE or SCLE, following the pattern of C6S overexpression reported previously. CD44 variants expand the CS binding repertoire of the glycoprotein; CD44v7 co-localized to the distribution of C4S in DLE lesions, a finding not observed in DM, SCLE lesions, or controls. Because C4S and C6S have immunologic effects, their dysregulation in cutaneous mucinoses may contribute to the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Jessica S Kim
- New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
24
|
|
25
|
Sharma MR, Werth B, Werth VP. Animal models of acute photodamage: comparisons of anatomic, cellular and molecular responses in C57BL/6J, SKH1 and Balb/c mice. Photochem Photobiol 2011; 87:690-8. [PMID: 21332482 DOI: 10.1111/j.1751-1097.2011.00911.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human cutaneous photodamage is a major medical problem that includes premature aging and fragility of the skin. Nonxenografted animal models have not been comparatively evaluated for how well they resemble the changes seen in human skin. Here, we sought to identify a suitable mouse model that recapitulates key anatomic, cellular and molecular responses observed in human skin during acute UV exposure. Adult females from three strains of mice, C57BL/6J, SKH1 and Balb/c were exposed to UVB and then evaluated 3 or 20 h after the last irradiation. Skin from UVB-exposed C57BL/6J mice showed features resembling human photodamage, including epidermal thickening, infiltration of the dermis with inflammatory cells, induction of tumor necrosis factor-α (TNF-α) mRNA, accumulation of glycosaminoglycans, particularly hyaluronan in the epidermis and loss of collagen. Hairless SKH1 mouse skin responded similarly, but without any induction of TNF-α mRNA or chondroitin sulfate. Irradiated Balb/c mice were the least similar to humans. Our results in C57BL/6J mice and to a lesser extent in SKH1 mice, show cutaneous responses to a course of UVB-irradiation that mirror those seen in human skin. Proper choice of model is critical for investigating cellular and molecular mechanisms of photodamage and photoaging.
Collapse
|
26
|
Jung H, Kim HH, Lee DH, Hwang YS, Yang HC, Park JC. Transforming growth factor-beta 1 in adipose derived stem cells conditioned medium is a dominant paracrine mediator determines hyaluronic acid and collagen expression profile. Cytotechnology 2011; 63:57-66. [PMID: 21203839 DOI: 10.1007/s10616-010-9327-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/27/2010] [Indexed: 12/01/2022] Open
Abstract
Conditioned medium from adipose derived stem cells (ADSC-CM) stimulates both collagen synthesis and migration of fibroblasts, and accelerates wound healing in vivo. Recently, the production and secretion of growth factors has been identified as an essential function of adipose-derived stem cells (ADSCs). However, the main soluble factor of ADSC-CM which mediates paracrine effects and its underlying mechanism has not been elucidated yet. In this study, we considered transforming growth factor-beta1 (TGF-β1) as a strong candidate for paracrine effect of ADSC-CM and investigated collagen synthesis and hyaluronic acid synthase (HAS) expression. After ADSC-CM addition, collagen type I, type III, HAS and hyaluronic acid (HA) expressions on human dermal fibroblasts (HDFs) were evaluated. Furthermore, to clarify effects of TGF-β1 as a paracrine mediator, TGF-β1 antibody and external supplementary TGF-β1 were treated to HDFs. Collagens type I, type III, HAS-1 and HAS-2 mRNA expressions of HDFs were greatly increased by ADSC-CM treatment, however there was no change in TGF-β1 antibody treated HDFs compared with non-treated control. These results strongly demonstrate that TGF-β1 plays an important role as a paracrine mediator of ECM synthesis. The fact that TGF-β1 contained in ADSC-CM not only accelerates collagen deposition but also increase hyaluronic acid synthesis of HDFs through HAS-1 and HAS-2 expression was also elucidated in this study. Therefore, ADSC-CM shows promise for the treatment of cutaneous wounds and accelerates granulation formation during healing process.
