1
|
Fillmore N, Hou V, Sun J, Springer D, Murphy E. Cardiac specific knock-down of peroxisome proliferator activated receptor α prevents fasting-induced cardiac lipid accumulation and reduces perilipin 2. PLoS One 2022; 17:e0265007. [PMID: 35259201 PMCID: PMC8903264 DOI: 10.1371/journal.pone.0265007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
While fatty acid metabolism is altered under physiological conditions, alterations can also be maladaptive in diseases such as diabetes and heart failure. Peroxisome Proliferator Activated Receptor α (PPARα) is a transcription factor that regulates fat metabolism but its role in regulating lipid storage in the heart is unclear. The aim of this study is to improve our understanding of how cardiac PPARα regulates cardiac health and lipid accumulation. To study the role of cardiac PPARα, tamoxifen inducible cardiac-specific PPARα knockout mouse (cPPAR-/-) were treated for 5 days with tamoxifen and then studied after 1–2 months. Under baseline conditions, cPPAR-/- mice appear healthy with normal body weight and mortality is not altered. Importantly, cardiac hypertrophy or reduced cardiac function was also not observed at baseline. Mice were fasted to elevate circulating fatty acids and induce cardiac lipid accumulation. After fasting, cPPAR-/- mice had dramatically lower cardiac triglyceride levels than control mice. Interestingly, cPPAR-/- hearts also had reduced Plin2, a key protein involved in lipid accumulation and lipid droplet regulation, which may contribute to the reduction in cardiac lipid accumulation. Overall, this suggests that a decline in cardiac PPARα may blunt cardiac lipid accumulation by decreasing Plin2 and that independent of differences in systemic metabolism a decline in cardiac PPARα does not seem to drive pathological changes in the heart.
Collapse
Affiliation(s)
- Natasha Fillmore
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States of America
- * E-mail:
| | - Vincent Hou
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Junhui Sun
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danielle Springer
- Murine Phenotyping Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
2
|
Cardiac-Specific Overexpression of ERRγ in Mice Induces Severe Heart Dysfunction and Early Lethality. Int J Mol Sci 2021; 22:ijms22158047. [PMID: 34360813 PMCID: PMC8348522 DOI: 10.3390/ijms22158047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
Proper cardiac function depends on the coordinated expression of multiple gene networks related to fuel utilization and mitochondrial ATP production, heart contraction, and ion transport. Key transcriptional regulators that regulate these gene networks have been identified. Among them, estrogen-related receptors (ERRs) have emerged as crucial modulators of cardiac function by regulating cellular metabolism and contraction machinery. Consistent with this role, lack of ERRα or ERRγ results in cardiac derangements that lead to functional maladaptation in response to increased workload. Interestingly, metabolic inflexibility associated with diabetic cardiomyopathy has been recently associated with increased mitochondrial fatty acid oxidation and expression of ERRγ, suggesting that sustained expression of this nuclear receptor could result in a cardiac pathogenic outcome. Here, we describe the generation of mice with cardiac-specific overexpression of ERRγ, which die at young ages due to heart failure. ERRγ transgenic mice show signs of dilated cardiomyopathy associated with cardiomyocyte hypertrophy, increased cell death, and fibrosis. Our results suggest that ERRγ could play a role in mediating cardiac pathogenic responses.
Collapse
|
3
|
The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation. J Cardiovasc Pharmacol 2021; 76:514-526. [PMID: 33165133 DOI: 10.1097/fjc.0000000000000891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common complications in patients with type-2 diabetes are hyperglycemia and hyperlipidemia that can lead to cardiovascular disease. Alleviation of these complications constitutes the major therapeutic approach for the treatment of diabetes mellitus. Agonists of peroxisome proliferator-activated receptor (PPAR) alpha and PPARγ are used for the treatment of hyperlipidemia and hyperglycemia, respectively. PPARs belong to the nuclear receptors superfamily and regulate fatty acid metabolism. PPARα ligands, such as fibrates, reduce circulating triglyceride levels, and PPARγ agonists, such as thiazolidinediones, improve insulin sensitivity. Dual-PPARα/γ agonists (glitazars) were developed to combine the beneficial effects of PPARα and PPARγ agonism. Although they improved metabolic parameters, they paradoxically aggravated congestive heart failure in patients with type-2 diabetes via mechanisms that remain elusive. Many of the glitazars, such as muraglitazar, tesaglitazar, and aleglitazar, were abandoned in phase-III clinical trials. The objective of this review article pertains to the understanding of how combined PPARα and PPARγ activation, which successfully targets the major complications of diabetes, causes cardiac dysfunction. Furthermore, it aims to suggest interventions that will maintain the beneficial effects of dual PPARα/γ agonism and alleviate adverse cardiac outcomes in diabetes.
