1
|
Zhang J, Li S, Qi Y, Shen J, Leng A, Qu J. Animal-derived peptides from Traditional Chinese medicines: medicinal potential, mechanisms, and prospects. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119872. [PMID: 40334760 DOI: 10.1016/j.jep.2025.119872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/14/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Animal-derived traditional Chinese medicines have a long-standing history in Chinese medicine, which exhibit unique efficacy due to similar structure and function with human tissue. As the major types of constituents that accounted for a relatively high proportion of animal-derived TCMs, peptides with molecular weight between 100 Da and hundreds of thousands of kDa have caught wide attention due to their outstanding bioavailability and excellent specificity. AIM OF THE STUDY This review aims to comprehensively delve into the up-to-date research progress in their pharmacology, mechanism, sequence composition, and therapeutic application, laying a solid foundation for future clinical treatment and scientific research. MATERIALS AND METHODS Relevant information on the peptides from animal-derived TCMs was collected from scientific literature databases including PubMed, CNKI, literature sources (Ph.D. and M.Sc. dissertations), and Web of Science by using the keywords "Peptides", "Animal", and "TCMs" for gradual screening in the past 30 years. RESULTS To date, the peptides from 27 kinds of animal-derived TCMs have been systematically combed. Their pharmacological activity and underlying mechanisms on multiple systems (nervous, circulatory, skeletal, and immune), as well as anti-tumor, antioxidative, and antimicrobial effects, have been sorted out. Besides, the potential safety issues and deficiencies (low bioavailability, imperfect quality management, and toxicity of raw materials) have also been pointed out. CONCLUSIONS Comprehensive analysis showed that low development and resource waste accompanied by the inadequate report about the pharmacological activity of most peptides from animal-derived TCMs make it have good research prospects. Although a breakthrough in the field of healthcare products has been made, the development potential for clinical products that bring surprising turnaround will be obtained if the above-mentioned confusions and current needs (improve identification technology and design reasonable dosage forms) are implemented.
Collapse
Affiliation(s)
- Jiahui Zhang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Siyi Li
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Yueyi Qi
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Jieyu Shen
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Aijing Leng
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Department of Traditional Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China.
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China.
| |
Collapse
|
2
|
Li KM, Li WF, Yan YM, Yang G, Cheng YX. Seven New Guanidine Derivatives and One New Hypoxanthine Derivative Isolated from the Scorpion Buthus martensii and Potential Anti-Neuroinflammatory Activity. JOURNAL OF NATURAL PRODUCTS 2025; 88:821-829. [PMID: 40033829 DOI: 10.1021/acs.jnatprod.5c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Twelve guanidine derivatives (1-12), including seven new compounds (martensiiagms A-G, 1-7), one new hypoxanthine derivative (martensiiagm H, 13), and 15 known compounds (14-28) were isolated from the whole body of Buthus martensii Karsch and identified by analysis of data. Subsequent biological evaluations revealed the anti-inflammatory activity of compound 1. It attenuates the neuroinflammation and oxidative stress levels prompted by lipopolysaccharide. This attenuation is accomplished by a specific action on mitochondria, which, in turn, caused a significant decrease in reactive oxygen species and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Ke-Ming Li
- Guangdong Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen 518104, People's Republic of China
| | - Wei-Fen Li
- Guangdong Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Yong-Ming Yan
- Guangdong Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Guangyi Yang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen 518104, People's Republic of China
| | - Yong-Xian Cheng
- Guangdong Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
3
|
