1
|
Janmeda P, Jain D, Chaudhary P, Meena M, Singh D. A systematic review on multipotent carcinogenic agent, N-nitrosodiethylamine (NDEA), its major risk assessment, and precautions. J Appl Toxicol 2024; 44:1108-1128. [PMID: 38212177 DOI: 10.1002/jat.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 01/13/2024]
Abstract
The International Agency for Research on Cancer has classified N-nitrosodiethylamine (NDEA) as a possible carcinogen and mutagenic substances, placing it in category 2A of compounds that are probably harmful to humans. It is found in nature and tobacco smoke, along with its precursors, and is also synthesized endogenously in the human body. The oral or parenteral administration of a minimal quantity of NDEA results in severe liver and kidney organ damage. The NDEA required bioactivation by CYP450 enzyme to form DNA adduct in the alkylation mechanism. Thus, this bioactivation directs oxidative stress and injury to cells due to the higher formation of reactive oxygen species and alters antioxidant system in tissues, whereas free radical scavengers guard the membranes from NDEA-directed injury in many enzymes. This might be one of the reasons in the etiology of cancer that is not limited to a certain target organ but can affect various organs and organ systems. Although there are various possible approaches for the treatment of NDEA-induced cancer, their therapeutic outcomes are still very dismal. However, several precautions were considered to be taken during handling or working with NDEA, as it considered being the best way to lower down the occurrence of NDEA-directed cancers. The present review was designed to enlighten the general guidelines for working with NDEA, possible mechanism, to alter the antioxidant line to cause malignancy in different parts of animal body along with its protective agents. Thus, revelation to constant, unpredictable stress situations even in common life may remarkably augment the toxic potential through the rise in the oxidative stress and damage of DNA.
Collapse
Affiliation(s)
- Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Devendra Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
2
|
Abdel-Tawab MS, Fouad H, Sedeak AY, Doudar NA, Rateb EE, Faruk E, Reyad HR. Effects of mesenchymal stem cells versus curcumin on sonic hedgehog signaling in experimental model of Hepatocellular Carcinoma. Mol Biol Rep 2024; 51:740. [PMID: 38874802 DOI: 10.1007/s11033-024-09613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Sonic Hedgehog (SHH) is a fundamental signaling pathway that controls tissue reconstruction, stem cell biology, and differentiation and has a role in gut tissue homeostasis and development. Dysregulation of SHH leads to the development of HCC. METHODS, AND RESULTS The present study was conducted to compare the effects of mesenchymal stem cells (MSCs) and curcumin on SHH molecular targets in an experimental model of HCC in rats. One hundred rats were divided equally into the following groups: control group, HCC group, HCC group received MSCs, HCC group received curcumin, and HCC group received MSCs and curcumin. Histopathological examinations were performed, and gene expression of SHH signaling target genes (SHH, PTCH1, SMOH, and GLI1) was assessed by real-time PCR in rat liver tissue. Results showed that SHH target genes were significantly upregulated in HCC-untreated rat groups and in MSC-treated groups, with no significant difference between them. Administration of curcumin with or without combined administration of MSCs led to a significant down-regulation of SHH target genes, with no significant differences between both groups. As regards the histopathological examination of liver tissues, both curcumin and MSCs, either through separate use or their combined use, led to a significant restoration of normal liver pathology. CONCLUSIONS In conclusion, SHH signaling is upregulated in the HCC experimental model. MSCs do not inhibit the upregulated SHH target genes in HCC. Curcumin use with or without MSCs administration led to a significant down-regulation of SHH signaling in HCC and a significant restoration of normal liver pathology.
