1
|
Reno KE, Costa-Terryll A, Park SH, Hughes RT, Farris MK, Xing F, Willey JS. Cartilage Oligomeric Matrix Protein Promotes Radiation Resistance in Non-Small Cell Lung Cancer In Vitro. Int J Mol Sci 2025; 26:2465. [PMID: 40141111 PMCID: PMC11942305 DOI: 10.3390/ijms26062465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is an extracellular matrix protein that has recently been associated with worse patient outcomes in breast, prostate, colorectal and hepatocellular cancers. This study aimed to determine whether COMP was also associated with increased progression and resistance to radiation in non-small cell lung cancer (NSCLC). The proliferation, migration, invasion and cell viability of wild-type and COMP overexpressing NSCLC cell lines were assessed when treated with exogenous COMP, with or without radiation. In addition, these cells were treated with inhibitors of downstream signaling intermediates of COMP. Proteomics were performed on the A549 cell line treated with COMP, radiation and inhibitors. NSCLC cells treated with COMP or overexpressing COMP had greater proliferation, migration, invasion and viability when irradiated compared to non-overexpressed cells treated with radiation alone, but this effect was reversed when treated with Src or PI3k inhibitors. The NCI-H1437 cell line exhibited a decrease in proliferation when treated with exogenous COMP, however COMP overexpression mitigated the radiation-induced reduction. Proteomics analyses indicate that COMP promotes oxidative phosphorylation and drug resistance pathways. Therefore, COMP overexpression and treatment with exogenous COMP appears to protect NSCLC cells against radiation in vitro, however treatment with inhibitors reverses COMP-mediated protection and progression.
Collapse
Affiliation(s)
- Kaitlyn E. Reno
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston Salem, NC 27157, USA; (K.E.R.); (A.C.-T.); (S.H.P.); (R.T.H.); (M.K.F.)
| | - Alicia Costa-Terryll
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston Salem, NC 27157, USA; (K.E.R.); (A.C.-T.); (S.H.P.); (R.T.H.); (M.K.F.)
| | - Sun H. Park
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston Salem, NC 27157, USA; (K.E.R.); (A.C.-T.); (S.H.P.); (R.T.H.); (M.K.F.)
| | - Ryan T. Hughes
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston Salem, NC 27157, USA; (K.E.R.); (A.C.-T.); (S.H.P.); (R.T.H.); (M.K.F.)
| | - Michael K. Farris
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston Salem, NC 27157, USA; (K.E.R.); (A.C.-T.); (S.H.P.); (R.T.H.); (M.K.F.)
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston Salem, NC 27157, USA;
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Blvd, Winston Salem, NC 27157, USA; (K.E.R.); (A.C.-T.); (S.H.P.); (R.T.H.); (M.K.F.)
| |
Collapse
|
2
|
Kanisicak O, Ardehali R. Single-Cell Atlas of the Tricuspid Valve Unveils the Matrifibrocyte-Driven Fibrotic Landscape in Functional Tricuspid Regurgitation. JACC. ASIA 2025; 5:496-498. [PMID: 40148023 PMCID: PMC12042968 DOI: 10.1016/j.jacasi.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Affiliation(s)
- Onur Kanisicak
- Department of Emergency Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Reza Ardehali
- Department of Medicine-Cardiology, Baylor College of Medicine, Texas Heart Institute, Houston, Texas, USA.
| |
Collapse
|
3
|
Rosas S, Kwok A, Moore J, Shi L, Smith TL, Tallant EA, Kerr BA, Willey JS. Osteoarthritis as a Systemic Disease Promoted Prostate Cancer In Vivo and In Vitro. Int J Mol Sci 2024; 25:6014. [PMID: 38892202 PMCID: PMC11172560 DOI: 10.3390/ijms25116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is increasing worldwide, and previous work found that OA increases systemic cartilage oligomeric matrix protein (COMP), which has also been implicated in prostate cancer (PCa). As such, we sought to investigate whether OA augments PCa progression. Cellular proliferation and migration of RM1 murine PCa cells treated with interleukin (IL)-1α, COMP, IL-1α + COMP, or conditioned media from cartilage explants treated with IL-1α (representing OA media) and with inhibitors of COMP were assessed. A validated murine model was used for tumor growth and marker expression analysis. Both proliferation and migration were greater in PCa cells treated with OA media compared to controls (p < 0.001), which was not seen with direct application of the stimulants. Migration and proliferation were not negatively affected when OA media was mixed with downstream and COMP inhibitors compared to controls (p > 0.05 for all). Mice with OA developed tumors 100% of the time, whereas mice without OA only 83.4% (p = 0.478). Tumor weight correlated with OA severity (Pearson correlation = 0.813, p = 0.002). Moreover, tumors from mice with OA demonstrated increased Ki-67 expression compared to controls (mean 24.56% vs. 6.91%, p = 0.004) but no difference in CD31, PSMA, or COMP expression (p > 0.05). OA appears to promote prostate cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Samuel Rosas
- Department of Orthopedic Surgery, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA (J.S.W.)
| | - Joseph Moore
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA (J.S.W.)
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - Thomas L. Smith
- Department of Orthopedic Surgery, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - E. Ann Tallant
- Department of Hypertension, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - Bethany A. Kerr
- Department of Orthopedic Surgery, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27101, USA (J.S.W.)
| |
Collapse
|
4
|
Gorji-Bahri G, Krishna BM, Hagerling C, Orimo A, Jirström K, Papadakos KS, Blom AM. Stromal cartilage oligomeric matrix protein as a tumorigenic driver in ovarian cancer via Notch3 signaling and epithelial-to-mesenchymal transition. J Transl Med 2024; 22:351. [PMID: 38615020 PMCID: PMC11016227 DOI: 10.1186/s12967-024-05083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/10/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Cartilage oligomeric matrix protein (COMP), an extracellular matrix glycoprotein, is vital in preserving cartilage integrity. Further, its overexpression is associated with the aggressiveness of several types of solid cancers. This study investigated COMP's role in ovarian cancer, exploring clinicopathological links and mechanistic insights. METHODS To study the association of COMP expression in cancer cells and stroma with clinicopathological features of ovarian tumor patients, we analyzed an epithelial ovarian tumor cohort by immunohistochemical analysis. Subsequently, to study the functional mechanisms played by COMP, an in vivo xenograft mouse model and several molecular biology techniques such as transwell migration and invasion assay, tumorsphere formation assay, proximity ligation assay, and RT-qPCR array were performed. RESULTS Based on immunohistochemical analysis of epithelial ovarian tumor tissues, COMP expression in the stroma, but not in cancer cells, was linked to worse overall survival (OS) of ovarian cancer patients. A xenograft mouse model showed that carcinoma-associated fibroblasts (CAFs) expressing COMP stimulate the growth and metastasis of ovarian tumors through the secretion of COMP. The expression of COMP was upregulated in CAFs stimulated with TGF-β. Functionally, secreted COMP by CAFs enhanced the migratory capacity of ovarian cancer cells. Mechanistically, COMP activated the Notch3 receptor by enhancing the Notch3-Jagged1 interaction. The dependency of the COMP effect on Notch was confirmed when the migration and tumorsphere formation of COMP-treated ovarian cancer cells were inhibited upon incubation with Notch inhibitors. Moreover, COMP treatment induced epithelial-to-mesenchymal transition and upregulation of active β-catenin in ovarian cancer cells. CONCLUSION This study suggests that COMP secretion by CAFs drives ovarian cancer progression through the induction of the Notch pathway and epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - B Madhu Krishna
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | | | - Akira Orimo
- Department of Pathology and Oncology, Juntendo University, Tokyo, Japan
| | - Karin Jirström
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
5
|
Pervaiz N, Kathuria I, Aithabathula RV, Singla B. Matricellular proteins in atherosclerosis development. Matrix Biol 2023; 120:1-23. [PMID: 37086928 PMCID: PMC10225360 DOI: 10.1016/j.matbio.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
The extracellular matrix (ECM) is an intricate network composed of various multi-domain macromolecules like collagen, proteoglycans, and fibronectin, etc., that form a structurally stable composite, contributing to the mechanical properties of tissue. However, matricellular proteins are non-structural, secretory extracellular matrix proteins, which modulate various cellular functions via interacting with cell surface receptors, proteases, hormones, and cell-matrix. They play essential roles in maintaining tissue homeostasis by regulating cell differentiation, proliferation, adhesion, migration, and several signal transduction pathways. Matricellular proteins display a broad functionality regulated by their multiple structural domains and their ability to interact with different extracellular substrates and/or cell surface receptors. The expression of these proteins is low in adults, however, gets upregulated following injuries, inflammation, and during tumor growth. The marked elevation in the expression of these proteins during atherosclerosis suggests a positive association between their expression and atherosclerotic lesion formation. The role of matricellular proteins in atherosclerosis development has remained an area of research interest in the last two decades and studies revealed these proteins as important players in governing vascular function, remodeling, and plaque formation. Despite extensive research, many aspects of the matrix protein biology in atherosclerosis are still unknown and future studies are required to investigate whether targeting pathways stimulated by these proteins represent viable therapeutic approaches for patients with atherosclerotic vascular diseases. This review summarizes the characteristics of distinct matricellular proteins, discusses the available literature on the involvement of matrix proteins in the pathogenesis of atherosclerosis and suggests new avenues for future research.
