1
|
Gauthier R, Attik N, Chevalier C, Salles V, Grosgogeat B, Gritsch K, Trunfio-Sfarghiu AM. 3D Electrospun Polycaprolactone Scaffolds to Assess Human Periodontal Ligament Cells Mechanobiological Behaviour. Biomimetics (Basel) 2023; 8:biomimetics8010108. [PMID: 36975338 PMCID: PMC10046578 DOI: 10.3390/biomimetics8010108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
While periodontal ligament cells are sensitive to their 3D biomechanical environment, only a few 3D in vitro models have been used to investigate the periodontal cells mechanobiological behavior. The objective of the current study was to assess the capability of a 3D fibrous scaffold to transmit a mechanical loading to the periodontal ligament cells. Three-dimensional fibrous polycaprolactone (PCL) scaffolds were synthetized through electrospinning. Scaffolds seeded with human periodontal cells (103 mL-1) were subjected to static (n = 9) or to a sinusoidal axial compressive loading in an in-house bioreactor (n = 9). At the end of the culture, the dynamic loading seemed to have an influence on the cells' morphology, with a lower number of visible cells on the scaffolds surface and a lower expression of actin filament. Furthermore, the dynamic loading presented a tendency to decrease the Alkaline Phosphatase activity and the production of Interleukin-6 while these two biomolecular markers were increased after 21 days of static culture. Together, these results showed that load transmission is occurring in the 3D electrospun PCL fibrous scaffolds, suggesting that it can be used to better understand the periodontal ligament cells mechanobiology. The current study shows a relevant way to investigate periodontal mechanobiology using 3D fibrous scaffolds.
Collapse
Affiliation(s)
- Rémy Gauthier
- UCBL, MATEIS UMR CNRS 5510, Bât. Saint Exupéry, Univ Lyon, CNRS, INSA de Lyon, 23 Av. Jean Capelle, 69621 Villeurbanne, France
| | - Nina Attik
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Univ Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- Faculté d'Odontologie, Univ Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
| | - Charlène Chevalier
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Univ Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Vincent Salles
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Univ Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
- LIMMS, CNRS-IIS UMI 2820, The University of Tokyo, Tokyo 153-8505, Japan
| | - Brigitte Grosgogeat
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Univ Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- Faculté d'Odontologie, Univ Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- Hospices Civils de Lyon, Service d'Odontologie, 69008 Lyon, France
| | - Kerstin Gritsch
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Univ Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
- Faculté d'Odontologie, Univ Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- Hospices Civils de Lyon, Service d'Odontologie, 69008 Lyon, France
| | | |
Collapse
|
2
|
Yao Y, Mak AF. Strengthening of C2C12 mouse myoblasts against compression damage by mild cyclic compressive stimulation. J Biomech 2016; 49:3956-3961. [PMID: 27884430 DOI: 10.1016/j.jbiomech.2016.11.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022]
Abstract
Deep tissue injury (DTI) is a severe kind of pressure ulcers formed by sustained deformation of muscle tissues over bony prominences. As a major clinical issue, DTI affects people with physical disabilities, and is obviously related to the load-bearing capacity of muscle cells in various in-vivo conditions. It is important to provide a preventive approach to help muscle cells from being damaged by compressive stress. In this study, we hypothesized that cyclic compressive stimulation could strengthen muscle cells against compressive damage and enhance the cell plasma membrane resealing capability. Monolayer of myoblasts was cultured in the cell culture dish covered by a cylinder 0.5% agarose gel. The platen indenter was applied with 20% strain on the agarose gel in the Mach-1 micromechanical system. The vibration was 1Hz sinusoidal function with amplitude 0.2% strain based on 20% gel strain. Cyclic compressive stimulation for 2h could enhance the compressive stress damage threshold of muscle cells, the muscle cell plasma membrane resealing ratio and viability of muscle cell under static loading as preventive approach. This approach might help to reduce the risk of DTI in clinic.
Collapse
Affiliation(s)
- Yifei Yao
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Arthur Ft Mak
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
3
|
Molt S, Bührdel JB, Yakovlev S, Schein P, Orfanos Z, Kirfel G, Winter L, Wiche G, van der Ven PFM, Rottbauer W, Just S, Belkin AM, Fürst DO. Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance. J Cell Sci 2014; 127:3578-92. [PMID: 24963132 DOI: 10.1242/jcs.152157] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Filamin C (FLNc) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adaptor proteins that are mainly expressed in cardiac and skeletal muscles and which play important roles in the assembly and repair of myofibrils and their attachment to the membrane. We identified the dystrophin-binding protein aciculin (also known as phosphoglucomutase-like protein 5, PGM5) as a new interaction partner of FLNc and Xin. All three proteins colocalized at intercalated discs of cardiac muscle and myotendinous junctions of skeletal muscle, whereas FLNc and aciculin also colocalized in mature Z-discs. Bimolecular fluorescence complementation experiments in developing cultured mammalian skeletal muscle cells demonstrated that Xin and aciculin also interact in FLNc-containing immature myofibrils and areas of myofibrillar remodeling and repair induced by electrical pulse stimulation (EPS). Fluorescence recovery after photobleaching (FRAP) experiments showed that aciculin is a highly dynamic and mobile protein. Aciculin knockdown in myotubes led to failure in myofibril assembly, alignment and membrane attachment, and a massive reduction in myofibril number. A highly similar phenotype was found upon depletion of aciculin in zebrafish embryos. Our results point to a thus far unappreciated, but essential, function of aciculin in myofibril formation, maintenance and remodeling.