Collapse
Affiliation(s)
- Marwa Sayed Abdel-Tawab
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Hanan Fouad
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, POB 12613, Cairo, Egypt
- Faculty of Medicine, Galala University, POB 43711, Attaka, Suez Governorate, Egypt
| | - Ahmed Yahia Sedeak
- Anatomy and Embryology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Noha A Doudar
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Enas Ezzat Rateb
- Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Eman Faruk
- Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
- Department of Histology and Cytology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hoda Ramadan Reyad
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Rauf A, Abu-Izneid T, Thiruvengadam M, Imran M, Olatunde A, Shariati MA, Bawazeer S, Naz S, Shirooie S, Sanches-Silva A, Farooq U, Kazhybayeva G. Garlic (Allium sativum L.): Its Chemistry, Nutritional Composition, Toxicity, and Anticancer Properties. Curr Top Med Chem 2022; 22:957-972. [PMID: 34749610 DOI: 10.2174/1568026621666211105094939] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
The current review discuss the chemistry, nutritional composition, toxicity, and biological functions of garlic and its bioactive compounds against various types of cancers via different anticancer mechanisms. Several scientific documents were found in reliable literature and searched in databases viz Science Direct, PubMed, Web of Science, Scopus, and Research Gate were carried out using keywords such as "garlic", "garlic bioactive compounds", "anticancer mechanisms of garlic", "nutritional composition of garlic", and others. Garlic contains several phytoconstituents with activities against cancer, and compounds such as diallyl trisulfide (DATS), allicin, and diallyl disulfide (DADS), diallyl sulfide (DAS), and allyl mercaptan (AM). The influence of numerous garlic- derived products, phytochemicals, and nanoformulations on the liver, oral, prostate, breast, gastric, colorectal, skin, and pancreatic cancers has been studied. Based on our search, the bioactive molecules in garlic were found to inhibit the various phases of cancer. Moreover, the compounds in this plant also abrogate the peroxidation of lipids, activity of nitric oxide synthase, epidermal growth factor (EGF) receptor, nuclear factor-kappa B (NF-κB), protein kinase C, and regulate cell cycle and survival signaling cascades. Hence, garlic and its bioactive molecules exhibit the aforementioned mechanistic actions, and thus, they could be used to inhibit the induction, development, and progression of cancer. The review describes the nutritional composition of garlic, its bioactive molecules, and nanoformulations against various types of cancers, as well as the potential for developing these agents as antitumor drugs.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, KPK, Pakistan
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus, United Arab Emirates
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| | - Muhammad Imran
- University Institute of Diet & Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Punjab, Pakistan
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management [the First Cossack University], Moscow, Russian Federation
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research, 4485-655, Vila do Conde, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad-campus, Pakistan
| | | |
Collapse
|
4
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
5
|
Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol Res 2021; 175:105837. [PMID: 34450316 DOI: 10.1016/j.phrs.2021.105837] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Garlic (Allium sativum L.) is one of the oldest plants cultivated for its dietary and medicinal values. This incredible plant is endowed with various pharmacological attributes, such as antimicrobial, antiarthritic, antithrombotic, antitumor, hypoglycemic, and hypolipidemic activities. Among the various beneficial pharmacological effects of garlic, the anticancer activity is presumably the most studied. The consumption of garlic provides strong protection against cancer risk. Taking into account the multi-targeted actions and absence of considerable toxicity, a few active metabolites of garlic are probably to play crucial roles in the killing of cancerous cells. Garlic contains several bioactive molecules with anticancer actions and these include diallyl trisulfide, allicin, diallyl disulfide, diallyl sulfide, and allyl mercaptan. The effects of various garlic-derived products, their phytoconstituents and nanoformulations have been evaluated against skin, prostate, ovarian, breast, gastric, colorectal, oral, liver, and pancreatic cancers. Garlic extract, its phytocompounds and their nanoformulations have been shown to inhibit the different stages of cancer, including initiation, promotion, and progression. Besides, these bioactive metabolites alter the peroxidation of lipid, activity of nitric oxide synthetase, nuclear factor-κB, epidermal growth factor receptor, and protein kinase C, cell cycle, and survival signaling. The current comprehensive review portrays the functions of garlic, its bioactive constituents and nanoformulations against several types of cancers and explores the possibility of developing these agents as anticancer pharmaceuticals.