Qiao YN, Lin SZ, Duan XZ, Yang MH, Zhang XF, Li JJ, Kang SN, Wang YT, Zhang Y, Feng XC. A randomized, double-blind, placebo-controlled multicenter clinical trial of Xiehuang Jiejing granule in the treatment of cough variant asthma in children. Medicine (Baltimore) 2022; 101:e31636. [PMID: 36401471 PMCID: PMC9678501 DOI: 10.1097/md.0000000000031636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cough variant asthma (CVA), also called concealed asthma or allergic asthma, is the most common cause of chronic cough in children. The disorder is mainly characterized by a nonproductive dry cough associated with a high recurrence rate that is conventionally treated with antibiotics, anti-inflammatory medications, cough suppressants, or expectorants. For millennia, Chinese herbal medicine (CHM) has been used widely in China to treat pediatric CVA cases, although high-quality evidence of CHM efficacy is lacking. In this study, the effectiveness and safety of Xiehuangjiejing (XHJJ) granule will be evaluated when used alone to treat children with CVA. METHODS AND ANALYSIS A randomized, double-blind, parallel, placebo-controlled multicenter trial will be conducted over the course of 2 weeks. A total of 180 CVA patients of ages between 4 and 7 years old will be randomly assigned to the experimental group (XHJJ granules, 4.5 g administered 3 times daily) or control group (matched placebo, 4.5 g administered 3 times daily) in a 2:1 ratio based on subject number per group, respectively. The trial will consist of a 7-day medical interventional stage and a 7-day follow-up stage. On day 7 of the follow-up stage, an evaluation of all subjects will be carried out to assess cough symptom score as the primary outcome and several secondary outcomes, including TCM (traditional Chinese medicine) syndrome score, lung function, and dosage of salbutamol aerosol inhaler therapy. Safety assessments will also be evaluated during the trial. DISCUSSION The aim of this study was to examine the effectiveness and safety of Xiehuangjiejing (XHJJ) granule using a trial protocol designed to yield high-quality, statistically robust results for use in evaluating CHM as a treatment for CVA in children.
Collapse
Affiliation(s)
- Yi-Na Qiao
- Changchun University of Chinese Medicine, Changchun, China
| | - Shuang-Zhu Lin
- Department of Respiratory Medicine, Children’s Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xiao-Zheng Duan
- Department of Respiratory Medicine, Children’s Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ming-Hang Yang
- Changchun University of Chinese Medicine, Changchun, China
| | | | - Jing-Jing Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Sai-Nan Kang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yu-Ting Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Ying Zhang
- Center for Evidence-based Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Chun Feng
- Department of Respiratory Medicine, Children’s Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Liu Y, Li Y, Zhu Y, Zhang L, Ji J, Gui M, Li C, Song Y. Study of Anti-Inflammatory and Analgesic Activity of Scorpion Toxins DKK-SP1/2 from Scorpion Buthus martensii Karsch ( BmK). Toxins (Basel) 2021; 13:toxins13070498. [PMID: 34357970 PMCID: PMC8310270 DOI: 10.3390/toxins13070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022] Open
Abstract
Buthus martensii Karsch (BmK), is a kind of traditional Chinese medicine, which has been used for a long history for the treatment of many diseases, such as inflammation, pain and cancer. In this study, DKK-SP1/2/3 genes were screened and extracted from the cDNA library of BmK. The DKK-SP1/2/3 were expressed by using plasmid pSYPU-1b in E. coli BL21, and recombinant proteins were obtained by column chromatography. In the xylene-induced mouse ear swelling and carrageenan-induced rat paw swelling model, DKK-SP1 exerted a significant anti-inflammatory effect by inhibiting the expression of Nav1.8 channel. Meanwhile, the release of pro-inflammatory cytokines (COX-2, IL-6) was decreased significantly and the release of anti-inflammatory cytokines (IL-10) were elevated significantly. Moreover, DKK-SP1 could significantly decrease the Nav1.8 current in acutely isolated rat DRG neurons. In the acetic acid-writhing and ION-CCI model, DKK-SP2 displayed significant analgesic activity by inhibiting the expression of the Nav1.7 channel. Moreover, DKK-SP2 could significantly inhibit the Nav1.7 current in the hNav1.7-CHO cells.
Collapse
Affiliation(s)
- Yunxia Liu
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (M.G.)
| | - Yan Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Yuchen Zhu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Liping Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Junyu Ji
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
| | - Mingze Gui
- College of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (M.G.)
| | - Chunli Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
- Correspondence: (C.L.); (Y.S.)
| | - Yongbo Song
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; (Y.L.); (Y.Z.); (L.Z.); (J.J.)