Collapse
|
4
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
5
|
Herminghaus A, Laser E, Schulz J, Truse R, Vollmer C, Bauer I, Picker O. Pravastatin and Gemfibrozil Modulate Differently Hepatic and Colonic Mitochondrial Respiration in Tissue Homogenates from Healthy Rats. Cells 2019; 8:cells8090983. [PMID: 31461874 PMCID: PMC6769625 DOI: 10.3390/cells8090983] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023] Open
Abstract
Statins and fibrates are widely used for the management of hypertriglyceridemia but they also have limitations, mostly due to pharmacokinetic interactions or side effects. It is conceivable that some adverse events like liver dysfunction or gastrointestinal discomfort are caused by mitochondrial dysfunction. Data about the effects of statins and fibrates on mitochondrial function in different organs are inconsistent and partially contradictory. The aim of this study was to investigate the effect of pravastatin (statin) and gemfibrozil (fibrate) on hepatic and colonic mitochondrial respiration in tissue homogenates. Mitochondrial oxygen consumption was determined in colon and liver homogenates from 48 healthy rats after incubation with pravastatin or gemfibrozil (100, 300, 1000 μM). State 2 (substrate dependent respiration) and state 3 (adenosine diphosphate: ADP-dependent respiration) were assessed. RCI (respiratory control index)—an indicator for coupling between electron transport chain system (ETS) and oxidative phosphorylation (OXPHOS) and ADP/O ratio—a parameter for the efficacy of OXPHOS, was calculated. Data were presented as a percentage of control (Kruskal–Wallis + Dunn’s correction). In the liver both drugs reduced state 3 and RCI, gemfibrozil-reduced ADP/O (complex I). In the colon both drugs reduced state 3 but enhanced ADP/O. Pravastatin at high concentration (1000 µM) decreased RCI (complex II). Pravastatin and gemfibrozil decrease hepatic but increase colonic mitochondrial respiration in tissue homogenates from healthy rats.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | - Eric Laser
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Jan Schulz
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
6
|
Kalliora C, Kyriazis ID, Oka SI, Lieu MJ, Yue Y, Area-Gomez E, Pol CJ, Tian Y, Mizushima W, Chin A, Scerbo D, Schulze PC, Civelek M, Sadoshima J, Madesh M, Goldberg IJ, Drosatos K. Dual peroxisome-proliferator-activated-receptor-α/γ activation inhibits SIRT1-PGC1α axis and causes cardiac dysfunction. JCI Insight 2019; 5:129556. [PMID: 31393858 DOI: 10.1172/jci.insight.129556] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dual peroxisome proliferator-activated receptor (PPAR)α/γ agonists that were developed to target hyperlipidemia and hyperglycemia in type 2 diabetes patients, caused cardiac dysfunction or other adverse effects. We studied the mechanisms that underlie the cardiotoxic effects of a dual PPARα/γ agonist, tesaglitazar, in wild type and diabetic (leptin receptor deficient - db/db) mice. Mice treated with tesaglitazar-containing chow or high fat diet developed cardiac dysfunction despite lower plasma triglycerides and glucose levels. Expression of cardiac peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which promotes mitochondrial biogenesis, had the most profound reduction among various fatty acid metabolism genes. Furthermore, we observed increased acetylation of PGC1α, which suggests PGC1α inhibition and lowered sirtuin 1 (SIRT1) expression. This change was associated with lower mitochondrial abundance. Combined pharmacological activation of PPARα and PPARγ in C57BL/6 mice reproduced the reduction of PGC1α expression and mitochondrial abundance. Resveratrol-mediated SIRT1 activation attenuated tesaglitazar-induced cardiac dysfunction and corrected myocardial mitochondrial respiration in C57BL/6 and diabetic mice but not in cardiomyocyte-specific Sirt1-/- mice. Our data shows that drugs, which activate both PPARα and PPARγ lead to cardiac dysfunction associated with PGC1α suppression and lower mitochondrial abundance likely due to competition between these two transcription factors.