Collapse
Affiliation(s)
- Sibylle Molt
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - John B Bührdel
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Sergiy Yakovlev
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Schein
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Lilli Winter
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | | | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Steffen Just
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Alexey M Belkin
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
4
|
Tang N, Zhao Z, Zhang L, Yu Q, Li J, Xu Z, Li X. Up-regulated osteogenic transcription factors during early response of human periodontal ligament stem cells to cyclic tensile strain. Arch Med Sci 2012; 8:422-30. [PMID: 22851995 PMCID: PMC3400899 DOI: 10.5114/aoms.2012.28810] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 06/23/2011] [Accepted: 09/04/2011] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION As one group of periodontal ligament (PDL) cells, human periodontal ligament stem cells (hPDLSCs) have been isolated and identified as mesenchymal adult stem cells (MSCs) since 2004. It has been well accepted that PDL sensitively mediates the transmission of stress stimuli to the alveolar bone for periodontal tissue remolding. Besides, the direction of MSCs differentiation has been verified regulated by mechanical signals. Therefore, we hypothesized that tensile strain might act on hPDLSCs differentiation, and the early response to mechanical stress should be investigated. MATERIAL AND METHODS The hPDLSCs were cultured in vitro and isolated via a magnetic activated CD146 cell sorting system. After investigation of surface markers and other experiments for identification, hPDLSCs were subjected to cyclic tensile strain at 3,000 µstrain for 3 h, 6 h, 12 h, and 24 h, without addition of osteogenic supplements. In the control groups, the cells were cultured in similar conditions without mechanical stimulation. Then osteogenic related genes and proteins were analyzed by RT-PCR and western blot. RESULTS Cyclic tensile strain at 3,000 µstrain of 6 h, 12 h, and 24 h durations significantly increased mRNA and protein expressions of Satb2, Runx2, and Osx, which were not affected in unloaded hPDLSCs. CONCLUSIONS We indicate that hPDLSCs might be sensitive to cyclic tensile strain. The significant increase of Runx2, Osx and Satb2 expressions may suggest an early response toward osteogenic orientation of hPDLSCs.
Collapse
Affiliation(s)
- Na Tang
- State Key Laboratory of Oral Biomedical Engineering, Sichuan University, China
- Department of Orthodontics, West China College of Stomatology, Sichuan University, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Biomedical Engineering, Sichuan University, China
- Department of Orthodontics, West China College of Stomatology, Sichuan University, China
| | - Linkun Zhang
- Tianjin Stomatological Hospital, Nankai University, China
| | - Qiuli Yu
- Tianjin Stomatological Hospital, Nankai University, China
| | - Ji Li
- State Key Laboratory of Oral Biomedical Engineering, Sichuan University, China
- Department of Orthodontics, West China College of Stomatology, Sichuan University, China
| | - Zhenrui Xu
- State Key Laboratory of Oral Biomedical Engineering, Sichuan University, China
- Department of Orthodontics, West China College of Stomatology, Sichuan University, China
| | - Xiaoyu Li
- State Key Laboratory of Oral Biomedical Engineering, Sichuan University, China
| |
Collapse
|
5
|
Bogachus LD, Turcotte LP. HIV protease inhibitors induce metabolic dysfunction in part via increased JNK1/2 pro-inflammatory signaling in L6 cells. Antiviral Res 2011; 92:415-23. [PMID: 21968131 DOI: 10.1016/j.antiviral.2011.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/31/2011] [Accepted: 09/16/2011] [Indexed: 01/22/2023]
Abstract
Protease inhibitors (PIs), such as atazanavir sulfate and ritonavir, are used clinically to prevent the progression of HIV and are known to induce insulin resistance. To determine whether PI-mediated insulin resistance is induced by activation of pro-inflammatory cascades, L6 skeletal muscle cells were treated ±atazanavir sulfate, ritonavir, or atazanavir sulfate + ritonavir, and ±insulin. Treatment with atazanavir sulfate, ritonavir, or atazanavir sulfate + ritonavir for 24 or 48 h significantly increased basal glucose uptake (P<0.05) and atazanavir sulfate + ritonavir treatment increased basal glucose uptake significantly more than ritonavir or atazanavir sulfate treatment alone (P<0.05). Atazanavir sulfate + ritonavir treatment for 48 h completely prevented insulin stimulation of glucose uptake (P>0.05). When compared to untreated cells, basal palmitate uptake and oxidation was found to be significantly higher in cells treated with PIs alone or in combination (P<0.05). Prior PI treatment alone or in combination prevented (P>0.05) the insulin-mediated increase in palmitate uptake and the insulin-mediated decrease in palmitate oxidation observed in the control group. Atazanavir sulfate treatment alone or in combination with ritonavir significantly increased JNK1/2 phosphorylation when compared to the control or ritonavir group (P<0.05) and this was accompanied by a rise (P<0.05) in AKT(Ser473) phosphorylation in the basal state. Total JNK1/2 and p38 MAPK protein content and p38 MAPK phosphorylation state were not altered in any of the treatment groups (P>0.05). Our data indicate that, in muscle cells, PIs induce metabolic dysfunction that is not limited to insulin-sensitive metabolism and that is potentially mediated by a rise in JNK1/2 pro-inflammatory signaling.
Collapse
Affiliation(s)
- Lindsey D Bogachus
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, 90089-0652, USA
| | | |
Collapse
|