- Correspondence: (C.L.); (Y.S.)
| |
Collapse
|
5
|
Lin CH, Hsieh CL. Chinese Herbal Medicine for Treating Epilepsy. Front Neurosci 2021; 15:682821. [PMID: 34276290 PMCID: PMC8284486 DOI: 10.3389/fnins.2021.682821] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Chinese herbal medicine has a long history of use for treating epilepsy. Because of the side effects of Western antiepileptic therapy and the quest for more accessible treatment, complementary and alternative medicines have become popular. Traditional Chinese medical diet therapy appears to be safe and effective. We searched PubMed and the Cochrane Library through November 2020 for the use of traditional Chinese medicine in clinical settings, including plants, fungi, and animals. Combinations of keywords included “epilepsy,” “seizure,” “antiepileptic,” “anticonvulsive,” “Chinese herbal medicine,” “Chinese herb,” and each of the Latin names, English names, and scientific names of herbs. We also summarized the sources and functions of these herbs in Chinese medicine. Different herbs can be combined to increase antiepileptic effects through various mechanisms, including anti-inflammation, antioxidation, GABAergic effect enhancement, modulation of NMDA channels and sodium channel, and neuroprotection. Despite reports of their anticonvulsive effects, adequate experimental evidence and randomized controlled clinical trials are required to confirm their antiepileptic effects.
Collapse
Affiliation(s)
- Chia-Hui Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
BmK NSPK, a Potent Potassium Channel Inhibitor from Scorpion Buthus martensii Karsch, Promotes Neurite Outgrowth via NGF/TrkA Signaling Pathway. Toxins (Basel) 2021; 13:toxins13010033. [PMID: 33466524 PMCID: PMC7824859 DOI: 10.3390/toxins13010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Scorpion toxins represent a variety of tools to explore molecular mechanisms and cellular signaling pathways of many biological functions. These toxins are also promising lead compounds for developing treatments for many neurological diseases. In the current study, we purified a new scorpion toxin designated as BmK NSPK (Buthus martensii Karsch neurite-stimulating peptide targeting Kv channels) from the BmK venom. The primary structure was determined using Edman degradation. BmK NSPK directly inhibited outward K+ current without affecting sodium channel activities, depolarized membrane, and increased spontaneous calcium oscillation in spinal cord neurons (SCNs) at low nanomolar concentrations. BmK NSPK produced a nonmonotonic increase on the neurite extension that peaked at ~10 nM. Mechanistic studies demonstrated that BmK NSPK increased the release of nerve growth factor (NGF). The tyrosine kinases A (TrkA) receptor inhibitor, GW 441756, eliminated the BmK NSPK-induced neurite outgrowth. BmK NSPK also increased phosphorylation levels of protein kinase B (Akt) that is the downstream regulator of TrkA receptors. These data demonstrate that BmK NSPK is a new voltage-gated potassium (Kv) channel inhibitor that augments neurite extension via NGF/TrkA signaling pathway. Kv channels may represent molecular targets to modulate SCN development and regeneration and to develop the treatments for spinal cord injury.
Collapse
|
7
|
Strategies for Optimizing the Production of Proteins and Peptides with Multiple Disulfide Bonds. Antibiotics (Basel) 2020; 9:antibiotics9090541. [PMID: 32858882 PMCID: PMC7558204 DOI: 10.3390/antibiotics9090541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria can produce recombinant proteins quickly and cost effectively. However, their physiological properties limit their use for the production of proteins in their native form, especially polypeptides that are subjected to major post-translational modifications. Proteins that rely on disulfide bridges for their stability are difficult to produce in Escherichia coli. The bacterium offers the least costly, simplest, and fastest method for protein production. However, it is difficult to produce proteins with a very large size. Saccharomyces cerevisiae and Pichia pastoris are the most commonly used yeast species for protein production. At a low expense, yeasts can offer high protein yields, generate proteins with a molecular weight greater than 50 kDa, extract signal sequences, and glycosylate proteins. Both eukaryotic and prokaryotic species maintain reducing conditions in the cytoplasm. Hence, the formation of disulfide bonds is inhibited. These bonds are formed in eukaryotic cells during the export cycle, under the oxidizing conditions of the endoplasmic reticulum. Bacteria do not have an advanced subcellular space, but in the oxidizing periplasm, they exhibit both export systems and enzymatic activities directed at the formation and quality of disulfide bonds. Here, we discuss current techniques used to target eukaryotic and prokaryotic species for the generation of correctly folded proteins with disulfide bonds.