Collapse
Affiliation(s)
- Naveed Pervaiz
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Ishita Kathuria
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, USA.
| |
Collapse
|
6
|
Wan J, Zhu Z, He Z, Wu H, Chen A, Zhu W, Cheng P. Stevioside protects primary articular chondrocytes against IL-1β-induced inflammation and catabolism by targeting integrin. Int Immunopharmacol 2023; 119:110261. [PMID: 37167638 DOI: 10.1016/j.intimp.2023.110261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Osteoarthritis (OA) is a common, progressive, and chronic disorder of the joints that is characterized by the inflammation and degradation of articular cartilage and is known to significantly impair quality of daily life. Stevioside (SVS) is a natural diterpenoid glycoside that has anti-inflammatory benefits. Hence, in the current research, it was hypothesized that SVS might exert anti-inflammatory effects on articular chondrocytes and alleviate cartilage degradation in mice with OA. The expression of inflammatory cytokines, like inducible nitric oxide synthase (iNOS), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), and cyclooxygenase-2 (COX-2) in chondrocytes after interleukin-1β (IL-1β) exposure, was inhibited by the pretreatment of SVS. As well, SVS inhibited the reduction of collagen II and sry-box transcription factor 9 (SOX9) in chondrocytes stimulated by IL-1β and suppressed the expression of MMP3 and MMP13. Further, after treatment with SVS, cell cytometry, autophagy flux, and related protein expression showed diminished cell apoptosis and reduced autophagy impairment. Moreover, SVS blocked the activation of phosphoinositide-3-kinase/Akt/nuclear factor-kappa beta (PI3K/Akt/NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways stimulated by IL-1β. This resulted in decreased cellular inflammation. In vivo experiments with intra-articular injections of SVS in mice with the DMM mouse model demonstrated a decrease in cartilage degradation and an improvement in subchondral bone remodeling. After the integrin αVβ3-related knockdown using siRNA, a reversed effect was observed on the anti-inflammatory, anabolic promoting, catabolic blocking, and NF-κB and MAPK signaling pathway inhibition of SVS on chondrocytes treated with IL-1β. The above findings highlighted that SVS blocked IL-1β, triggered an inflammatory response in mice chondrocytes, and prevented cartilage degradation in vivo through integrin αVβ3. This suggested that SVS might serve as a novel therapeutic option for OA.
Collapse
Affiliation(s)
- Junlai Wan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ziqing Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wentao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
7
|
Song F, Mao X, Dai J, Shan B, Zhou Z, Kang Y. Integrin αVβ3 Signaling in the Progression of Osteoarthritis Induced by Excessive Mechanical Stress. Inflammation 2023; 46:739-751. [PMID: 36480128 PMCID: PMC10024670 DOI: 10.1007/s10753-022-01770-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is believed to be linked with cartilage degeneration, subchondral bone sclerosis, and synovial inflammation that lead to joint failure, and yet treatment that can effectively reverse the pathological process of the disease still not exists. Recent evidence suggests excessive mechanical stress (eMS) as an essential role in the pathogenesis of OA. Increased levels of integrin αVβ3 have been detected in osteoarthritic cartilage and were previously implicated in OA pathogenesis. However, the role of integrin αVβ3 in the process of eMS-induced OA remains unclear. Here, histologic and proteomic analyses of osteoarthritic cartilage in a rat destabilization of the medial meniscus model demonstrated elevated expression of integrin αVβ3 as well as more serious cartilage degeneration in the medial weight-bearing area. Furthermore, results of in vitro study demonstrated that eMS led to a significant increase of integrin αVβ3 expression and phosphorylation of downstream signaling molecules such as FAK and ERK, as well as upregulated expressions of inflammatory and degradative mediators. In addition, we found that inhibition of integrin αVβ3 could alleviate chondrocyte inflammation triggered by eMS both in vivo and in vitro. Our findings suggest a central role for upregulation of integrin αVβ3 signaling in OA pathogenesis and demonstrate that activation of integrin αVβ3 signaling in cartilage contributes to inflammation and joint destruction in eMS-induced OA. Taken together, our data presented here provide a possibility for targeting integrin αVβ3 signaling pathway as a disease-modifying therapy.
Collapse
Affiliation(s)
- Fanglong Song
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Xiaoyu Mao
- Department of Orthopedics, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Jun Dai
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Bingchen Shan
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhentao Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yifan Kang
- Department of Orthopedics, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
8
|
The Expression of αvβ3 and Osteopontin in Osteoarthritic Knee Cartilage and Their Correlations With Disease Severity and Chondrocyte Senescence. Appl Immunohistochem Mol Morphol 2023; 31:57-63. [PMID: 36121292 DOI: 10.1097/pai.0000000000001063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/12/2022] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is the main joint disease associated with aging. Previous studies have confirmed that both osteopontin (OPN) and αvβ3 integrin are involved in the progression of knee OA. The purpose of this study was to determine the expression of OPN and αvβ3 integrin and chondrocyte senescence levels in OA. Forty-six cartilage tissues from normal and knee OA patients were divided into 4 groups of normal, minor, moderate, and severe lesions based on the Mankin score. Immunohistochemistry and western blotting were used to determine the expression of αvβ3, OPN, and senescent-associated-β-galactosidase (SAβ-gal) in articular cartilage. Then, Spearman's correlation was used to analyze the correlations between the Mankin scores and αvβ3, OPN and SAβ-gal. Pearson correlation analysis was used to analyze the correlations among αvβ3, OPN, and SAβ-gal. The expression of OPN, αvβ3, and SAβ-gal in articular cartilage was explored. αvβ3, OPN, and SAβ-gal proteins were all elevated in OA cartilage, and the correlation coefficient between the Mankin score and the average optical density value of αvβ3, OPN, SAβ-gal were r =0.60, r =0.75, and r =0.87, respectively, all P <0.001; the correlation between the average optical density value of αvβ3 and OPN was r =0.3191, P <0.05; the correlation between αvβ3 and SAβ-gal was r =0.4955, P <0.001; and the correlation between OPN and SAβ-gal was r =0.7821, P <0.001. The correlations among αvβ3, OPN, and SAβ-gal expression in articular cartilage might be important in OA progression and pathogenesis. Nonetheless, more research is needed to elucidate the exact contribution of αvβ3, OPN, and SAβ-gal to the degenerative process of OA.
Collapse
|
9
|
Graça AL, Gomez-Florit M, Gomes ME, Docheva D. Tendon Aging. Subcell Biochem 2023; 103:121-147. [PMID: 37120467 DOI: 10.1007/978-3-031-26576-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Tendons are mechanosensitive connective tissues responsible for the connection between muscles and bones by transmitting forces that allow the movement of the body, yet, with advancing age, tendons become more prone to degeneration followed by injuries. Tendon diseases are one of the main causes of incapacity worldwide, leading to changes in tendon composition, structure, and biomechanical properties, as well as a decline in regenerative potential. There is still a great lack of knowledge regarding tendon cellular and molecular biology, interplay between biochemistry and biomechanics, and the complex pathomechanisms involved in tendon diseases. Consequently, this reflects a huge need for basic and clinical research to better elucidate the nature of healthy tendon tissue and also tendon aging process and associated diseases. This chapter concisely describes the effects that the aging process has on tendons at the tissue, cellular, and molecular levels and briefly reviews potential biological predictors of tendon aging. Recent research findings that are herein reviewed and discussed might contribute to the development of precision tendon therapies targeting the elderly population.
Collapse
Affiliation(s)
- Ana Luísa Graça
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Gomez-Florit
- Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Manuela Estima Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
10
|
Jurj A, Ionescu C, Berindan-Neagoe I, Braicu C. The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes? J Exp Clin Cancer Res 2022; 41:276. [PMID: 36114508 PMCID: PMC9479349 DOI: 10.1186/s13046-022-02484-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
The extracellular matrix (ECM) is an important component of the tumor microenvironment (TME), having several important roles related to the hallmarks of cancer. In cancer, multiple components of the ECM have been shown to be altered. Although most of these alterations are represented by the increased or decreased quantity of the ECM components, changes regarding the functional alteration of a particular ECM component or of the ECM as a whole have been described. These alterations can be induced by the cancer cells directly or by the TME cells, with cancer-associated fibroblasts being of particular interest in this regard. Because the ECM has this wide array of functions in the tumor, preclinical and clinical studies have assessed the possibility of targeting the ECM, with some of them showing encouraging results. In the present review, we will highlight the most relevant ECM components presenting a comprehensive description of their physical, cellular and molecular properties which can alter the therapy response of the tumor cells. Lastly, some evidences regarding important biological processes were discussed, offering a more detailed understanding of how to modulate altered signalling pathways and to counteract drug resistance mechanisms in tumor cells.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Calin Ionescu
- 7Th Surgical Department, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
- Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania.