Collapse
Affiliation(s)
- Hana Jung
- Biomaterials Research Center, Cellinbio, 103-1208 DigitalEmpire II, 486, Sindong, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-734, Korea
| | | | | | | | | | | |
Collapse
|
27
|
Turner NA, Warburton P, O'Regan DJ, Ball SG, Porter KE. Modulatory effect of interleukin-1α on expression of structural matrix proteins, MMPs and TIMPs in human cardiac myofibroblasts: role of p38 MAP kinase. Matrix Biol 2010; 29:613-20. [PMID: 20619343 PMCID: PMC3004031 DOI: 10.1016/j.matbio.2010.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 12/16/2022]
Abstract
The proinflammatory cytokine interleukin-1 (IL-1) elicits catabolic effects on the myocardial extracellular matrix (ECM) early after myocardial infarction but there is little understanding of its direct effects on cardiac myofibroblasts (CMF), or the role of p38 mitogen-activated protein kinase (MAPK). We used a focused RT-PCR microarray to investigate the effects of IL-1α on expression of 41 ECM genes in CMF cultured from different patients, and explored regulation by p38 MAPK. IL-1α (10 ng/ml, 6h) had minimal effect on mRNA expression of structural ECM proteins, including collagens, laminins, fibronectin and vitronectin. However, it induced marked increases in expression of specific ECM proteases, including matrix metalloproteinases MMP-1 (collagenase-1), MMP-3 (stromelysin-1), MMP-9 (gelatinase-B) and MMP-10 (stromelysin-2). Conversely, IL-1α reduced mRNA and protein expression of ADAMTS1, a metalloproteinase that suppresses neovascularization. IL-1α increased expression of TIMP-1 slightly, but not TIMP-2. Data for MMP-1, MMP-2, MMP-3, MMP-9, MMP-10 and ADAMTS1 were confirmed by quantitative real-time RT-PCR. Tumor necrosis factor-alpha (TNFα), another important myocardial proinflammatory cytokine, did not alter expression of these metalloproteinases. IL-1α strongly activated the p38 MAPK pathway in human CMF. Pharmacological inhibitors of p38-α/β (SB203580) or p38-α/β/γ/δ (BIRB-0796) reduced MMP-3 and ADAMTS1 mRNA expression, but neither inhibitor affected MMP-9 levels. MMP-1 and MMP-10 expression were inhibited by BIRB-0796 but not SB203580, suggesting roles for p38-γ/δ. In summary, IL-1α induces a distinct pattern of ECM protein and protease expression in human CMF, in part regulated by distinct p38 MAPK subtypes, affirming the key role of IL-1α and CMF in post-infarction cardiac remodeling.
Collapse
Affiliation(s)
- Neil A Turner
- Division of Cardiovascular and Neuronal Remodelling, Leeds Institute of Genetics, Health and Therapeutics (LIGHT), University of Leeds, Leeds, UK.
| | | | | | | | | |
Collapse
|
28
|
Bollyky PL, Evanko SP, Wu RP, Potter-Perigo S, Long SA, Kinsella B, Reijonen H, Guebtner K, Teng B, Chan CK, Braun KR, Gebe JA, Nepom GT, Wight TN. Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse. Cell Mol Immunol 2010; 7:211-20. [PMID: 20228832 PMCID: PMC3027489 DOI: 10.1038/cmi.2010.9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/18/2010] [Accepted: 01/21/2010] [Indexed: 01/01/2023] Open
Abstract
Hyaluronan (HA) production by dendritic cells (DCs) is known to promote antigen presentation and to augment T-cell activation and proliferation. We hypothesized that pericellular HA can function as intercellular 'glue' directly mediating T cell-DC binding. Using primary human cells, we observed HA-dependent binding between T cells and DCs, which was abrogated upon pre-treatment of the DCs with 4-methylumbelliferone (4-MU), an agent which blocks HA synthesis. Furthermore, T cells regulate HA production by DCs via T cell-derived cytokines in a T helper (Th) subset-specific manner, as demonstrated by the observation that cell-culture supernatants from Th1 but not Th2 clones promote HA production. Similar effects were seen upon the addition of exogenous Th1 cytokines, IL-2, interferon gamma (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). The critical factors which determined the extent of DC-T cell binding in this system were the nature of the pre-treatment the DCs received and their capacity to synthesize HA, as T-cell clones which were pre-treated with monensin, added to block cytokine secretion, bound equivalently irrespective of their Th subset. These data support the existence of a feedforward loop wherein T-cell cytokines influence DC production of HA, which in turn affects the extent of DC-T cell binding. We also document the presence of focal deposits of HA at the immune synapse between T-cells and APC and on dendritic processes thought to be important in antigen presentation. These data point to a pivotal role for HA in DC-T cell interactions at the IS.