Collapse
|
8
|
Wang XG, Zhu DD, Li N, Huang YL, Wang YZ, Zhang T, Wang CM, Wang B, Peng Y, Ge BY, Li S, Zhao J. Scorpion Venom Heat-Resistant Peptide is Neuroprotective against Cerebral Ischemia-Reperfusion Injury in Association with the NMDA-MAPK Pathway. Neurosci Bull 2020; 36:243-253. [PMID: 31502213 PMCID: PMC7056763 DOI: 10.1007/s12264-019-00425-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies have shown that SVHRP is neuroprotective in models of Alzheimer's disease and Parkinson's disease. The present study aimed to explore the potential neuroprotective effects of SVHRP on cerebral ischemia/reperfusion (I/R) injury, using a mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a cellular model of oxygen-glucose deprivation/reoxygenation (OGD/R). Our results showed that SVHRP treatment decreased the neurological deficit scores, edema formation, infarct volume and neuronal loss in the MCAO/R mice, and protected primary neurons against OGD/R insult. SVHRP pretreatment suppressed the alterations in protein levels of N-methyl-D-aspartate receptors (NMDARs) and phosphorylated p38 MAPK as well as some proinflammatory factors in both the animal and cellular models. These results suggest that SVHRP has neuroprotective effects against cerebral I/R injury, which might be associated with inhibition of the NMDA-MAPK-mediated excitotoxicity.
Collapse
Affiliation(s)
- Xu-Gang Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Dan-Dan Zhu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China
| | - Yue-Lin Huang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ying-Zi Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ting Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chen-Mei Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yan Peng
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bi-Ying Ge
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China.
| | - Jie Zhao
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
9
|
Yang X, Wang Y, Wu C, Ling EA. Animal Venom Peptides as a Treasure Trove for New Therapeutics Against Neurodegenerative Disorders. Curr Med Chem 2019; 26:4749-4774. [PMID: 30378475 DOI: 10.2174/0929867325666181031122438] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and cerebral ischemic stroke, impose enormous socio-economic burdens on both patients and health-care systems. However, drugs targeting these diseases remain unsatisfactory, and hence there is an urgent need for the development of novel and potent drug candidates. METHODS Animal toxins exhibit rich diversity in both proteins and peptides, which play vital roles in biomedical drug development. As a molecular tool, animal toxin peptides have not only helped clarify many critical physiological processes but also led to the discovery of novel drugs and clinical therapeutics. RESULTS Recently, toxin peptides identified from venomous animals, e.g. exenatide, ziconotide, Hi1a, and PcTx1 from spider venom, have been shown to block specific ion channels, alleviate inflammation, decrease protein aggregates, regulate glutamate and neurotransmitter levels, and increase neuroprotective factors. CONCLUSION Thus, components of venom hold considerable capacity as drug candidates for the alleviation or reduction of neurodegeneration. This review highlights studies evaluating different animal toxins, especially peptides, as promising therapeutic tools for the treatment of different neurodegenerative diseases and disorders.
Collapse
Affiliation(s)
- Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Chunyun Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
10
|
Li Z, Hu P, Wu W, Wang Y. Peptides with therapeutic potential in the venom of the scorpion Buthus martensii Karsch. Peptides 2019; 115:43-50. [PMID: 30858089 DOI: 10.1016/j.peptides.2019.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022]
Abstract
The scorpion Buthus martensii Karsch (BmK) has generated significant interest due to the presence of biologically active peptides in its venom. In the past decade, dozens of different peptides from BmK have been identified. Most of the peptides are neurotoxins and are responsible for the toxicity of BmK venom. Other peptides, including neurotoxins and non-disulfide-bridged peptides, show potential anticancer, antimicrobial, analgesic, and anti-epileptic therapeutic effects. These peptides are attractive candidates for drug development, and peptide derivatives have also been designed to enhance their therapeutic potential, such as ADWX-1 and Kn2-7. In this review, we provide an overview of the most promising peptides found in BmK venom and of modified peptide derivatives showing therapeutic potential.