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139, Targu Mures, Romania.
| |
Collapse
|
11
|
Wen B, Wang G, Li E, Kolesnichenko OA, Tu Z, Divanovic S, Kalin TV, Kalinichenko VV. In vivo generation of bone marrow from embryonic stem cells in interspecies chimeras. eLife 2022; 11:74018. [PMID: 36178184 PMCID: PMC9578712 DOI: 10.7554/elife.74018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 09/29/2022] [Indexed: 01/07/2023] Open
Abstract
Generation of bone marrow (BM) from embryonic stem cells (ESCs) promises to accelerate the development of future cell therapies for life-threatening disorders. However, such approach is limited by technical challenges to produce a mixture of functional BM progenitor cells able to replace all hematopoietic cell lineages. Herein, we used blastocyst complementation to simultaneously produce BM cell lineages from mouse ESCs in a rat. Based on fluorescence-activated cell sorting analysis and single-cell RNA sequencing, mouse ESCs differentiated into multiple hematopoietic and stromal cell types that were indistinguishable from normal mouse BM cells based on gene expression signatures and cell surface markers. Receptor-ligand interactions identified Cxcl12-Cxcr4, Lama2-Itga6, App-Itga6, Comp-Cd47, Col1a1-Cd44, and App-Il18rap as major signaling pathways between hematopoietic progenitors and stromal cells. Multiple hematopoietic progenitors, including hematopoietic stem cells (HSCs) in mouse-rat chimeras derived more efficiently from mouse ESCs, whereas chondrocytes predominantly derived from rat cells. In the dorsal aorta and fetal liver of mouse-rat chimeras, mouse HSCs emerged and expanded faster compared to endogenous rat cells. Sequential BM transplantation of ESC-derived cells from mouse-rat chimeras rescued lethally irradiated syngeneic mice and demonstrated long-term reconstitution potential of donor HSCs. Altogether, a fully functional BM was generated from mouse ESCs using rat embryos as 'bioreactors'.
Collapse
Affiliation(s)
- Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Guolun Wang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Enhong Li
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Olena A Kolesnichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Zhaowei Tu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, College of Medicine of the University of CincinnatiCincinnatiUnited States
| | - Tanya V Kalin
- Department of Pediatrics, College of Medicine of the University of CincinnatiCincinnatiUnited States,Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, College of Medicine of the University of CincinnatiCincinnatiUnited States,Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| |
Collapse
|
12
|
Halper J. Basic Components of Connective Tissues and Extracellular Matrix: Fibronectin, Fibrinogen, Laminin, Elastin, Fibrillins, Fibulins, Matrilins, Tenascins and Thrombospondins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:105-126. [PMID: 34807416 DOI: 10.1007/978-3-030-80614-9_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Collagens are the most abundant components of the extracellular matrix (ECM) and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. It is an insoluble polymer of the monomeric soluble precursor tropoelastin, and the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of transforming growth factors β (TGFβ) through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Many other molecules, though lower in quantity, function as essential, structural and/or functional components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its multidomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin it also binds to a variety of compounds, particularly to various growth factors, and as such, fibrinogen is a player in cardiovascular and extracellular matrix physiology. Laminins contribute to the structure of the ECM and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Fibrillins represent the predominant core of microfibrils in elastic as well as non-elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide basis for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Latent TGFβ binding proteins (LTBPs) are included here as their structure is similar to fibrillins. Several categories of ECM components described after fibrillins are sub-classified as matricellular proteins, i.e., they are secreted into ECM, but do not provide structure. Rather they interact with cell membrane receptors, collagens, proteases, hormones and growth factors, communicating and directing cell-ECM traffic. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Matrilins have been emerging as a new group of supporting actors, and their role in connective tissue physiology and pathophysiology has not been fully characterized. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.
Collapse
Affiliation(s)
- Jaroslava Halper
- Department of Pathology, College of Veterinary Medicine, and Department of Basic Sciences, AU/UGA Medical Partnership, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
13
|
Ling Y, Zhang W, Wang P, Xie W, Yang W, Wang DA, Fan C. Three-dimensional (3D) hydrogel serves as a platform to identify potential markers of chondrocyte dedifferentiation by combining RNA sequencing. Bioact Mater 2021; 6:2914-2926. [PMID: 33718672 PMCID: PMC7917462 DOI: 10.1016/j.bioactmat.2021.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Dedifferentiation of chondrocyte greatly restricts its function and application, however, it is poorly understood except a small number of canonical markers. The non-cell-adhesive property endows polysaccharide hydrogel with the ability to maintain chondrocyte phenotype, which can serve as a platform to identify new molecular markers and therapeutic targets of chondrocyte dedifferentiation. In this study, the high-throughput RNA sequencing (RNA-seq) was first performed on articular chondrocytes at primary (P0) and passage 1 (P1) stages to explore the global alteration of gene expression along with chondrocyte dedifferentiation. Significantly, several potential marker genes, such as PFKFB3, KDM6B, had been identified via comparatively analyzing their expression in P0 and P1 chondrocytes as well as in 3D constructs (i.e. chondrocyte-laden alginate hydrogel and HA-MA hydrogel) at both mRNA and protein level. Besides, the changes in cellular morphology and enriched pathway of differentially expressed genes during chondrocyte dedifferentiation was studied in detail. This study developed the use of hydrogel as a platform to investigate chondrocyte dedifferentiation; the results provided new molecular markers and potential therapeutic targets of chondrocyte dedifferentiation.
Collapse
Affiliation(s)
- Yang Ling
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, PR China.,Department of Human Anatomy Histology and Embryology, School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Weiyuan Zhang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Peiyan Wang
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Wanhua Xie
- The Precise Medicine Center, Shenyang Medical College, Shenyang, 110034, Liaoning, PR China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, PR China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong, 518057, PR China.,Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong, China
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, Shandong, PR China.,Department of Human Anatomy Histology and Embryology, School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| |
Collapse
|
14
|
Muqri F, Helkin A, Maier KG, Gahtan V. Thrombospondin-5 and fluvastatin promote angiogenesis and are protective against endothelial cell apoptosis. J Cell Biochem 2020; 121:4154-4165. [PMID: 32348623 DOI: 10.1002/jcb.29686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/09/2019] [Indexed: 01/03/2023]
Abstract
The thrombospondins (TSPs), multifunctional matricellular proteins, are known mediators of endothelial cell (EC) angiogenesis and apoptosis. TSP-1, an antiangiogenic molecule, is important in the progression of vascular disease, in part by inducing EC apoptosis. TSP-2, although less studied, also induces EC apoptosis and inhibits angiogenesis. The effects of TSP-5 are largely unexplored in ECs, but TSP-5 is believed to be protective against arterial disease. Statin drugs have been shown to have beneficial pleiotropic effects, including decreasing EC apoptosis, increasing angiogenesis, and blocking TSP signaling. We hypothesized TSP-5 will be proangiogenic and antiapoptotic, and statin pretreatment would reverse the proapoptotic and antiangiogenic phenotype of TSP-1 and TSP-2. ECs were exposed to serum-free medium, TSP-1, TSP-2, or TSP-5 with or without fluvastatin pretreatment. Quantitative real-time polymerase chain reaction was performed on 96 apoptosis and 96 angiogenesis-related genes using microfluidic card assays. Angiogenesis was measured using Matrigel assays, while apoptosis was measured by fluorescent caspase assay. TSP-5 suppressed apoptotic genes and had a mixed effect on the angiogenic genes; however, TSP-5 did not alter apoptois but was proangiogenic. Pretreatment with fluvastatin downregulated proapoptotic genes and apoptosis and upregulated proangiogenic genes and angiogenesis. Findings indicate TSP-5 and fluvastatin have a protective effect on ECs, being proangiogenic and reversing the antiangiogenic effects of TSP-1 and TSP-2. In conclusion, TSP-5 and fluvastatin may be beneficial for inducing angiogenesis in the setting of ischemia.