Collapse
Affiliation(s)
- Paul L Bollyky
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fibroblasts express immune relevant genes and are important sentinel cells during tissue damage in rainbow trout (Oncorhynchus mykiss). PLoS One 2010; 5:e9304. [PMID: 20174584 PMCID: PMC2823790 DOI: 10.1371/journal.pone.0009304] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/29/2010] [Indexed: 12/21/2022] Open
Abstract
Fibroblasts have shown to be an immune competent cell type in mammals. However, little is known about the immunological functions of this cell-type in lower vertebrates. A rainbow trout hypodermal fibroblast cell-line (RTHDF) was shown to be responsive to PAMPs and DAMPs after stimulation with LPS from E. coli, supernatant and debris from sonicated RTHDF cells. LPS was overall the strongest inducer of IL-1β, IL-8, IL-10, TLR-3 and TLR-9. IL-1β and IL-8 were already highly up regulated after 1 hour of LPS stimulation. Supernatant stimuli significantly increased the expression of IL-1β, TLR-3 and TLR-9, whereas the debris stimuli only increased expression of IL-1β. Consequently, an in vivo experiment was further set up. By mechanically damaging the muscle tissue of rainbow trout, it was shown that fibroblasts in the muscle tissue of rainbow trout contribute to electing a highly local inflammatory response following tissue injury. The damaged muscle tissue showed a strong increase in the expression of the immune genes IL-1β, IL-8 and TGF-β already 4 hours post injury at the site of injury while the expression in non-damaged muscle tissue was not influenced. A weaker, but significant response was also seen for TLR-9 and TLR-22. Rainbow trout fibroblasts were found to be highly immune competent with a significant ability to express cytokines and immune receptors. Thus fish fibroblasts are believed to contribute significantly to local inflammatory reactions in concert with the traditional immune cells.
Collapse
|
30
|
Vigetti D, Genasetti A, Karousou E, Viola M, Clerici M, Bartolini B, Moretto P, De Luca G, Hascall VC, Passi A. Modulation of hyaluronan synthase activity in cellular membrane fractions. J Biol Chem 2009; 284:30684-94. [PMID: 19737932 DOI: 10.1074/jbc.m109.040386] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan (HA), the only non-sulfated glycosaminoglycan, is involved in morphogenesis, wound healing, inflammation, angiogenesis, and cancer. In mammals, HA is synthesized by three homologous HA synthases, HAS1, HAS2, and HAS3, that polymerize the HA chain using UDP-glucuronic acid and UDP-N-acetylglucosamine as precursors. Since the amount of HA is critical in several pathophysiological conditions, we developed a non-radioactive assay for measuring the activity of HA synthases (HASs) in eukaryotic cells and addressed the question of HAS activity during intracellular protein trafficking. We prepared three cellular fractions: plasma membrane, cytosol (containing membrane proteins mainly from the endoplasmic reticulum and Golgi), and nuclei. After incubation with UDP-sugar precursors, newly synthesized HA was quantified by polyacrylamide gel electrophoresis of fluorophore-labeled saccharides and high performance liquid chromatography. This new method measured HAS activity not only in the plasma membrane fraction but also in the cytosolic membranes. This new technique was used to evaluate the effects of 4-methylumbeliferone, phorbol 12-myristate 13-acetate, interleukin 1beta, platelet-derived growth factor BB, and tunicamycin on HAS activities. We found that HAS activity can be modulated by post-translational modification, such as phosphorylation and N-glycosylation. Interestingly, we detected a significant increase in HAS activity in the cytosolic membrane fraction after tunicamycin treatment. Since this compound is known to induce HA cable structures, this result links HAS activity alteration with the capability of the cell to promote HA cable formation.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi dell'Insubria, 21100 Varese, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Menezes GB, McAvoy EF, Kubes P. Hyaluronan, platelets, and monocytes: a novel pro-inflammatory triad. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1993-5. [PMID: 19435789 DOI: 10.2353/ajpath.2009.081138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This commentary reports on the role of platelets and hyaluronan in activating monocytes.
Collapse
Affiliation(s)
- Gustavo B Menezes
- Immunology Research Group, Department of Physiologyand Biophysics, Institute of Infection, Immunity andInflammation, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
32
|
Campo GM, Avenoso A, Campo S, D'Ascola A, Traina P, Samà D, Calatroni A. The antioxidant effect exerted by TGF-1beta-stimulated hyaluronan production reduced NF-kB activation and apoptosis in human fibroblasts exposed to FeSo4 plus ascorbate. Mol Cell Biochem 2008; 311:167-177. [PMID: 18224424 DOI: 10.1007/s11010-008-9707-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 01/10/2008] [Indexed: 02/07/2023]
Abstract