Collapse
|
6
|
Efficacy of black garlic extract on anti-tumor and anti-oxidant activity enhancement in rats. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Zainalabidin S, Ramalingam A, Mohamed SFA, Ali SS, Latip J, Yap WB. S-allylcysteine therapy reduces adverse cardiac remodelling after myocardial infarction in a rat model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Kanamori Y, Via LD, Macone A, Canettieri G, Greco A, Toninello A, Agostinelli E. Aged garlic extract and its constituent, S-allyl-L-cysteine, induce the apoptosis of neuroblastoma cancer cells due to mitochondrial membrane depolarization. Exp Ther Med 2019; 19:1511-1521. [PMID: 32010332 PMCID: PMC6966145 DOI: 10.3892/etm.2019.8383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
Aged garlic extract (AGE) has been demonstrated to have therapeutic properties in tumors; however its mechanisms of action have not yet been fully elucidated. A previous study revealed that AGE exerts an anti-proliferative effect on a panel of both sensitive [wild-type (WT)] and multidrug-resistant (MDR) human cancer cells. Following treatment of the cells with AGE, cytofluorimetric analysis revealed the occurrence of dose-dependent mitochondrial membrane depolarization (MMD). In this study, in order to further clarify the mechanisms of action of AGE, the effects of AGE on mitochondria isolated from rat liver mitochondria (RLM) were also examined. AGE induced an effect on the components of the electrochemical gradient (ΔµH+), mitochondrial membrane potential (ΔΨm) and mitochondrial electrochemical gradient (ΔpHm). The mitochondrial membrane dysfunctions of RLM induced by AGE, namely the decrease in both membrane potential and chemical gradient were associated with a higher oxidation of both the endogenous glutathione and pyridine nucleotide content. To confirm the anti-proliferative effects of AGE, experiments were performed on the human neuroblastoma (NB) cancer cells, SJ-N-KP and the MYCN-amplified IMR5 cells, using its derivative S-allyl-L-cysteine (SAC), with the aim of providing evidence of the anticancer activity of this compound and its possible molecular mechanism as regards the induction of cytotoxicity. Following treatment of the cells with SAC at 20 mM, cell viability was determined by MTT assay and apoptosis was detected by flow cytometry, using Annexin V-FITC labeling. The percentages of cells undergoing apoptosis was found to be 48.0% in the SJ-N-KP and 50.1% in the IMR5 cells. By cytofluorimetric analysis, it was suggested that the target of SAC are the mitochondria. Mitochondrial activity was examined by labeling the cells with the probe, 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylimidacarbocyanine iodide (JC-1). Following treatment with SAC at 50 mM, both NB cell lines exhibited a marked increase in MMD. On the whole, the findings of this study indicate that both natural products, AGE and SAC, cause cytotoxicity to tumor cells via the induction of mitochondrial permeability transition (MPT).
Collapse
Affiliation(s)
- Yuta Kanamori
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, I-35131 Padua, Italy
| | - Alberto Macone
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy
| | - Gianluca Canettieri
- Pasteur Laboratory, Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy.,International Polyamines Foundation-ONLUS, I-00159 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, I-00161 Rome, Italy
| | - Antonio Toninello
- International Polyamines Foundation-ONLUS, I-00159 Rome, Italy.,Department of Biomedical Sciences, University of Padua, I-35131 Padua, Italy
| | - Enzo Agostinelli
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome, I-00185 Rome, Italy.,International Polyamines Foundation-ONLUS, I-00159 Rome, Italy
| |
Collapse
|
9
|
Wang K, Qi Q, Zhang F, Zhang Y, Yang M, Zhao Z. S-Allylcysteine as an Inhibitor of Benzo(a)pyrene-Induced Precancerous Carcinogenesis in Human Lung Cells via Inhibiting Activation of Nuclear Factor-Kappa B. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19896915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oil-soluble organosulfur compounds in garlic are known for the anticancer effect. However, there are limited experimental studies to describe the effect of S-allylcysteine (SAC), a main water-soluble derivative of garlic, in carcinogenesis. This study investigates the prevention function of SAC on carcinogen benzo(a)pyrene (B(a)P)-induced precancerous activity in human lung cells (A549). A549 cells were either pretreated (PreTM) or concurrently treated (CoTM) with 1 μM B(a)P and either 10 or 50 μM SAC. The 50 μM CoTM group inhibited B(a)P-induced cell proliferation by approximately 100%. The 50 μM SAC CoTM and PreTM inhibited the B(a)P-induced G2/M phase shift by 119% and 100%, respectively. Furthermore, the SAC PreTM exhibited the potential to reduce the generation of reactive oxygen species (ROS) in cells relative to the B(a)P group by approximately 100%. The CoTM and PreTM elevated superoxide dismutase (SOD) by at least 70% compared with B(a)P group. In this study, we demonstrated that the mechanisms involved in the inhibitory role of SAC in B(a)P-induced carcinogenesis, including suppression of cell proliferation and DNA damage, cell cycle regulation, attenuation of ROS formation, increase of SOD activity, and inhibition of nuclear factor-kappa B (NF-κB) activity, which indicated that SAC is potentially a novel therapeutic candidate for the prevention and treatment of B(a)P-induced human lung cancer.