Collapse
Affiliation(s)
- Furqan Muqri
- Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, New York
- Department of Veterans Affairs, VA Healthcare Network Upstate, Syracuse, New York
| | - Alex Helkin
- Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, New York
- Department of Veterans Affairs, VA Healthcare Network Upstate, Syracuse, New York
| | - Kristopher G Maier
- Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, New York
- Department of Veterans Affairs, VA Healthcare Network Upstate, Syracuse, New York
| | - Vivian Gahtan
- Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, New York
- Department of Veterans Affairs, VA Healthcare Network Upstate, Syracuse, New York
| |
Collapse
|
15
|
Carminati L, Taraboletti G. Thrombospondins in bone remodeling and metastatic bone disease. Am J Physiol Cell Physiol 2020; 319:C980-C990. [PMID: 32936697 DOI: 10.1152/ajpcell.00383.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thrombospondins (TSPs) are a family of five multimeric matricellular proteins. Through a wide range of interactions, TSPs play pleiotropic roles in embryogenesis and in tissue remodeling in adult physiology as well as in pathological conditions, including cancer development and metastasis. TSPs are active in bone remodeling, the process of bone resorption (osteolysis) and deposition (osteogenesis) that maintains bone homeostasis. TSPs are particularly involved in aberrant bone remodeling, including osteolytic and osteoblastic skeletal cancer metastasis, frequent in advanced cancers such as breast and prostate carcinoma. TSPs are major players in the bone metastasis microenvironment, where they finely tune the cross talk between tumor cells and bone resident cells in the metastatic niche. Each TSP family member has different effects on the differentiation and activity of bone cells-including the bone-degrading osteoclasts and the bone-forming osteoblasts-with different outcomes on the development and growth of osteolytic and osteoblastic metastases. Here, we overview the involvement of TSP family members in the bone tissue microenvironment, focusing on their activity on osteoclasts and osteoblasts in bone remodeling, and present the evidence to date of their roles in bone metastasis establishment and growth.
Collapse
Affiliation(s)
- Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
16
|
Caron MMJ, Janssen MPF, Peeters L, Haudenschild DR, Cremers A, Surtel DAM, van Rhijn LW, Emans PJ, Welting TJM. Aggrecan and COMP Improve Periosteal Chondrogenesis by Delaying Chondrocyte Hypertrophic Maturation. Front Bioeng Biotechnol 2020; 8:1036. [PMID: 32984292 PMCID: PMC7483497 DOI: 10.3389/fbioe.2020.01036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
The generation of cartilage from progenitor cells for the purpose of cartilage repair is often hampered by hypertrophic differentiation of the engineered cartilaginous tissue caused by endochondral ossification. Since a healthy cartilage matrix contains high amounts of Aggrecan and COMP, we hypothesized that their supplementation in the biogel used in the generation of subperiosteal cartilage mimics the composition of the cartilage extracellular matrix environment, with beneficial properties for the engineered cartilage. Supplementation of COMP or Aggrecan was studied in vitro during chondrogenic differentiation of rabbit periosteum cells and periosteum-derived chondrocytes. Low melting agarose was supplemented with bovine Aggrecan, human recombinant COMP or vehicle and was injected between the bone and periosteum at the upper medial side of the tibia of New Zealand white rabbits. Generated subperiosteal cartilage tissue was analyzed for weight, GAG and DNA content and ALP activity. Key markers of different phases of endochondral ossification were measured by RT-qPCR. For the in vitro experiments, no significant differences in chondrogenic marker expression were detected following COMP or Aggrecan supplementation, while in vivo favorable chondrogenic marker expression was detected. Gene expression levels of hypertrophic markers as well as ALP activity were significantly decreased in the Aggrecan and COMP supplemented conditions compared to controls. The wet weight and GAG content of the in vivo generated subperiosteal cartilage tissue was not significantly different between groups. Data demonstrate the potential of Aggrecan and COMP to favorably influence the subperiosteal microenvironment for the in vivo generation of cartilage for the optimization of cartilage regenerative approaches.
Collapse
Affiliation(s)
- Marjolein M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Maarten P F Janssen
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Laura Peeters
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Dominik R Haudenschild
- Department of Orthopedic Surgery, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Don A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lodewijk W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
17
|
Bozó R, Szél E, Danis J, Gubán B, Bata-Csörgő Z, Szabó K, Kemény L, Groma G. Cartilage Oligomeric Matrix Protein Negatively Influences Keratinocyte Proliferation via α5β1-Integrin: Potential Relevance of Altered Cartilage Oligomeric Matrix Protein Expression in Psoriasis. J Invest Dermatol 2020; 140:1733-1742.e7. [PMID: 32057837 DOI: 10.1016/j.jid.2019.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
In psoriasis, nonlesional skin shows alterations at the dermal-epidermal junction compared with healthy skin. Cartilage oligomeric matrix protein (COMP) is part of the papillary dermis of healthy skin, and its expression has not yet been studied in psoriatic skin. In this study, we found that COMP localization extended deeper into the dermis and formed a more continuous layer in psoriatic nonlesional skin compared with healthy skin, whereas in psoriatic lesions, COMP showed a partially discontinuous deposition at the dermal-epidermal junction. COMP and β1-integrin showed strong colocalization in nonlesional skin, where the laminin layer within the basement membrane is discontinuous. In in vitro models, the presence of exogenous COMP decreased the proliferation rate of keratinocytes, and this proliferation-suppressing effect was diminished by blocking α5β1-integrin. Our results suggest that COMP can interact with α5β1-integrin of basal keratinocytes through the disrupted basement membrane, and this interaction might stabilize the epidermis in the nonlesional state by contributing to the suppression of keratinocyte proliferation. The antiproliferative effect of COMP is likely to be relevant to other skin diseases in which chronic nonhealing wounds are coupled with massive COMP accumulation.
Collapse
Affiliation(s)
- Renáta Bozó
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary
| | - Edit Szél
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary
| | - Judit Danis
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary; MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Barbara Gubán
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary; MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Kornélia Szabó
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary; MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary; MTA-SZTE Dermatological Research Group, Szeged, Hungary; HCEMM-SZTE Skin Research Group, Szeged, Hungary
| | - Gergely Groma
- Department of Dermatology and Allergology University of Szeged, Szeged, Hungary; MTA-SZTE Dermatological Research Group, Szeged, Hungary.
| |
Collapse
|
18
|
Papadakos KS, Darlix A, Jacot W, Blom AM. High Levels of Cartilage Oligomeric Matrix Protein in the Serum of Breast Cancer Patients Can Serve as an Independent Prognostic Marker. Front Oncol 2019; 9:1141. [PMID: 31737569 PMCID: PMC6831625 DOI: 10.3389/fonc.2019.01141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Cartilage oligomeric matrix protein (COMP) is a pentameric cartilage protein also expressed in breast cancer tumors. A high expression of COMP evaluated by immunohistochemical staining is as an independent prognostic marker associated with poor patients' prognosis. Methods: Herein, levels of COMP were analyzed using an IVD approved ELISA in serum samples from 233 well-characterized breast cancer patients; 176 with metastatic breast cancer; and 57 in an early stage of the disease. Results: The metastatic patients had double the concentration of serum COMP compared with those with early breast cancer. High levels of COMP in sera of metastatic patients were associated with the histological subtype (p = 0.025) and estrogen receptor positivity (p = 0.019) at the time of breast cancer diagnosis. Further, correlation was observed between the serum levels of COMP and the presence of liver (p = 0.010) or bone (p = 0.010) metastases in this population. Most importantly, elevated serum levels of COMP appear to serve as an independent prognostic marker of survival as assessed by Cox proportional hazard regression analysis (p = 0.001) for the metastatic patients. Among metastatic patients treated with taxanes (Docetaxel-Paclitaxel) as part of their first metastatic line (n = 25), those with high levels of serum COMP detected in the metastatic stage of the disease had a shorter median survival (0.2 years) compared with those with low levels of serum COMP (1.1 years) (p = 0.001). Conclusions: Taken together, the serum levels of COMP are elevated in the metastatic patients and may be a potential novel biomarker for the evaluation of the prognosis in this population.
Collapse
Affiliation(s)
- Konstantinos S Papadakos
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Amélie Darlix
- Department of Medical Oncology, Institut Régional du Cancer Montpellier ICM, University of Montpellier, Montpellier, France
| | - William Jacot
- Department of Medical Oncology, Institut Régional du Cancer Montpellier ICM, University of Montpellier, Montpellier, France
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
19
|
Wang Q, Onuma K, Liu C, Wong H, Bloom MS, Elliott EE, Cao RR, Hu N, Lingampalli N, Sharpe O, Zhao X, Sohn DH, Lepus CM, Sokolove J, Mao R, Cisar CT, Raghu H, Chu CR, Giori NJ, Willingham SB, Prohaska SS, Cheng Z, Weissman IL, Robinson WH. Dysregulated integrin αVβ3 and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis. JCI Insight 2019; 4:128616. [PMID: 31534047 PMCID: PMC6795293 DOI: 10.1172/jci.insight.128616] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is the leading cause of joint failure, yet the underlying mechanisms remain elusive, and no approved therapies that slow progression exist. Dysregulated integrin function was previously implicated in OA pathogenesis. However, the roles of integrin αVβ3 and the integrin-associated receptor CD47 in OA remain largely unknown. Here, transcriptomic and proteomic analyses of human and murine osteoarthritic tissues revealed dysregulated expression of αVβ3, CD47, and their ligands. Using genetically deficient mice and pharmacologic inhibitors, we showed that αVβ3, CD47, and the downstream signaling molecules Fyn and FAK are crucial to OA pathogenesis. MicroPET/CT imaging of a mouse model showed elevated ligand-binding capacities of integrin αVβ3 and CD47 in osteoarthritic joints. Further, our in vitro studies demonstrated that chondrocyte breakdown products, derived from articular cartilage of individuals with OA, induced αVβ3/CD47-dependent expression of inflammatory and degradative mediators, and revealed the downstream signaling network. Our findings identify a central role for dysregulated αVβ3 and CD47 signaling in OA pathogenesis and suggest that activation of αVβ3 and CD47 signaling in many articular cell types contributes to inflammation and joint destruction in OA. Thus, the data presented here provide a rationale for targeting αVβ3, CD47, and their signaling pathways as a disease-modifying therapy.