Collapse
Affiliation(s)
- Zhongjie Li
- Medical College, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Ping Hu
- Medical College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Wenlan Wu
- Medical College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yong Wang
- Medical College, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
11
|
Feng Y, Yin Z, Zhang D, Srivastava A, Ling C. Chinese Medicine Protein and Peptide in Gene and Cell Therapy. Curr Protein Pept Sci 2018; 20:251-264. [PMID: 29895243 DOI: 10.2174/1389203719666180612082432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/22/2018] [Indexed: 01/05/2023]
Abstract
The success of gene and cell therapy in clinic during the past two decades as well as our expanding ability to manipulate these biomaterials are leading to new therapeutic options for a wide range of inherited and acquired diseases. Combining conventional therapies with this emerging field is a promising strategy to treat those previously-thought untreatable diseases. Traditional Chinese medicine (TCM) has evolved for thousands of years in China and still plays an important role in human health. As part of the active ingredients of TCM, proteins and peptides have attracted long-term enthusiasm of researchers. More recently, they have been utilized in gene and cell therapy, resulting in promising novel strategies to treat both cancer and non-cancer diseases. This manuscript presents a critical review on this field, accompanied with perspectives on the challenges and new directions for future research in this emerging frontier.
Collapse
Affiliation(s)
- Yinlu Feng
- Department of Traditional Chinese Medicine, 401 Hospital of the Chinese People's Liberation Army, Qingdao, Shandong 266071, China.,Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Zifei Yin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Daniel Zhang
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, FL, United States
| |
Collapse
|
12
|
Yan YQ, Xie J, Wang JF, Shi ZF, Zhang X, Du YP, Zhao XC. Scorpion inhibits epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma. Exp Biol Med (Maywood) 2018; 243:645-654. [PMID: 29486578 PMCID: PMC6582398 DOI: 10.1177/1535370218762514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant diseases worldwide. The unfavorable clinical outcome and poor prognosis are due to high rates of recurrence and metastasis after treatments. Some scholars of traditional Chinese medicine suggested that endogenous wind-evil had played an important role in metastasis of malignant tumor. Therefore, the drug of dispelling wind-evil could be used to prevent cancer metastasis and improve the poor prognosis. So we wondered whether Scorpion, one of the most important wind calming drugs, has antitumor effect especially in epithelial-mesenchymal transition (EMT) and metastasis of HCC in this research. We found that Scorpion-medicated serum could inhibit proliferation, induce apoptosis, and decrease migration and invasion capacity of Hepa1-6 cells in vitro. Meanwhile, we observed that water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT, which is characterized by increased epithelial marker E-cadherin expression and decreased mesenchymal markers N-cadherin and Snail expression following Scorpion treatment both in vitro and in vivo. These results suggested that the Scorpion could inhibit Hepa1-6 cells' invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis. Impact statement The unfavorable clinical outcome and poor prognosis of hepatocellular carcinoma (HCC) are due to high rates of recurrence and metastasis after treatments. Here we found Scorpion, one of the most important wind calming drugs, has antitumor effect. Scorpion-medicated serum inhibited the proliferation, induced apoptosis, and decreased migration and invasion capacity of Hepa1-6 cells in vitro. Water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT of HCC both in vitro and in vivo. Our results suggested that the Scorpion could inhibit Hepa1-6 cells' invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis.