Collapse
Affiliation(s)
- Kaiming Wang
- School of Biological Science and Technology, University of Jinan, Shandong, P.R. China
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Tarim University, Alar, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
| | - Fang Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| | - Yongchun Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P.R. China
| | - Min Yang
- Shandong Xinhua Pharmaceutical Company Limited, Zibo, P.R. China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan, P.R. China
| |
Collapse
|
10
|
Extracts from Fermented Black Garlic Exhibit a Hepatoprotective Effect on Acute Hepatic Injury. Molecules 2019; 24:molecules24061112. [PMID: 30897831 PMCID: PMC6471182 DOI: 10.3390/molecules24061112] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 11/23/2022] Open
Abstract
The mechanism of hepatoprotective compounds is usually related to its antioxidant or anti-inflammatory effects. Black garlic is produced from garlic by heat treatment and its anti-inflammatory activity has been previously reported. Therefore, the aim of this study was to investigate the hepatoprotective effect of five different extracts of black garlic against carbon tetrachloride (CCl4)-induced acute hepatic injury (AHI). In this study, mice in the control, CCl4, silymarin, and black garlic groups were orally administered distilled water, silymarin, and different fraction extracts of black garlic, respectively, after CCl4 was injected intraperitoneally to induce AHI. The results revealed that the n-butanol layer extract (BA) and water layer extract (WS) demonstrated a hepatoprotective effect by reducing the levels of alanine aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and hepatic malondialdehyde (MDA). Furthermore, the BA and WS fractions of black garlic extract increased the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione reductase (GSH-Rd), tumor necrosis factor alpha (TNF-α), and the interleukin-1 (IL-1β) level in liver. It was concluded that black garlic exhibited significant protective effects on CCl4-induced acute hepatic injury.
Collapse
|
11
|
Horng CT, Huang CW, Yang MY, Chen TH, Chang YC, Wang CJ. Nelumbo nucifera leaf extract treatment attenuated preneoplastic lesions and oxidative stress in the livers of diethylnitrosamine-treated rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:2327-2340. [PMID: 28804948 DOI: 10.1002/tox.22434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Lotus (Nelumbo nucifera Gaertn) possesses antioxidant, hepatoprotective, and anticancer potential. This study determined the protective role of aqueous extract from Nelumbo nucifera leaves (NLE) against N-diethylnitrosamine (DEN)-induced oxidative stress and hepatocellular carcinogenesis in a sample of Sprague-Dawley rats. NLE was fed orally to rats in which hepatic carcinoma was induced with DEN for 12 weeks. Five groups of 12 rats each were used for the study: Group I (control group) rats received distilled water; Group II rats were induced with DEN; Group III rats were induced with DEN and cotreated with 0.5% NLE; Group IV rats were induced with DEN and cotreated with 1.0% NLE; and Group V rats were induced with DEN and cotreated with 2.0% NLE. Clinical chemistry, organ weight, inflammatory marker, protein expression, enzyme, and antioxidant analyses were conducted. NLE administration to rats resulted in significantly decreased levels of serum alanine aminotransferase, aspartate aminotransferase, and albumin, which is indicative of hepatocellular damage, compared with the control group. DEN-induced oxidative stress was inhibited by NLE and this inhibition was paralleled by decreased lipid peroxides and increased glutathione transferase, superoxide dismutase, catalase, and glutathione peroxidase activity in liver tissues. The status of nonenzymatic antioxidants, such as reduced glutathione, was also found to be increased in NLE-administered rats. Furthermore, NLE decreased tumor size, hepatic Rac1, PKCα, and GSTπ expressions compared with the DEN-only group. Thus, supplementation of NLE reduced the adverse changes that occur because of liver cancer. These results prove that NLE protects against liver carcinogenesis induced because of treatment with DEN through blocking lipid peroxidation, hepatic cell damage, and enhancing the antioxidant defense system.