Previous studies suggest that Transforming growth factor-1beta (TGF-1beta) administration in human fibroblasts exposed to oxidative stress is able to modulate hyaluronan synthases (HASs). HAS modulation in turn increases high molecular weight (Hyaluronan) HA concentration. Nuclear factor kB (NF-kB) is a response transcription factor involved in inflammation and acts by enabling the expression of certain detrimental molecules. Caspases are specific proteases responsible for regulating and programming cell death. HA at medium molecular weight together with chondroitin-4-sulphate proved to be effective on NF-kB and caspases. We investigated whether the protective effect afforded by the high molecular weight HA produced by TGF-1beta treatment has any effect on NF-kB and apoptosis activation in fibroblast cultures exposed to oxidative stress. Generation of free radicals gives rise to cell death, increases lipid peroxidation, activates NF-kB, reduces its cytoplasmic inhibitor IkBalpha, augments caspase-3 and caspase-7 gene expression and their relative protein activity, and depletes catalase (CAT) and glutathione peroxidase (GPx). Treatment of fibroblasts with TGF-1beta 12 h before inducing oxidative stress greatly increased HA levels, ameliorated cell survival, inhibited lipid peroxidation, blunted NF-kB translocation, normalized IkBalpha protein, reduced caspase gene expression and protein levels, and restored the endogenous antioxidants CAT and GPx. Since it was previously reported that antioxidants can work as inhibitors of NF-kB and apoptosis induction we can hypothesize that endogenous HA, by inhibiting lipid peroxidation, may block a step whereby free radical activity converges in the signal transduction pathway leading to NF-kB and caspase activation.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, School of Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5 degree piano, Via C. Valeria, 98125 Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Welham NV, Lim X, Tateya I, Bless DM. Inflammatory factor profiles one hour following vocal fold injury. Ann Otol Rhinol Laryngol 2008; 117:145-152. [PMID: 18357839 DOI: 10.1177/000348940811700213] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
OBJECTIVES Inflammatory factors are key mediators of wound healing processes following injury, and their modulation may improve healing outcomes. The objective of this study was to characterize in vivo inflammatory factor and extracellular matrix (ECM) messenger RNA (mRNA) expression levels 1 hour after vocal fold injury. METHODS Five Sprague-Dawley rats were subjected to bilateral vocal fold injury, 5 rats were reserved as uninjured controls, and 1 rat was subjected to unilateral vocal fold injury and reserved for histology. Tissue was harvested 1 hour after injury. Real-time reverse transcription-polymerase chain reaction was performed to examine the mRNA expression profiles of inflammatory factors nuclear factor kappa beta (NF-kappabeta), interferon gamma (IFN-gamma), cyclooxygenase 2 (COX-2), transforming growth factor beta isoform 1 (TGF-beta1), tumor necrosis factor alpha (TNF-alpha), and interleukin 1 beta (IL-1beta), as well as ECM genes hyaluronic acid synthase (HAS) 1, HAS-2, procollagen 1, procollagen 3, and elastin, in the injured samples compared with the uninjured controls. RESULTS Injury resulted in subepithelial bleeding throughout the vocal fold. The COX-2, TNF-alpha, IL-1beta, and HAS-1 mRNA expression levels were significantly up-regulated 1 hour after injury compared with the uninjured controls. CONCLUSIONS Inflammatory factor and ECM gene expression changes occur in vocal fold wound sites as early as 1 hour after injury. These results should inform future efforts to attenuate vocal fold scarring via the modulation of inflammatory factors.
Collapse
Affiliation(s)
- Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
34
|
Campo GM, Avenoso A, Campo S, D'Ascola A, Ferlazzo AM, Calatroni A. Differential effect of growth factors on hyaluronan synthase gene expression in fibroblasts exposed to oxidative stress. BIOCHEMISTRY. BIOKHIMIIA 2007; 72:974-82, 4 p.. [PMID: 17922656 DOI: 10.1134/s0006297907090088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to evaluate how growth factors (PDGF-BB, EGF, and TGF-1beta) modulate hyaluronan synthase (HAS) activities in normal or stressed cultured human skin fibroblasts. The effects of concomitant treatment with cytokines and FeSO4 plus ascorbate on HAS mRNA expression, protein synthesis, and hyaluronic acid (HA) concentrations were also studied. Treatment of fibroblasts with growth factors up-regulated HAS gene expression and increased HAS enzymes and HA production. PDGF-BB induced HAS mRNA expression, protein synthesis, and HA production more efficiently than EGF and TGF-1beta. EGF was less effective than TGF-1beta. In addition, TGF-1beta reduced the expression and synthesis of HAS3, while PDGF-BB and EGF had the opposite effect. Concomitant treatment with growth factors and the oxidant was able to further increase HAS mRNA expression, once again with the exception of HAS3 with TGF-1beta. HAS protein synthesis was reduced, while HA levels were unaffected in comparison to those obtained from exposure to FeSO4 plus ascorbate alone. In conclusion, although growth factors plus the oxidant synergistically induced HAS mRNA expression in part, enzyme production was not correlated with this increase. Moreover, the increase in HAS mRNA levels was not translated into a consequent rise in HA concentration.
Collapse
Affiliation(s)
- G M Campo
- Department of Biochemical, Physiological, and Nutritional Sciences, School of Medicine, University of Messina, Policlinico Universitario, Torre Biologica, Messina 98125, Italy.
| | | | | | | | | | | |
Collapse
|