Collapse
Affiliation(s)
- Yi-Quan Yan
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Aerospace Physiology, Institute of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Juan Xie
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Jing-Fu Wang
- Department of Oral and Maxillofacial Surgery, the Third Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhao-Feng Shi
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xiang Zhang
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yong-Ping Du
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xing-Cheng Zhao
- Department of Aerospace Physiology, Institute of Aerospace Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
13
|
de Souza JM, Goncalves BDC, Gomez MV, Vieira LB, Ribeiro FM. Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases. Front Pharmacol 2018; 9:145. [PMID: 29527170 PMCID: PMC5829052 DOI: 10.3389/fphar.2018.00145] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative diseases affect millions of individuals worldwide. So far, no disease-modifying drug is available to treat patients, making the search for effective drugs an urgent need. Neurodegeneration is triggered by the activation of several cellular processes, including oxidative stress, mitochondrial impairment, neuroinflammation, aging, aggregate formation, glutamatergic excitotoxicity, and apoptosis. Therefore, many research groups aim to identify drugs that may inhibit one or more of these events leading to neuronal cell death. Venoms are fruitful natural sources of new molecules, which have been relentlessly enhanced by evolution through natural selection. Several studies indicate that venom components can exhibit selectivity and affinity for a wide variety of targets in mammalian systems. For instance, an expressive number of natural peptides identified in venoms from animals, such as snakes, scorpions, bees, and spiders, were shown to lessen inflammation, regulate glutamate release, modify neurotransmitter levels, block ion channel activation, decrease the number of protein aggregates, and increase the levels of neuroprotective factors. Thus, these venom components hold potential as therapeutic tools to slow or even halt neurodegeneration. However, there are many technological issues to overcome, as venom peptides are hard to obtain and characterize and the amount obtained from natural sources is insufficient to perform all the necessary experiments and tests. Fortunately, technological improvements regarding heterologous protein expression, as well as peptide chemical synthesis will help to provide enough quantities and allow chemical and pharmacological enhancements of these natural occurring compounds. Thus, the main focus of this review is to highlight the most promising studies evaluating animal toxins as therapeutic tools to treat a wide variety of neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, brain ischemia, glaucoma, amyotrophic lateral sclerosis, and multiple sclerosis.
Collapse
Affiliation(s)
- Jessica M. de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno D. C. Goncalves
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcus V. Gomez
- Department of Neurotransmitters, Instituto de Ensino e Pesquisa Santa Casa, Belo Horizonte, Brazil
| | - Luciene B. Vieira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Molecular characterization and expression analysis of CSαβ defensin genes from the scorpion Mesobuthus martensii. Biosci Rep 2017; 37:BSR20171282. [PMID: 29162666 PMCID: PMC6435467 DOI: 10.1042/bsr20171282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022] Open
Abstract
Defensins are important components of innate host defence system against bacteria, fungi, parasites and viruses. Here, we predicted six potential defensin genes from the genome of the scorpion Mesobuthus martensii and then validated four genes from them via the combination of PCR and genomic sequence analysis. These four scorpion defensin genes share the same gene organization and structure of two exons and one phase-I intron with the GT-AG rule. Conserved motif and phylogenetic analysis showed that they belonged to the members of the invertebrate cysteine-stabilized α-helix/β-sheet motif defensin (CSαβ) defensin family. All these four CSαβ defensin genes have the expression feature of constitutive transcription (CON) by the whole scorpion infection model, promoter sequence analysis and dual luciferase assays. Further evolution and comparison analysis found that the invertebrate CSαβ defensin genes from most of arachnids and mollusks appear to share the expression pattern of CON, but those from insects and lower invertebrates (nematodes, annelids, cnidarians and sponges) seem to have identical inducible transcription (IND) after being challenged by microorganisms. Together, we identified four scorpion CSαβ defensin genes with the expression feature of CON, and characterized the diversified expression patterns of the invertebrate CSαβ defensin genes, which will shed insights into the evolution of the invertebrate CSαβ defensin genes and their expression patterns.