Collapse
Affiliation(s)
- Chi-Ting Horng
- Department of Ophthalmology, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 802, Taiwan
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Chien-Wei Huang
- Division of Gastroenterology, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 802, Taiwan
| | - Mon-Yuan Yang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Tzu-Hsin Chen
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
| | - Yun-Ching Chang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 402, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung City, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, 402, Taiwan
| |
Collapse
|
12
|
Schäfer G, Kaschula CH. The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anticancer Agents Med Chem 2014; 14:233-40. [PMID: 24237225 PMCID: PMC3915757 DOI: 10.2174/18715206113136660370] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/22/2013] [Accepted: 06/10/2013] [Indexed: 02/07/2023]
Abstract
Garlic (Allium sativum) has been used for centuries as a prophylactic and therapeutic medicinal agent. Importantly, garlic has been suggested to have both cancer-preventive potential as well as significant enhancing effects on the immune system. While these observations are supported experimentally both in vitro and in vivo, the impact of garlic in assisting the immune system in the prevention of cancer still lacks experimental confirmation. Studies addressing the immunomodulatory effects of garlic reveal conflicting data as to pro- or anti-inflammatory responses depending on the particular experimental set-ups and the garlic preparation used (i.e. garlic extract versus chemically pure garlic compounds). Here we provide an overview of the chemistry of the major garlic organosulfur compounds, summarize the current understanding and propose a link between the immunomodulating activity of garlic and the prevention of cancer. We hypothesize that garlic rather elicits anti-inflammatory and anti-oxidative responses that aid in priming the organism towards eradication of an emerging tumor.
Collapse
Affiliation(s)
| | - Catherine H Kaschula
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
13
|
Zeng T, Li Y, Zhang CL, Yu LH, Zhu ZP, Zhao XL, Xie KQ. Garlic oil suppressed the hematological disorders induced by chemotherapy and radiotherapy in tumor-bearing mice. J Food Sci 2014; 78:H936-42. [PMID: 23772706 DOI: 10.1111/1750-3841.12137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 03/24/2013] [Indexed: 12/31/2022]
Abstract
Although the anticancer effects of garlic and its products have been demonstrated by a variety of studies; however, few studies were conducted to investigate the effects of garlic on the adverse effects of chemo/radiotherapy. In order to clarify the above question and make a more comprehensive understanding of the anticancer effects of garlic, tumor xenograft mice model was established by subcutaneous injection of H22 tumor cells, and was used for the investigation of effects of garlic oil (GO) on the chemo/radiotherapy. In the chemotherapy test, tumor-bearing mice were treated with cyclophosphamide (CTX) or CTX plus GO (25 or 50 mg/kg bw) for 14 d, while the mice received a single 5 Gy total body radiation or radiation plus GO (25 or 50 mg/kg bw) in radiotherapy test. The results showed that GO did not increase the tumor inhibitory rate of CTX/radiation, which indicated that GO could not enhance the chemo/radiosensitivity of cancer cells. However, the decrease of the peripheral total white blood cells (WBCs) count induced by CTX/radiation was significantly suppressed by GO cotreatment. Furthermore, GO cotreatment significantly inhibited the decrease of the DNA contents and the micronuclei ratio of the bone marrow. Lastly, the reduction of the endogenous spleen colonies induced by CTX/radiation was significantly suppressed by GO cotreatment. These findings support the idea that GO consumption may benefit for the cancer patients receiving chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Tao Zeng
- School of Public Health, Shandong Univ., 44 Wenhua West Road, Shandong Province, Jinan City, 250012, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Sengupta D, Chowdhury KD, Sarkar A, Paul S, Sadhukhan GC. Berberine and S allyl cysteine mediated amelioration of DEN+CCl4 induced hepatocarcinoma. Biochim Biophys Acta Gen Subj 2014; 1840:219-44. [DOI: 10.1016/j.bbagen.2013.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 08/14/2013] [Accepted: 08/26/2013] [Indexed: 02/07/2023]