Collapse
Affiliation(s)
- Qian Wang
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Kazuhiro Onuma
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Changhao Liu
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, California, USA
| | - Heidi Wong
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Michelle S. Bloom
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Eileen E. Elliott
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Richard R.L. Cao
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Nick Hu
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Nithya Lingampalli
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Orr Sharpe
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Xiaoyan Zhao
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Dong Hyun Sohn
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, South Korea
| | - Christin M. Lepus
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Rong Mao
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Cecilia T. Cisar
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Harini Raghu
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Constance R. Chu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Orthopedic Surgery
| | - Nicholas J. Giori
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Orthopedic Surgery
| | - Stephen B. Willingham
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, and
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Susan S. Prohaska
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, and
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, California, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, and
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - William H. Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
20
|
Papadakos KS, Bartoschek M, Rodriguez C, Gialeli C, Jin SB, Lendahl U, Pietras K, Blom AM. Cartilage Oligomeric Matrix Protein initiates cancer stem cells through activation of Jagged1-Notch3 signaling. Matrix Biol 2019; 81:107-121. [DOI: 10.1016/j.matbio.2018.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
|
21
|
A novel mechanism for the protection of embryonic stem cell derived tenocytes from inflammatory cytokine interleukin 1 beta. Sci Rep 2019; 9:2755. [PMID: 30808942 PMCID: PMC6391488 DOI: 10.1038/s41598-019-39370-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
Interleukin 1β (IL-1β) is upregulated following tendon injury. Here we demonstrate that in adult and fetal tenocytes IL-1β increases the expression of matrix metalloproteinases, tenascin-C and Sox9 and decreases the expression of scleraxis and cartilage oligomeric matrix protein. When cultured in 3-dimensional collagen gels adult and fetal tenocytes exposed to IL-1β have reduced contraction ability and generate tendon-like constructs with a lower storage modulus. In contrast, equine embryonic stem cell (ESC) derived tenocytes exposed to IL-1β exhibit no changes in gene expression and generate identical tendon-like constructs. We propose that ESC-derived tenocytes do not respond to IL-1β due to their low expression of interleukin 1 (IL-1) receptor 1 and high expression of the decoy receptor IL-1 receptor 2 and IL-1 receptor antagonist protein (IL1Ra). This may make ESC-derived tenocytes an advantageous source of cells for tissue regeneration and allow the development of novel pharmaceutical interventions to protect endogenous cells from inflammation.
Collapse
|
22
|
In search of chondrocyte-specific antigen. Cent Eur J Immunol 2018; 43:132-138. [PMID: 30135624 PMCID: PMC6102620 DOI: 10.5114/ceji.2018.77382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022] Open
Abstract
The purpose of this work was to establish, whether rat chondrocyte associated antigen, transmembrane Tmp21 protein belonging to the p24 protein family may immunize rats and thus be included into the panel of immunogens potentially involved in cartilage pathology. For immunization of rats extract from cultured chondrocytes containing surface chondrocyte proteins suspended in incomplete Freund's adjuvant was used. Control animals were injected with incomplete Freund's adjuvant without chondrocyte extract. Morphological observations indicated that both in control and experimental animals occurred subperiosteal resorption of bone, suggesting that it arised as the response to adjuvant. In trachea, however, resorption of cartilage and inflammatory changes in the respiratory epithelium and lamina propria were present only in animals exposed to antigen. Unexpectedly, sera from immunized rats strongly reacted with other antigen, which we were able to identify by Western blot and protein sequencing as cartilage oligomeric matrix protein (COMP). COMP is attached to chondrocyte membrane by integrins and its presence in chondrocyte extract is not surprising. Antibody response to COMP raises a question whether the observed changes in tracheal cartilage and epithelium represent anti-COMP reaction or were caused by some other, no specified factors. COMP is used as the marker of osteoarthritis progression, but its role in polychondritis, cartilage pathology involving i.a. tracheal cartilage resorption remains unknown. Thus, our observations may serve as the starting point for future studies in this direction.
Collapse
|
23
|
Smetanina MA, Kel AE, Sevost'ianova KS, Maiborodin IV, Shevela AI, Zolotukhin IA, Stegmaier P, Filipenko ML. DNA methylation and gene expression profiling reveal MFAP5 as a regulatory driver of extracellular matrix remodeling in varicose vein disease. Epigenomics 2018; 10:1103-1119. [PMID: 30070582 DOI: 10.2217/epi-2018-0001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To integrate transcriptomic and DNA-methylomic measurements on varicose versus normal veins using a systems biological analysis to shed light on the interplay between genetic and epigenetic factors. MATERIALS & METHODS Differential expression and methylation were measured using microarrays, supported by real-time quantitative PCR and immunohistochemistry confirmation for relevant gene products. A systems biological 'upstream analysis' was further applied. RESULTS We identified several potential key players contributing to extracellular matrix remodeling in varicose veins. Specifically, our analysis suggests MFAP5 acting as a master regulator, upstream of integrins, of the cellular network affecting the varicose vein condition. Possible mechanism and pathogenic model were outlined. CONCLUSION A coherent model proposed incorporates the relevant signaling networks and will hopefully aid further studies on varicose vein pathogenesis.
Collapse
Affiliation(s)
- Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia.,Department of Fundamental Medicine, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander E Kel
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia.,Department of Research & Development, geneXplain GmbH, Wolfenbüttel D-38302, Germany
| | - Ksenia S Sevost'ianova
- Department of Fundamental Medicine, Novosibirsk State University, Novosibirsk 630090, Russia.,Center of New Medical Technologies, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia
| | - Igor V Maiborodin
- Stem Cell Laboratory, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia
| | - Andrey I Shevela
- Department of Fundamental Medicine, Novosibirsk State University, Novosibirsk 630090, Russia.,Center of New Medical Technologies, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia
| | - Igor A Zolotukhin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia.,Chair of Faculty Surgery of the Medical Department, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Philip Stegmaier
- Department of Research & Development, geneXplain GmbH, Wolfenbüttel D-38302, Germany
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology & Fundamental Medicine, Novosibirsk 630090, Russia.,Department of Fundamental Medicine, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
24
|
Grogan SP, Duffy SF, Pauli C, Lotz MK, D’Lima DD. Gene expression profiles of the meniscus avascular phenotype: A guide for meniscus tissue engineering. J Orthop Res 2018; 36:1947-1958. [PMID: 29411909 PMCID: PMC6326361 DOI: 10.1002/jor.23864] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/05/2018] [Indexed: 02/04/2023]
Abstract
Avascular (Avas) meniscus regeneration remains a challenge, which is partly a consequence of our limited knowledge of the cells that maintain this tissue region. In this study, we utilized microarrays to characterize gene expression profiles of intact human Avas meniscus tissue and of cells following culture expansion. Using these data, we examined various 3D culture conditions to redifferentiate Avas cells toward the tissue phenotype. RNA was isolated from either the tissue directly or following cell isolation and 2 weeks in monolayer culture. RNA was hybridized on human genome arrays. Differentially expressed (DE) genes were identified by ranking analysis. DAVID pathway analysis was performed and visualized using STRING analysis. Quantitative PCR (qPCR) on additional donor menisci (tissues and cells) were used to validate array data. Avas cells cultured in 3D were subjected to qPCR to compare with the array-generated data. A total of 387 genes were DE based on differentiation state (>3-fold change; p < 0.01). In Avas-cultured cells, the upregulated pathways included focal adhesion, ECM-receptor interaction, regulation of actin cytoskeleton, and PDGF Signaling. In 3D-cultured Avas cells, TGFβ1 or combinations of TGFβ1 and BMP6 were most effective to promote an Avas tissue phenotype. THBS2 and THBS4 expression levels were identified as a means to denote meniscus cell phenotype status. We identified the key gene expression profiles, new markers and pathways involved in characterizing the Avas meniscus phenotype in the native state and during in vitro dedifferentiation and redifferentiation. These data served to screen 3D conditions to generate meniscus-like neotissues. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1947-1958, 2018.
Collapse
Affiliation(s)
- Shawn P Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA
| | - Stuart F. Duffy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Chantal Pauli
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Martin K Lotz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Darryl D D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA,Corresponding author: Darryl D D’Lima, MD, PhD, Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 11025 North Torrey Pines Road, Suite 200, La Jolla, CA 92037, Tel 858 332 0166 Fax 858 332 0669,
| |
Collapse
|
25
|
Roberts DD, Kaur S, Isenberg JS. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer. Antioxid Redox Signal 2017; 27:874-911. [PMID: 28712304 PMCID: PMC5653149 DOI: 10.1089/ars.2017.7140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H2S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H2S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. CRITICAL ISSUES Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. FUTURE DIRECTIONS Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.