Collapse
|
15
|
Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130:91-103. [PMID: 28242227 DOI: 10.1016/j.toxicon.2017.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Currently, new antimicrobial molecules extracted or obtained by natural sources, could be a valide alternative to traditional antibiotics. Most of these molecules are represented by antimicrobial peptides (AMPs), which are essential compounds of insect, arachnids and centipedes venom. AMPs, due to their strong effectiveness, low resistance rates and peculiar mode of action, seem to have all the suitable features to be a powerful weapon against several bacteria, especially considering the increasing antibiotic-resistance phenomena. The present literature review focuses on the antibacterial activity of bee, wasp, ant, scorpion, spider and scolopendra crude venom and of their main biological active compounds. After a brief overview of each animal and venom use in folkloristic medicine, this review reports, in a comprehensive table, the results obtained by the most relevant and recent researches carried out on the antibacterial activity of different venom and their AMPs. For each considered study, the table summarizes data concerning minimal inhibitory concentration values, minimal bactericidal concentration values, the methods employed, scientific name and common names and provenience of animal species from which the crude venom and its respective compounds were obtained.
Collapse
|
16
|
Zhang XG, Wang X, Zhou TT, Wu XF, Peng Y, Zhang WQ, Li S, Zhao J. Scorpion Venom Heat-Resistant Peptide Protects Transgenic Caenorhabditis elegans from β-Amyloid Toxicity. Front Pharmacol 2016; 7:227. [PMID: 27507947 PMCID: PMC4960250 DOI: 10.3389/fphar.2016.00227] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022] Open
Abstract
Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies found SVHRP could enhance neurogenesis and inhibit microglia-mediated neuroinflammation in vivo. Here, we use the transgenic CL4176, CL2006, and CL2355 strains of Caenorhabditis elegans which express the human Aβ1-42 to investigate the effects and the possible mechanisms of SVHRP mediated protection against Aβ toxicity in vivo. The results showed that SVHRP-fed worms displayed remarkably decreased paralysis, less abundant toxic Aβ oligomers, reduced Aβ plaque deposition with respect to untreated animals. SVHRP also suppressed neuronal Aβ expression-induced defects in chemotaxis behavior and attenuated levels of ROS in the transgenic C. elegans. Taken together, these results suggest SVHRP could protect against Aβ-induced toxicity in C. elegans. Further studies need to be conducted in murine models and humans to analyze the effectiveness of the peptide.
Collapse
Affiliation(s)
- Xiao-Gang Zhang
- Department of Physiology, Dalian Medical University Dalian, China
| | - Xi Wang
- Department of Physiology, Dalian Medical University Dalian, China
| | - Ting-Ting Zhou
- Department of Neurology, the First Affiliated Hospital of Dalian Medical University Dalian, China
| | - Xue-Fei Wu
- Department of Physiology, Dalian Medical University Dalian, China
| | - Yan Peng
- Department of Physiology, Dalian Medical University Dalian, China
| | - Wan-Qin Zhang
- Department of Physiology, Dalian Medical University Dalian, China
| | - Shao Li
- Department of Physiology, Dalian Medical University Dalian, China
| | - Jie Zhao
- Department of Physiology, Dalian Medical UniversityDalian, China; Liaoning Engineering Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related NeurodegenerationDalian, China
| |
Collapse
|
17
|
El-Tantawy NL. Helminthes and insects: maladies or therapies. Parasitol Res 2014; 114:359-77. [PMID: 25547076 DOI: 10.1007/s00436-014-4260-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/15/2014] [Indexed: 11/24/2022]
Abstract
By definition, parasites cause harm to their hosts. But, considerable evidence from ancient traditional medicine has supported the theory of using parasites and their products in treating many diseases. Maggots have been used successfully to treat chronic, long-standing, infected wounds which failed to respond to conventional treatment by many beneficial effects on the wound including debridement, disinfection, and healing enhancement. Maggots are also applied in forensic medicine to estimate time between the death and discovery of a corpse and in entomotoxicology involving the potential use of insects as alternative samples for detecting drugs and toxins in death investigations. Leeches are segmented invertebrates, famous by their blood-feeding habits and used in phlebotomy to treat various ailments since ancient times. Leech therapy is experiencing resurgence nowadays in health care principally in plastic and reconstructive surgery. Earthworms provide a source of medicinally useful products with potential antimicrobial, antiviral, and anticancer properties. Lumbrokinases are a group of fibrinolytic enzymes isolated and purified from earthworms capable of degrading plasminogen-rich and plasminogen-free fibrin and so can be used to treat various conditions associated with thrombotic diseases. Helminth infection has been proved to have therapeutic effects in both animal and human clinical trials with promising evidence in treating many allergic diseases and can block the induction of or reduce the severity of some autoimmune disorders as Crohn's disease or ulcerative colitis. What is more, venomous arthropods such as scorpions, bees, wasps, spiders, ants, centipedes, snail, beetles, and caterpillars. The venoms and toxins from these arthropods provide a promising source of natural bioactive compounds which can be employed in the development of new drugs to treat diseases as cancer. The possibility of using these active molecules in biotechnological processes can make these venoms and toxins a valuable and promising source of natural bioactive compounds. The therapeutic use of helminthes and insects will be of great value in biomedicine and further studies on insect toxins will contribute extensively to the development of Biomedical Sciences.