|
15
|
Potential for preventive effects of cocoa and cocoa polyphenols in cancer. Food Chem Toxicol 2013; 56:336-51. [DOI: 10.1016/j.fct.2013.02.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/20/2022]
|
16
|
Antitumour activity of Lycium chinensis polysaccharides in liver cancer rats. Int J Biol Macromol 2012; 51:314-8. [DOI: 10.1016/j.ijbiomac.2012.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 04/22/2012] [Accepted: 05/02/2012] [Indexed: 11/17/2022]
|
17
|
Evaluation of chemopreventive effect of Fumaria indica against N-nitrosodiethylamine and CCl4-induced hepatocellular carcinoma in Wistar rats. ASIAN PAC J TROP MED 2012; 5:623-9. [DOI: 10.1016/s1995-7645(12)60128-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/15/2012] [Accepted: 05/15/2012] [Indexed: 11/17/2022] Open
|
18
|
Raghu R, Lu KH, Sheen LY. Recent Research Progress on Garlic ( dà suàn) as a Potential Anticarcinogenic Agent Against Major Digestive Cancers. J Tradit Complement Med 2012; 2:192-201. [PMID: 24716132 PMCID: PMC3942895 DOI: 10.1016/s2225-4110(16)30099-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Garlic ( dà suàn; the bulb of Allium sativum), bestowed with an array of organosulfur compounds finds its application in treating many ailments including cardiovascular problems, common cold, bacterial and fungal infections and cancer. Numerous epidemiological evidences document the beneficial effects of various bioactive organosulfur compounds of garlic against different types of cancer. Studies involving the animal and cell models indicate garlic bioactive compounds could be effective in treating all the stages of cancer. This review gives an update on the recent pre-clinical and clinical trials, carried out to evaluate the efficacy of various garlic bioactive compounds along with the mechanism of action pertaining to major digestive cancers including liver, gastric and colorectal cancers. The major anti-carcinogenic mechanisms are caspase dependent and/or independent induction of apoptosis, anti-proliferative, anti-metastasis, anti-oxidant and immunomodulative properties. Form the clinical trials an increase in the garlic consumption of 20 g/day reduced the risk of gastric and colorectal cancer. In summary, increased uptake of garlic in diet may prevent the incidence of digestive cancers.
Collapse
Affiliation(s)
- Rajasekaran Raghu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Hussain T, Siddiqui HH, Fareed S, Vijayakumar M, Rao CV. Chemopreventive evaluation of Tephrosia purpurea against N-nitrosodiethylamine-induced hepatocarcinogenesis in Wistar rats. J Pharm Pharmacol 2012; 64:1195-205. [DOI: 10.1111/j.2042-7158.2012.01503.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Objectives
The chemopreventive potential of Tephrosia purpurea extract (TPE) on N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinoma (HCC) in Wistar rats was assessed.
Methods
HCC was induced by a single intraperitoneal injection of NDEA (200 mg/kg) followed by subcutaneous injections of CCl4 (3 ml/kg per week) for six weeks. After administration of the carcinogen, 200 and 400 mg/kg TPE were administered orally once a day throughout the study.
Key findings
The levels of liver cancer markers, including α-fetoprotein and carcinoembryonic antigen, were substantially increased by NDEA treatment. TPE treatment significantly reduced liver injury and restored the entire liver cancer markers. Additionally, TPE markedly normalized the activity of antioxidant enzymes, namely lipid peroxidation, reduced glutathione, catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase in the liver of NDEA-treated rats. Treatment with TPE significantly reduced the nodule incidence and multiplicity in the carcinogen-bearing rats. Histological observations of the liver tissues correlated with the biochemical observations.
Conclusions
These findings powerfully support that T. purpurea prevented lipid peroxidation, suppressed the tumour burden, and promoted enzymatic and nonenzymatic antioxidant defence systems during NDEA-induced hepatocarcinogenesis. This might have been due to modulating the antioxidant defence status, which contributed to its anticarcinogenic potential.