Collapse
Affiliation(s)
- David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Englund E, Canesin G, Papadakos KS, Vishnu N, Persson E, Reitsma B, Anand A, Jacobsson L, Helczynski L, Mulder H, Bjartell A, Blom AM. Cartilage oligomeric matrix protein promotes prostate cancer progression by enhancing invasion and disrupting intracellular calcium homeostasis. Oncotarget 2017; 8:98298-98311. [PMID: 29228690 PMCID: PMC5716730 DOI: 10.18632/oncotarget.21176] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/27/2017] [Indexed: 12/30/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) was recently implicated in the progression of breast cancer. Immunostaining of 342 prostate cancer specimens in tissue microarrays showed that COMP expression is not breast cancer-specific but also occurs in prostate cancer. The expression of COMP in prostate cancer cells correlated with a more aggressive disease with faster recurrence. Subcutaneous xenografts in immunodeficient mice showed that the prostate cancer cell line DU145 overexpressing COMP formed larger tumors in vivo as compared to mock-transfected cells. Purified COMP bound to and enhanced the invasion of DU145 cells in vitro in an integrin-dependent manner. In addition, intracellular COMP expression interfered with cellular metabolism by causing a decreased level of oxidative phosphorylation with a concurrent upregulation of lactate production (Warburg effect). Further, expression of COMP protected cells from induction of apoptosis via several pathways. The effect of COMP on metabolism and apoptosis induction was dependent on the ability of COMP to disrupt intracellular Ca2+ signalling by preventing Ca2+ release from the endoplasmic reticulum. In conclusion, COMP is a potent driver of the progression of prostate cancer, acting in an anti-apoptotic fashion by interfering with the Ca2+ homeostasis of cancer cells.
Collapse
Affiliation(s)
- Emelie Englund
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Giacomo Canesin
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö, Sweden
| | - Konstantinos S Papadakos
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Neelanjan Vishnu
- Department of Clinical Sciences Malmö, Unit of Molecular Metabolism, Lund University, Malmö, Sweden
| | - Emma Persson
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Bart Reitsma
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Aseem Anand
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö, Sweden
| | - Laila Jacobsson
- Department of Clinical Sciences Malmö, Unit of Molecular Metabolism, Lund University, Malmö, Sweden
| | - Leszek Helczynski
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö, Sweden
| | - Hindrik Mulder
- Department of Clinical Sciences Malmö, Unit of Molecular Metabolism, Lund University, Malmö, Sweden
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| |
Collapse
|
27
|
Abstract
The complement system is an arm of innate immunity that aids in the removal of pathogens and dying cells. Due to its harmful, pro-inflammatory potential, complement is controlled by several soluble and membrane-bound inhibitors. This family of complement regulators has been recently extended by the discovery of several new members, and it is becoming apparent that these proteins harbour additional functions. In this review, the current state of knowledge of the physiological functions of four complement regulators will be described: cartilage oligomeric matrix protein (COMP), CUB and sushi multiple domains 1 (CSMD1), sushi domain-containing protein 4 (SUSD4) and CD59. Complement activation is involved in both the development of and defence against cancer. COMP expression is pro-oncogenic, whereas CSMD1 and SUSD4 act as tumour suppressors. These effects may be related in part to the complex influence of complement on cancer but also depend on unrelated functions such as the protection of cells from endoplasmic reticulum stress conveyed by intracellular COMP. CD59 is the main inhibitor of the membrane attack complex, and its deficiency leads to complement attack on erythrocytes and severe haemolytic anaemia, which is now amenable to treatment with an inhibitor of C5 cleavage. Unexpectedly, the intracellular pool of CD59 is crucial for insulin secretion from pancreatic β-cells. This finding is one of several relating to the intracellular functions of complement proteins, which until recently were only considered to be present in the extracellular space. Understanding the alternative functions of complement inhibitors may unravel unexpected links between complement and other physiological systems, but is also important for better design of therapeutic complement inhibition.
Collapse
Affiliation(s)
- A M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
28
|
Abstract
Tendons connect muscles to bones, ensuring joint movement. With advanced age, tendons become more prone to degeneration followed by injuries. Tendon repair often requires lengthy periods of rehabilitation, especially in elderly patients. Existing medical and surgical treatments often fail to regain full tendon function. The development of novel treatment methods has been hampered due to limited understanding of basic tendon biology. Recently, it was discovered that tendons, similar to other mesenchymal tissues, contain tendon stem/progenitor cells (TSPCs) which possess the common stem cell properties. The current strategies for enhancing tendon repair consist mainly of applying stem cells, growth factors, natural and artificial biomaterials alone or in combination. In this review, we summarise the basic biology of tendon tissues and provide an update on the latest repair proposals for tendon tears.
Cite this article: EFORT Open Rev 2017;2:332-342. DOI: 10.1302/2058-5241.2.160075
Collapse
Affiliation(s)
- Fan Wu
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Michael Nerlich
- Department of Trauma Surgery, University Regensburg Medical Center, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Center, Regensburg, Germany and Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
29
|
Marques F, Tenney J, Duran I, Martin J, Nevarez L, Pogue R, Krakow D, Cohn DH, Li B. Altered mRNA Splicing, Chondrocyte Gene Expression and Abnormal Skeletal Development due to SF3B4 Mutations in Rodriguez Acrofacial Dysostosis. PLoS Genet 2016; 12:e1006307. [PMID: 27622494 PMCID: PMC5021280 DOI: 10.1371/journal.pgen.1006307] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/17/2016] [Indexed: 02/04/2023] Open
Abstract
The acrofacial dysostoses (AFD) are a genetically heterogeneous group of inherited disorders with craniofacial and limb abnormalities. Rodriguez syndrome is a severe, usually perinatal lethal AFD, characterized by severe retrognathia, oligodactyly and lower limb abnormalities. Rodriguez syndrome has been proposed to be a severe form of Nager syndrome, a non-lethal AFD that results from mutations in SF3B4, a component of the U2 small nuclear ribonucleoprotein particle (U2 snRNP). Furthermore, a case with a phenotype intermediate between Rodriguez and Nager syndromes has been shown to have an SF3B4 mutation. We identified heterozygosity for SF3B4 mutations in Rodriguez syndrome, confirming that the phenotype is a dominant disorder that is allelic with Nager syndrome. The mutations led to reduced SF3B4 synthesis and defects in mRNA splicing, primarily exon skipping. The mutations also led to reduced expression in growth plate chondrocytes of target genes, including the DLX5, DLX6, SOX9, and SOX6 transcription factor genes, which are known to be important for skeletal development. These data provide mechanistic insight toward understanding how SF3B4 mutations lead to the skeletal abnormalities observed in the acrofacial dysostoses. The acrofacial dysostoses (AFD) are inherited disorders with abnormalities of the facial and limb bones. Rodriguez syndrome is a severe type of AFD that is usually lethal in the immediate perinatal period. Rodriguez syndrome has been proposed to be a severe form of Nager syndrome, a non-lethal AFD that results from mutations in SF3B4, a component of mRNA splicing machinery needed for proper maturation of primary transcripts. Furthermore, a case with a phenotype intermediate between Rodriguez and Nager syndromes has been shown to have an SF3B4 mutation. We found that mutations in SF3B4 produce Rodriguez syndrome, further demonstrating that it is allelic with Nager syndrome. The consequences of the mutations include abnormal splicing and reduced expression in growth plate chondrocytes of genes that are important for proper development of the skeleton, providing mechanistic insight toward understanding how SF3B4 mutations lead to the skeletal abnormalities observed in the acrofacial dysostoses.
Collapse
Affiliation(s)
- Felipe Marques
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Laboratório de Biotecnologia, Universidade CEUMA, Campus Renascença, São Luís-MA, Brazil
| | - Jessica Tenney
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Pediatrics, Division of Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jorge Martin
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lisette Nevarez
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Robert Pogue
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DK); (DHC)
| | - Daniel H. Cohn
- Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DK); (DHC)
| | - Bing Li
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
30
|
Global Gene Expression Profiling and Alternative Splicing Events during the Chondrogenic Differentiation of Human Cartilage Endplate-Derived Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:604972. [PMID: 26649308 PMCID: PMC4662983 DOI: 10.1155/2015/604972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023]
Abstract
Low back pain (LBP) is a very prevalent disease and degenerative disc diseases (DDDs) usually account for the LBP. However, the pathogenesis of DDDs is complicated and difficult to elucidate. Alternative splicing is a sophisticated regulatory process which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. In addition, the cartilage endplate-derived stem cells have been discovered and identified by our research group. In this paper, we continue to investigate gene expression profiling and alternative splicing events during chondrogenic differentiation of cartilage endplate-derived stem cells. We adopted Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) to compare the transcriptional and splicing changes between the control and differentiated samples. RT-PCR and quantitative PCR are used to validate the microarray results. The GO and KEGG pathway analysis was also performed. After bioinformatics analysis of the data, we detected 1953 differentially expressed genes. In terms of alternative splicing, the Splicing Index algorithm was used to select alternatively spliced genes. We detected 4411 alternatively spliced genes. GO and KEGG pathway analysis also revealed several functionally involved biological processes and signaling pathways. To our knowledge, this is the first study to investigate the alternative splicing mechanisms in chondrogenic differentiation of stem cells on a genome-wide scale.