Collapse
Affiliation(s)
- Nora L El-Tantawy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516, Egypt,
| |
Collapse
|
18
|
Wong KL, Wong RNS, Zhang L, Liu WK, Ng TB, Shaw PC, Kwok PCL, Lai YM, Zhang ZJ, Zhang Y, Tong Y, Cheung HP, Lu J, Sze SCW. Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential. Chin Med 2014; 9:19. [PMID: 25067942 PMCID: PMC4110622 DOI: 10.1186/1749-8546-9-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/04/2014] [Indexed: 02/07/2023] Open
Abstract
Some protein pharmaceuticals from Chinese medicine have been developed to treat cardiovascular diseases, genetic diseases, and cancer. Bioactive proteins with various pharmacological properties have been successfully isolated from animals such as Hirudo medicinalis (medicinal leech), Eisenia fetida (earthworm), and Mesobuthus martensii (Chinese scorpion), and from herbal medicines derived from species such as Cordyceps militaris, Ganoderma, Momordica cochinchinensis, Viscum album, Poria cocos, Senna obtusifolia, Panax notoginseng, Smilax glabra, Ginkgo biloba, Dioscorea batatas, and Trichosanthes kirilowii. This article reviews the isolation methods, molecular characteristics, bioactivities, pharmacological properties, and potential uses of bioactive proteins originating from these Chinese medicines.
Collapse
Affiliation(s)
- Kam Lok Wong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ricky Ngok Shun Wong
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Liang Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wing Keung Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, China
| | - Pang Chui Shaw
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, China
| | - Philip Chi Lip Kwok
- Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yau Ming Lai
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Zhang Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yanbo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yao Tong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ho-Pan Cheung
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jia Lu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Stephen Cho Wing Sze
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
19
|
Wang J, Xiong Z, Yang Y, Zhao N, Wang Y. Significant expression of a Chinese scorpion peptide, BmK1, in Escherichia coli through promoter engineering and gene dosage strategy. Biotechnol Appl Biochem 2014; 61:466-73. [PMID: 24372571 PMCID: PMC4269186 DOI: 10.1002/bab.1194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/15/2013] [Indexed: 01/13/2023]
Abstract
Heterologous expression is an efficient alternative to conventional extraction to produce a specific Buthus martensii Karsch (BmK) peptide. In this work, BmK1 was successfully expressed in Escherichia coli after genetic codon optimization, but BmK1 content was <6% of total cellular protein. To improve BmK1 expression, a trc promoter library with a wide relative strength was constructed, and three promoters, PpJF136 (0.55), PpJF325 (1.29), and PpJF288 (2.31), were selected to control BmK1 expression. A higher BmK1 expression (>13.9% of total protein) was obtained using a stronger promoter, PpJF325. Furthermore, a maximum BmK1 content (>21.7% of total protein) was obtained by combining promoter PpJF325 and three copies of the BmK1 gene. The yield of the purified BmK1 achieved 196.74 mg L−1 in E. coli BL21(DE3) pJF431, which was improved 2.09-fold compared with the control. This was the highest reported production of scorpion peptides in E. coli.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zhiqiang Xiong
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yingying Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Na Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|