Collapse
Affiliation(s)
- Talib Hussain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Integral University, India
- Pharmacognosy and Ethnopharmacology Division, National Botanical Research Institute (CSIR), Lucknow, India
| | - Hefazat H Siddiqui
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Integral University, India
| | - Sheeba Fareed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Integral University, India
| | - Madhavan Vijayakumar
- Pharmacognosy and Ethnopharmacology Division, National Botanical Research Institute (CSIR), Lucknow, India
| | - Chandana Venkateswara Rao
- Pharmacognosy and Ethnopharmacology Division, National Botanical Research Institute (CSIR), Lucknow, India
| |
Collapse
|
20
|
Ng KTP, Guo DY, Cheng Q, Geng W, Ling CC, Li CX, Liu XB, Ma YY, Lo CM, Poon RTP, Fan ST, Man K. A garlic derivative, S-allylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma. PLoS One 2012; 7:e31655. [PMID: 22389672 PMCID: PMC3289621 DOI: 10.1371/journal.pone.0031655] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/17/2012] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is highly malignant and metastatic. Currently, there is no effective chemotherapy for patients with advanced HCC leading to an urgent need to seek for novel therapeutic options. We aimed to investigate the effect of a garlic derivative, S-allylcysteine (SAC), on the proliferation and metastasis of HCC. METHODOLOGY/PRINCIPAL FINDINGS A series of in vitro experiments including MTT, colony-forming, wound-healing, invasion, apoptosis and cell cycle assays were performed to examine the anti-proliferative and anti-metastatic effects of SAC on a metastatic HCC cell line MHCC97L. The therapeutic values of SAC single and combined with cisplatin treatments were examined in an in vivo orthotopic xenograft liver tumor model. The result showed that the proliferation rate and colony-forming abilities of MHCC97L cells were suppressed by SAC together with significant suppression of the expressions of proliferation markers, Ki-67 and proliferating cell nuclear antigen (PCNA). Moreover, SAC hindered the migration and invasion of MHCC97L cells corresponding with up-regulation of E-cadherin and down-regulation of VEGF. Furthermore, SAC significantly induced apoptosis and necrosis of MHCC97L cells through suppressing Bcl-xL and Bcl-2 as well as activating caspase-3 and caspase-9. In addition, SAC could significantly induce the S phase arrest of MHCC97L cells together with down-regulation of cdc25c, cdc2 and cyclin B1. In vivo xenograft liver tumor model demonstrated that SAC single or combined with cisplatin treatment inhibited the progression and metastasis of HCC tumor. CONCLUSIONS/SIGNIFICANCE Our data demonstrate the anti-proliferative and anti-metastatic effects of SAC on HCC cells and suggest that SAC may be a potential therapeutic agent for the treatment of HCC patients.
Collapse
Affiliation(s)
- Kevin T. P. Ng
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
| | - Dong Yong Guo
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
- Department of Anesthesiology, Cancer Institute, Tianjin Medical University, Cancer Hospital, Tianjin, China
| | - Qiao Cheng
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
| | - Wei Geng
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
| | - Chang Chun Ling
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
| | - Chang Xian Li
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
| | - Xiao Bing Liu
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
| | - Yuen Yuen Ma
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
| | - Chung Mau Lo
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
| | - Ronnie T. P. Poon
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
| | - Sheung Tat Fan
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
| | - Kwan Man
- State Key Laboratory for Liver Research, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions (SAR)
- * E-mail:
| |
Collapse
|
21
|
Chemopreventive effect of Fumaria indica that modulates the oxidant-antioxidant imbalance during N-nitrosodiethylamine and CC14-induced hepatocarcinogenesis in Wistar rats. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60350-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
DARWISH HEBATALLAHA, EL-BOGHDADY NOHAA. POSSIBLE INVOLVEMENT OF OXIDATIVE STRESS IN DIETHYLNITROSAMINE-INDUCED HEPATOCARCINOGENESIS: CHEMOPREVENTIVE EFFECT OF CURCUMIN. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2011.00637.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
S-Allylcysteine inhibits tumour progression and the epithelial–mesenchymal transition in a mouse xenograft model of oral cancer. Br J Nutr 2011; 108:28-38. [DOI: 10.1017/s0007114511005307] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oral cancer is prevalent worldwide. Studies have indicated that an increase in the osteopontin (OPN) plasma level is correlated with the progression of oral cancer. Our previous report showed that the aqueous garlic extract S-allylcysteine (SAC) inhibited the epithelial–mesenchymal transition (EMT) of human oral cancer CAL-27 cells in vitro. Therefore, the present study investigated whether SAC consumption would help prevent tumour growth and progression, including the EMT, in a mouse xenograft model of oral cancer. The results demonstrated that SAC dose-dependently inhibited the growth of oral cancer in tumour-bearing mice. The histopathological and immunohistochemical staining results indicated that SAC was able to effectively suppress the tumour growth and progression of oral cancer in vivo. The chemopreventive effect of SAC was associated with the suppression of carcinogenesis factors such as N-methylpurine DNA glycosylase and OPN. SAC significantly suppressed the phosphorylation of Akt, mammalian target of rapamycin, inhibitor of κBα and extracellular signal-regulated kinase 1/2 in tumour tissues. The results demonstrated that the SAC-mediated suppression of cyclin D1 protein was associated with an augmented expression of the cell-cycle inhibitor p16Ink4. Furthermore, SAC inhibited the expression of cyclo-oxygenase-2, vimentin and NF-κB p65 (RelA). These results show that SAC has potential as an agent against tumour growth and the progression of oral cancer in a mouse xenograft model.