Collapse
Affiliation(s)
- Charikleia Kalliora
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.,Faculty of Medicine, University of Crete, Voutes, Greece
| | - Ioannis D Kyriazis
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Shin-Ichi Oka
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Melissa J Lieu
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Yujia Yue
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Christine J Pol
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Tian
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Wataru Mizushima
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Adave Chin
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Diego Scerbo
- Division of Preventive Medicine and Nutrition, Columbia University, New York, New York, USA.,NYU Langone School of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York, New York, USA
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology, Intensive Medical Care and Pneumology, University Hospital Jena, Jena, Germany
| | - Mete Civelek
- Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Junichi Sadoshima
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Muniswamy Madesh
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ira J Goldberg
- NYU Langone School of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York, New York, USA
| | - Konstantinos Drosatos
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Shete V, Liu N, Jia Y, Viswakarma N, Reddy JK, Thimmapaya B. Mouse Cardiac Pde1C Is a Direct Transcriptional Target of Pparα. Int J Mol Sci 2018; 19:ijms19123704. [PMID: 30469494 PMCID: PMC6321386 DOI: 10.3390/ijms19123704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
Phosphodiesterase 1C (PDE1C) is expressed in mammalian heart and regulates cardiac functions by controlling levels of second messenger cyclic AMP and cyclic GMP (cAMP and cGMP, respectively). However, molecular mechanisms of cardiac Pde1c regulation are currently unknown. In this study, we demonstrate that treatment of wild type mice and H9c2 myoblasts with Wy-14,643, a potent ligand of nuclear receptor peroxisome-proliferator activated receptor alpha (PPARα), leads to elevated cardiac Pde1C mRNA and cardiac PDE1C protein, which correlate with reduced levels of cAMP. Furthermore, using mice lacking either Pparα or cardiomyocyte-specific Med1, the major subunit of Mediator complex, we show that Wy-14,643-mediated Pde1C induction fails to occur in the absence of Pparα and Med1 in the heart. Finally, using chromatin immunoprecipitation assays we demonstrate that PPARα binds to the upstream Pde1C promoter sequence on two sites, one of which is a palindrome sequence (agcTAGGttatcttaacctagc) that shows a robust binding. Based on these observations, we conclude that cardiac Pde1C is a direct transcriptional target of PPARα and that Med1 may be required for the PPARα mediated transcriptional activation of cardiac Pde1C.
Collapse
Affiliation(s)
- Varsha Shete
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Ning Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Janardan K Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Lee TW, Bai KJ, Lee TI, Chao TF, Kao YH, Chen YJ. PPARs modulate cardiac metabolism and mitochondrial function in diabetes. J Biomed Sci 2017; 24:5. [PMID: 28069019 PMCID: PMC5223385 DOI: 10.1186/s12929-016-0309-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023] Open
Abstract
Diabetic cardiomyopathy is a major complication of diabetes mellitus (DM). Currently, effective treatments for diabetic cardiomyopathy are limited. The pathophysiology of diabetic cardiomyopathy is complex, whereas mitochondrial dysfunction plays a vital role in the genesis of diabetic cardiomyopathy. Metabolic regulation targeting mitochondrial dysfunction is expected to be a reasonable strategy for treating diabetic cardiomyopathy. Peroxisome proliferator-activated receptors (PPARs) are master executors in regulating glucose and lipid homeostasis and also modulate mitochondrial function. However, synthetic PPAR agonists used for treating hyperlipidemia and DM have shown controversial effects on cardiovascular regulation. This article reviews our updated understanding of the beneficial and detrimental effects of PPARs on mitochondria in diabetic hearts.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Jen Bai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Pirinixic acids: flexible fatty acid mimetics with various biological activities. Future Med Chem 2015; 7:1597-616. [DOI: 10.4155/fmc.15.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pirinixic acid is a typical fatty acid mimetic and was developed as synthetic antihyperlipidemic agent. While its target remained unknown in the early development, it has later been characterized as dual PPARα/γ agonist. Based on this activity, pirinixic acid has served as a lead compound for several structure–activity relationship (SAR) studies addressing diverse targets for lipid mimetics. Many structural variants of pirinixic acid descendants have been developed and thereby potent agents on metabolic, inflammatory and neuroprotective targets were discovered of which some have proven in vivo efficacy. This article reviews pirinixic acid descendants along with their in vitro-pharmacological profiles, summarizes their in vivo data and finally gives a future perspective for this valuable class of fatty acid mimetics.