Collapse
|
31
|
Guo P, Shi ZL, Liu A, Lin T, Bi F, Shi M, Yan SG. Effects of cartilage oligomeric matrix protein on bone morphogenetic protein-2-induced differentiation of mesenchymal stem cells. Orthop Surg 2015; 6:280-7. [PMID: 25430711 DOI: 10.1111/os.12135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 05/27/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To investigate the effect of overexpression of cartilage oligomeric matrix protein (COMP) on bone morphogenetic protein-2 (BMP-2) induced osteogenic and chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, we used liposomes to transfect MSCs with plasmid encoding COMP and then induced the transfected MSCs to differentiate in osteogenic and chondrogenic differentiation media containing BMP-2. METHODS MSCs transfected with plasmid DNA encoding recombinant human COMP were induced to differentiate into osteocytes and chondrocytes by BMP-2. Real-time polymerase chain reaction (PCR) assays of osteogenesis-related markers (collagen type I alpha 1, runt-related transcription factor 2, osteopontin, bone gla protein) and chondrogenesis-related markers (collagen type II alpha 1, sry-related high-mobility group box 9, Aggrecan) was performed to evaluate the process of cell differentiation. Cell differentiation was evaluated by alkaline phosphatase (ALP) and Alizarin red S stains for osteogenic differentiation and alcian blue staining for chondrogenic differentiation. RESULTS Real-time PCR assay showed significantly greater COMP expression by MSCs when COMP gene had been transfected into the cells (P < 0.01). Overexpression of COMP down-regulated expression of osteogenesis-related markers and up-regulated expression of chondrogenesis-related markers. ALP staining and Alizarin red S staining were weakened, whereas alcian blue staining was enhanced. CONCLUSION Overexpression of COMP inhibits BMP-2-induced osteogenic differentiation and promotes BMP-2-induced chondrogenic differentiation. These findings may provide new insights for cartilage tissue engineering. The experiments in the present study were all in vitro, which has potential limitations. Further in vivo studies to investigate the effects of COMP in animal models are necessary, which will be the next step in our research.
Collapse
Affiliation(s)
- Peng Guo
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Cartilage oligomeric matrix protein gene multilayers inhibit osteogenic differentiation and promote chondrogenic differentiation of mesenchymal stem cells. Int J Mol Sci 2014; 15:20117-33. [PMID: 25380520 PMCID: PMC4264159 DOI: 10.3390/ijms151120117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/22/2014] [Accepted: 10/27/2014] [Indexed: 01/09/2023] Open
Abstract
There are still many challenges to acquire the optimal integration of biomedical materials with the surrounding tissues. Gene coatings on the surface of biomaterials may offer an effective approach to solve the problem. In order to investigate the gene multilayers mediated differentiation of mesenchymal stem cells (MSCs), gene functionalized films of hyaluronic acid (HA) and lipid-DNA complex (LDc) encoding cartilage oligomeric matrix protein (COMP) were constructed in this study via the layer-by-layer self-assembly technique. Characterizations of the HA/DNA multilayered films indicated the successful build-up process. Cells could be directly transfected by gene films and a higher expression could be obtained with the increasing bilayer number. The multilayered films were stable for a long period and DNA could be easily released in an enzymatic condition. Real-time polymerase chain reaction (RT-PCR) assay presented significantly higher (p < 0.01) COMP expression of MSCs cultured with HA/COMP multilayered films. Compared with control groups, the osteogenic gene expression levels of MSCs with HA/COMP multilayered films were down-regulated while the chondrogenic gene expression levels were up-regulated. Similarly, the alkaline phosphatase (ALP) staining and Alizarin red S staining of MSCs with HA/COMP films were weakened while the alcian blue staining was enhanced. These results demonstrated that HA/COMP multilayered films could inhibit osteogenic differentiation and promote chondrogenic differentiation of MSCs, which might provide new insight for physiological ligament-bone healing.
Collapse
|
33
|
Ruthard J, Kamper M, Renno JH, Kühn G, Hillebrand U, Höllriegl S, Johannis W, Zaucke F, Klatt AR. COMP does not directly modify the expression of genes involved in cartilage homeostasis in contrast to several other cartilage matrix proteins. Connect Tissue Res 2014; 55:348-56. [PMID: 25111190 DOI: 10.3109/03008207.2014.951440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We investigated whether COMP may modify cartilage metabolism and play a role as an endogenous disease aggravating factor in OA. MATERIALS AND METHODS Full-length and momomeric COMP was recombinantly expressed in human embryonic kidney cells and purified it via affinity chromatography. Purified COMP was used to stimulate either primary human chondrocytes or cartilage explants. Changes in the expression profiles of inflammatory genes, differentiation markers and growth factors were examined by immunoassay and by quantitative real-time reverse-transcription polymerase chain reaction. RESULTS Incubation of primary human chondrocytes or cartilage explants in the presence of COMP did not induce statistically significant changes in the expression of IL-6, MMP1, MMP13, collagen I, collagen II, collagen X, TGF-β1 and BMP-2. CONCLUSIONS In contrast to collagen II and matrilin-3, COMP lacks the ability to trigger a proinflammatory response in chondrocytes, although it carries an RGD motif and can bind to integrins. COMP is a well-accepted biomarker for osteoarthritis but increased COMP levels do not necessarily correlate with inflammation.
Collapse
Affiliation(s)
- Johannes Ruthard
- Institute for Clinical Chemistry, University of Cologne , Cologne , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Acharya C, Yik JHN, Kishore A, Van Dinh V, Di Cesare PE, Haudenschild DR. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol 2014; 37:102-11. [PMID: 24997222 DOI: 10.1016/j.matbio.2014.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Thrombospondins (TSPs) are widely known as a family of five calcium-binding matricellular proteins. While these proteins belong to the same family, they are encoded by different genes, regulate different cellular functions and are localized to specific regions of the body. TSP-5 or Cartilage Oligomeric Matrix Protein (COMP) is the only TSP that has been associated with skeletal disorders in humans, including pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). The pentameric structure of COMP, the evidence that it interacts with multiple cellular proteins, and the recent reports of COMP acting as a 'lattice' to present growth factors to cells, inspired this review of COMP and its interacting partners. In our review, we have compiled the interactions of COMP with other proteins in the cartilage extracellular matrix and summarized their importance in maintaining the structural integrity of cartilage as well as in regulating cellular functions.
Collapse
Affiliation(s)
- Chitrangada Acharya
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Jasper H N Yik
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Ashleen Kishore
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Victoria Van Dinh
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | - Paul E Di Cesare
- Department of Orthopaedics and Rehabilitation, New York Hospital Queens, New York, NY 11355, USA
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| |
Collapse
|
35
|
Murphy-Ullrich JE, Sage EH. Revisiting the matricellular concept. Matrix Biol 2014; 37:1-14. [PMID: 25064829 PMCID: PMC4379989 DOI: 10.1016/j.matbio.2014.07.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022]
Abstract
The concept of a matricellular protein was first proposed by Paul Bornstein in the mid-1990s to account for the non-lethal phenotypes of mice with inactivated genes encoding thrombospondin-1, tenascin-C, or SPARC. It was also recognized that these extracellular matrix proteins were primarily counter or de-adhesive. This review reappraises the matricellular concept after nearly two decades of continuous investigation. The expanded matricellular family as well as the diverse and often unexpected functions, cellular location, and interacting partners/receptors of matricellular proteins are considered. Development of therapeutic strategies that target matricellular proteins are discussed in the context of pathology and regenerative medicine.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States.
| | | |
Collapse
|
36
|
Berardi AC, Oliva F, Berardocco M, la Rovere M, Accorsi P, Maffulli N. Thyroid hormones increase collagen I and cartilage oligomeric matrix protein (COMP) expression in vitro human tenocytes. Muscles Ligaments Tendons J 2014; 4:285-291. [PMID: 25489544 PMCID: PMC4241417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND we previously demonstrated the presence of high levels of thyroid hormones (THs) receptors isoforms in healthy tendons, their protective action during tenocyte apoptosis, and the capability to enhance tenocyte proliferation in vitro. In the present study we tested the ability of THs to influence ECM protein tenocyte secretion in an in vitro system. METHODS primary tenocyte-like cells were cultivated for 1, 7 and 14 days in the presence of T3 or T4 individually or in combination with ascorbic acid (AA). RESULTS THs (T3 or T4) in synergism with AA increase significantly the total collagen production after 14 days. THs in synergism with AA increase significantly the expression of collagen I,biglycan and COMP, after some days. CONCLUSION THs play a role on the extra cellular matrix of tendons, enhancing in vitro the production of several proteins such as collagen I, biglycan and COMP. THs receptors are active on human tenocytes, and can play a role in tendon ailments.