Collapse
|
24
|
Kunthavai Nachiyar R, Subramanian P, Tamilselvam K, Manivasagam T. Influence of S-allyl cysteine on biochemical circadian rhythms in young and aged rats. BIOL RHYTHM RES 2011. [DOI: 10.1080/09291016.2010.491246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Kang SS, Lim DR, Kyung KH. 3-(Allyltrisulfanyl)-2-Aminopropanoic Acid, a Novel Nonvolatile Water-Soluble Antimicrobial Sulfur Compound in Heated Garlic. J Med Food 2010; 13:1247-53. [DOI: 10.1089/jmf.2010.1059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Seung-Sik Kang
- Department of Food Science, Sejong University, Seoul, Republic of Korea
| | - Dong Ryul Lim
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| | - Kyu Hang Kyung
- Department of Food Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Nagahara T, Okano JI, Fujise Y, Abe R, Murawaki Y. Preventive effect of JTE-522, a selective cyclooxygenase-2 inhibitor, on DEN-induced hepatocarcinogenesis in rats. Biomed Pharmacother 2010; 64:319-26. [PMID: 20434301 DOI: 10.1016/j.biopha.2009.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 09/01/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Chemopreventive effect of a selective cyclooxygenase-2 (COX-2) inhibitor JTE-522 on diethylnitrosamine (DEN)-induced hepatocarcinogenesis was evaluated in Wistar rats. METHODS Animals in the control group (G1) were injected with phosphate buffered saline (PBS), those in hepatocellular carcinoma (HCC) group (G2) were injected with DEN with regular foods for 14 weeks, and those in the treatment groups were injected with DEN for 14 weeks fed with JTE-522 for 7 (G3) and 14 weeks (G4), respectively. Proliferation and precancerous lesions were evaluated by expression levels of proliferating cell nuclear antigen (PCNA) and glutathione S-transferase-P (GST-P), respectively by immunohistochemistry and Western blot analysis. Apoptosis and oxidative stress were evaluated by TdT-mediated dUTP-biotin nick-end labeling (TUNEL) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) staining, respectively. RESULTS After 14 weeks of the treatment, HCC was developed in G2, G3, and G4 showing no significant differences in gross appearance and histology of the liver among the three groups. There were no significant differences in the expression levels of PCNA and numbers of TUNEL and 8-OHdG positive cells in the liver among the three groups. However, GST-P positive area was significantly suppressed in G3 and G4 compared to G2. CONCLUSION Our data revealed that JTE-522 had a modest inhibitory effect on hepatocarcinogenesis in rats in a manner independent of induction of apoptosis and inhibition of oxidative stress.
Collapse
Affiliation(s)
- Takakazu Nagahara
- Second Department of Internal Medicine, Tottori University School of Medicine, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan.
| | | | | | | | | |
Collapse
|
27
|
A diet rich in cocoa attenuates N-nitrosodiethylamine-induced liver injury in rats. Food Chem Toxicol 2009; 47:2499-506. [PMID: 19602430 DOI: 10.1016/j.fct.2009.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 12/15/2022]
Abstract
The effects of cocoa feeding against N-nitrosodiethylamine (DEN)-induced liver injury were studied in rats. Animals were divided into five groups. Groups 1 and 2 were fed with standard and cocoa-diet, respectively. Groups 3 and 4 were injected with DEN at 2 and 4 weeks, and fed with standard and cocoa-diet, respectively. Group 5 was treated with DEN, received the standard diet for 4 weeks and then it was replaced by the cocoa-diet. DEN-induced hepatic damage caused a significant increase in damage markers, as well as a decrease in the hepatic glutathione, diminished levels of p-ERK and enhanced protein carbonyl content, caspase-3 activity and values of p-AKT and p-JNK. The cocoa-rich diet prevented the reduction of hepatic glutathione concentration and catalase and GPx activities in DEN-injected rats, as well as diminished protein carbonyl content, caspase-3 activity, p-AKT and p-JNK levels, and increased GST activity. However, cocoa administration did not abrogate the DEN-induced body weight loss and the increased levels of hepatic-specific enzymes and LDH. These results suggested that cocoa-rich diet attenuates the DEN-induced liver injury.
Collapse
|