Collapse
|
10
|
Abstract
Diabetic cardiomyopathy (DCM) is defined as cardiac disease independent of vascular complications during diabetes. The number of new cases of DCM is rising at epidemic rates in proportion to newly diagnosed cases of diabetes mellitus (DM) throughout the world. DCM is a heart failure syndrome found in diabetic patients that is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction, occurring in the absence of hypertension and coronary artery disease. DCM and other diabetic complications are caused in part by elevations in blood glucose and lipids, characteristic of DM. Although there are pathological consequences to hyperglycemia and hyperlipidemia, the combination of the two metabolic abnormalities potentiates the severity of diabetic complications. A natural competition exists between glucose and fatty acid metabolism in the heart that is regulated by allosteric and feedback control and transcriptional modulation of key limiting enzymes. Inhibition of these glycolytic enzymes not only controls flux of substrate through the glycolytic pathway, but also leads to the diversion of glycolytic intermediate substrate through pathological pathways, which mediate the onset of diabetic complications. The present review describes the limiting steps involved in the development of these pathological pathways and the factors involved in the regulation of these limiting steps. Additionally, therapeutic options with demonstrated or postulated effects on DCM are described.
Collapse
Affiliation(s)
- Michael Isfort
- The Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
11
|
Morel J, Singer M. Statins, fibrates, thiazolidinediones and resveratrol as adjunctive therapies in sepsis: could mitochondria be a common target? Intensive Care Med Exp 2014; 2:9. [PMID: 26266909 PMCID: PMC4512973 DOI: 10.1186/2197-425x-2-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/30/2014] [Indexed: 02/07/2023] Open
Abstract
Through their pleiotropic actions, statins, fibrates, thiazolidinediones and resveratrol can target multiple mechanisms involved in sepsis. Their actions on mitochondrial function are of interest in a pathological state where bioenergetic failure may play a key role in the development of organ dysfunction. We review these four drug groups as potential adjunctive therapies in sepsis with a particular focus upon mitochondria. Systematic review of clinical and experimental trials was done with a literature search using the PubMed database. Search terms included statins, fibrates, thiazolidinediones, resveratrol, mitochondria, sepsis, peroxisome proliferator-activated receptors, inflammation, oxidative stress and organ dysfunction. With the exception of statins, most of the compelling evidence for the use of these agents in sepsis comes from the experimental literature. The agents all exert anti-inflammatory and anti-oxidant properties, plus protective effects against mitochondrial dysfunction and stimulation of mitochondrial biogenesis. Improved outcomes (organ dysfunction, survival) have been reported in a variety of sepsis models. Notably, positive outcome effects were more commonly seen when the agents were given as pre- rather than post-treatment of sepsis. Statins, fibrates, thiazolidinediones and resveratrol prevent sepsis-induced injury to organs and organelles with outcome improvements. Their effects on mitochondrial function may be integral in offering this protection. Definitive clinical trials are needed to evaluate their utility in septic patients or those at high risk of developing sepsis.
Collapse
Affiliation(s)
- Jerome Morel
- Département d'anesthésie réanimation, Centre Hospitalier Universitaire de Saint Etienne, 42055, Saint Etienne, France,
| | | |
Collapse
|
12
|
Al-Hasan YM, Pinkas GA, Thompson LP. Prenatal Hypoxia Reduces Mitochondrial Protein Levels and Cytochrome c Oxidase Activity in Offspring Guinea Pig Hearts. Reprod Sci 2014; 21:883-891. [PMID: 24406790 DOI: 10.1177/1933719113518981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prenatal hypoxia (HPX) reduces mitochondrial cytochrome c oxidase (CCO and COX) activity in fetal guinea pig (GP) hearts. The aim of this study was to quantify the lasting effects of chronic prenatal HPX on cardiac mitochondrial enzyme activity and protein expression in offspring hearts. Pregnant GPs were exposed to either normoxia (NMX) or HPX (10.5%O2) during the last 14 days of pregnancy. Both NMX and HPX fetuses, delivered vaginally, were housed under NMX conditions until 90 days of age. Total RNA and mitochondrial fractions were isolated from hearts of anesthetized NMX and HPX offspring and showed decreased levels of CCO but not medium-chain acyl dehydrogenase activity, protein levels of nuclear- and mitochondrial-encoded COX4 and COX1, respectively, and messenger RNA expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, COX5b, and 4.1 compared to NMX controls. Prenatal HPX may alter mitochondrial function in the offspring by disrupting protein expression associated with the respiratory chain.
Collapse
Affiliation(s)
- Yazan M Al-Hasan
- Department of Physiology (YMA), University of Maryland, Baltimore, MD, USA Department of Obstetrics, Gynecology and Reproductive Sciences (GAP, LPT), University of Maryland, Baltimore, MD, USA
| | - Gerard A Pinkas
- Department of Physiology (YMA), University of Maryland, Baltimore, MD, USA Department of Obstetrics, Gynecology and Reproductive Sciences (GAP, LPT), University of Maryland, Baltimore, MD, USA
| | - Loren P Thompson
- Department of Physiology (YMA), University of Maryland, Baltimore, MD, USA Department of Obstetrics, Gynecology and Reproductive Sciences (GAP, LPT), University of Maryland, Baltimore, MD, USA
| |
Collapse
|
13
|
Abstract
The pyruvate dehydrogenase complex (PDC) activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK) isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes.
Collapse
Affiliation(s)
- Ji Yun Jeong
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Nam Ho Jeoung
- Department of Fundamental Medical & Pharmaceutical Sciences, Catholic University of Daegu, Daegu, Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
14
|
Posnack NG, Swift LM, Kay MW, Lee NH, Sarvazyan N. Phthalate exposure changes the metabolic profile of cardiac muscle cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1243-51. [PMID: 22672789 PMCID: PMC3440133 DOI: 10.1289/ehp.1205056] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/06/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Phthalates are common plasticizers present in medical-grade plastics and other everyday products. They can also act as endocrine-disrupting chemicals and have been linked to the rise in metabolic disorders. However, the effect of phthalates on cardiac metabolism remains largely unknown. OBJECTIVES We examined the effect of di(2-ethylhexyl)phthalate (DEHP) on the metabolic profile of cardiomyocytes because alterations in metabolic processes can lead to cell dysfunction. METHODS Neonatal rat cardiomyocytes were treated with DEHP at a concentration and duration comparable to clinical exposure (50-100 μg/mL, 72 hr). We assessed the effect of DEHP on gene expression using microarray analysis. Physiological responses were examined via fatty acid utilization, oxygen consumption, mitochondrial mass, and Western blot analysis. RESULTS Exposure to DEHP led to up-regulation of genes associated with fatty acid transport, esterification, mitochondrial import, and β-oxidation. The functional outcome was an increase in myocyte fatty acid-substrate utilization, oxygen consumption, mitochondrial mass, PPARα (peroxisome proliferator-activated receptor α) protein expression, and extracellular acidosis. Treatment with a PPARα agonist (Wy-14643) only partially mimicked the effects observed in DEHP-treated cells. CONCLUSIONS Data suggest that DEHP exposure results in metabolic remodeling of cardiomyocytes, whereby cardiac cells increase their dependence on fatty acids for energy production. This fuel switch may be regulated at both the gene expression and posttranscription levels. Our findings have important clinical implications because chronic dependence on fatty acids is associated with an accumulation in lipid intermediates, lactate, protons, and reactive oxygen species. This dependence can sensitize the heart to ischemic injury and ventricular dysfunction.
Collapse
Affiliation(s)
- Nikki Gillum Posnack
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
15
|
Wölkart G, Schrammel A, Dörffel K, Haemmerle G, Zechner R, Mayer B. Cardiac dysfunction in adipose triglyceride lipase deficiency: treatment with a PPARα agonist. Br J Pharmacol 2012; 165:380-9. [PMID: 21585347 PMCID: PMC3268192 DOI: 10.1111/j.1476-5381.2011.01490.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 04/23/2011] [Accepted: 05/04/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Adipose triglyceride lipase (ATGL) has been identified as a rate-limiting enzyme of mammalian triglyceride catabolism. Deletion of the ATGL gene in mice results in severe lipid accumulation in a variety of tissues including the heart. In the present study we investigated cardiac function in ATGL-deficient mice and the potential therapeutic effects of the PPARα and γ agonists Wy14,643 and rosiglitazone, respectively. EXPERIMENTAL APPROACH Hearts isolated from wild-type (WT) mice and ATGL(-/-) mice treated with Wy14,643 (PPARα agonist), rosiglitazone (PPARγ agonist) or vehicle were perfused at a constant flow using the Langendorff technique. Left ventricular (LV) pressure-volume relationships were established, and the response to adrenergic stimulation was determined with noradrenaline (NA). KEY RESULTS Hearts from ATGL(-/-) mice generated higher LV end-diastolic pressure and lower LV developed pressure as a function of intracardiac balloon volume compared to those from WT mice. Likewise, passive wall stress was increased and active wall stress decreased in ATGL(-/-) hearts. Contractile and microvascular responses to NA were substantially reduced in ATGL(-/-) hearts. Cardiac contractility was improved by treating ATGL(-/-) mice with the PPARα agonist Wy14,643 but not with the PPARγ agonist rosiglitazone. CONCLUSIONS AND IMPLICATIONS Our results indicate that lipid accumulation in mouse hearts caused by ATGL gene deletion severely affects systolic and diastolic function, as well as the response to adrenergic stimulation. The beneficial effects of Wy14,643 suggest that the cardiac phenotype of these mice is partially due to impaired PPARα signalling.
Collapse
Affiliation(s)
- G Wölkart
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|