Collapse
Affiliation(s)
- Anna C. Berardi
- UOC Immunohematology and Transfusion Medicine Laboratories, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Francesco Oliva
- Department of Orthopedics and Traumatology, University of Rome “Tor Vergata”, School of Medicine, Rome, Italy
| | - Martina Berardocco
- UOC Immunohematology and Transfusion Medicine Laboratories, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Marina la Rovere
- UOC Immunohematology and Transfusion Medicine Laboratories, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Patrizia Accorsi
- UOC Immunohematology and Transfusion Medicine Laboratories, Spirito Santo Hospital, Pescara, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Salerno, Italy; and Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Institute of Health Sciences Education, Centre for Sports and Exercise, London, UK
| |
Collapse
|
37
|
Leclair P, Lim CJ. CD47-independent effects mediated by the TSP-derived 4N1K peptide. PLoS One 2014; 9:e98358. [PMID: 24848268 PMCID: PMC4029904 DOI: 10.1371/journal.pone.0098358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/01/2014] [Indexed: 11/18/2022] Open
Abstract
4N1K is a peptide fragment derived from the C-terminal, globular domain of thrombospondin which has been shown to mediate integrin-dependent cell adhesion and promote integrin activation acting via the cell-surface receptor, CD47. However, some studies found that 4N1K could act independently of CD47, putting in question the specificity of 4N1K for CD47. This led us to characterize the cellular and non-cellular effects of 4N1K. We found that 4N1K stimulated a potent increase in binding of a variety of non-specific IgG antibodies to cells in suspension. We also found that these same antibodies, as well as CD47-deficient cells, could bind substrate-immobilized 4N1K significantly better than a control peptide, 4NGG. Furthermore, we found that cells treated with 4N1K at higher concentrations inhibited, while lower concentrations promoted cell adhesion to immobilized fibronectin as an integrin substrate. Importantly, both the stimulatory and the inhibitory activity of 4N1K occurred as efficiently in the CD47-deficient JinB8 cells, as it did in the CD47-expressing parental or in JinB8 cells reconstituted with CD47 expression. Given these results, we suggest that 4N1K interacts non-specifically with epitopes commonly found on the cell surface, and conclude that it is not a suitable peptide for use to study the consequences of CD47 receptor ligation.
Collapse
Affiliation(s)
- Pascal Leclair
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cell and Developmental Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
38
|
Patterson SE, Dealy CN. Mechanisms and models of endoplasmic reticulum stress in chondrodysplasia. Dev Dyn 2014; 243:875-93. [DOI: 10.1002/dvdy.24131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Sara E. Patterson
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
| | - Caroline N. Dealy
- Center for Regenerative Medicine and Skeletal Development; Department of Reconstructive Sciences; University of Connecticut Health Center; Farmington Connecticut
- Center for Regenerative Medicine and Skeletal Development; Department of Orthopedic Surgery; University of Connecticut Health Center; Farmington Connecticut
| |
Collapse
|
39
|
Piróg KA, Irman A, Young S, Halai P, Bell PA, Boot-Handford RP, Briggs MD. Abnormal chondrocyte apoptosis in the cartilage growth plate is influenced by genetic background and deletion of CHOP in a targeted mouse model of pseudoachondroplasia. PLoS One 2014; 9:e85145. [PMID: 24558358 PMCID: PMC3928032 DOI: 10.1371/journal.pone.0085145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/23/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia caused by mutations in cartilage oligomeric matrix protein (COMP) and characterised by short limbed dwarfism and early onset osteoarthritis. Mouse models of PSACH show variable retention of mutant COMP in the ER of chondrocytes, however, in each case a different stress pathway is activated and the underlying disease mechanisms remain largely unknown. T585M COMP mutant mice are a model of moderate PSACH and demonstrate a mild ER stress response. Although mutant COMP is not retained in significant quantities within the ER of chondrocytes, both BiP and the pro-apoptotic ER stress-related transcription factor CHOP are mildly elevated, whilst bcl-2 levels are decreased, resulting in increased and spatially dysregulated chondrocyte apoptosis. To determine whether the abnormal chondrocyte apoptosis observed in the growth plate of mutant mice is CHOP-mediated, we bred T585M COMP mutant mice with CHOP-null mice to homozygosity, and analysed the resulting phenotype. Although abnormal apoptosis was alleviated in the resting zone following CHOP deletion, the mutant growth plates were generally more disorganised. Furthermore, the bone lengths of COMP mutant CHOP null mice were significantly shorter at 9 weeks of age when compared to the COMP mutant mice, including a significant difference in the skull length. Overall, these data demonstrate that CHOP-mediated apoptosis is an early event in the pathobiology of PSACH and suggest that the lack of CHOP, in conjunction with a COMP mutation, may lead to aggravation of the skeletal phenotype via a potentially synergistic effect on endochondral ossification.
Collapse
Affiliation(s)
- Katarzyna A. Piróg
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
- * E-mail: (KAP); (MDB)
| | - Andreja Irman
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Siobhan Young
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Poonam Halai
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Peter A. Bell
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Raymond P. Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Michael D. Briggs
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
- * E-mail: (KAP); (MDB)
| |
Collapse
|
40
|
Piróg KA, Katakura Y, Mironov A, Briggs MD. Mild myopathy is associated with COMP but not MATN3 mutations in mouse models of genetic skeletal diseases. PLoS One 2013; 8:e82412. [PMID: 24312420 PMCID: PMC3842254 DOI: 10.1371/journal.pone.0082412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are skeletal disorders resulting from mutations in COMP, matrilin-3 or collagen IX and are characterised by short-limbed dwarfism and premature osteoarthritis. Interestingly, recent reports suggest patients can also manifest with muscle weakness. Here we present a detailed analysis of two mouse models of the PSACH/MED disease spectrum; ΔD469 T3-COMP (PSACH) and V194D matrilin-3 (MED). In grip test experiments T3-COMP mice were weaker than wild-type littermates, whereas V194D mice behaved as controls, confirming that short-limbed dwarfism alone does not contribute to PSACH/MED-related muscle weakness. Muscles from T3-COMP mice showed an increase in centronuclear fibers at the myotendinous junction. T3-COMP tendons became more lax in cyclic testing and showed thicker collagen fibers when compared with wild-type tissue; matrilin-3 mutant tissues were indistinguishable from controls. This comprehensive study of the myopathy associated with PSACH/MED mutations enables a better understanding of the disease progression, confirms that it is genotype specific and that the limb weakness originates from muscle and tendon pathology rather than short-limbed dwarfism itself. Since some patients are primarily diagnosed with neuromuscular symptoms, this study will facilitate better awareness of the differential diagnoses that might be associated with the PSACH/MED spectrum and subsequent care of PSACH/MED patients.
Collapse
Affiliation(s)
- Katarzyna A. Piróg
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Yoshihisa Katakura
- Division of Mechanical Engineering, School of Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Aleksandr Mironov
- Electron Microscopy Core Facility, Faculty of Life Sciences and University of Manchester, Manchester United Kingdom
| | - Michael D. Briggs
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
41
|
Cillero-Pastor B, Eijkel GB, Kiss A, Blanco FJ, Heeren RMA. Matrix-assisted laser desorption ionization-imaging mass spectrometry: a new methodology to study human osteoarthritic cartilage. ACTA ACUST UNITED AC 2013; 65:710-20. [PMID: 23280504 DOI: 10.1002/art.37799] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 11/08/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Information about the distribution of proteins and the modulation that they undergo in the different phases of rheumatic pathologies is essential to understanding the development of these diseases. We undertook this study to demonstrate the utility of mass spectrometry (MS)-based molecular imaging for studying the spatial distribution of different components in human articular cartilage sections. METHODS We compared the distribution of peptides and proteins in human control and osteoarthritic (OA) cartilage. Human control and OA cartilage slices were cut and deposited on conductive slides. After tryptic digestion, we performed matrix-assisted laser desorption ionization-imaging MS (MALDI-IMS) experiments in a MALDI-quadrupole time-of-flight mass spectrometer. Protein identification was undertaken with a combination of multivariate statistical methods and Mascot protein database queries. Hematoxylin and eosin staining and immunohistochemistry were performed to validate the results. RESULTS We created maps of peptide distributions at 150-μm raster size from control and OA human cartilage. Proteins such as biglycan, prolargin, decorin, and aggrecan core protein were identified and localized. Specific protein markers for cartilage oligomeric matrix protein and fibronectin were found exclusively in OA cartilage samples. Their distribution displayed a stronger intensity in the deep area than in the superficial area. New tentative OA markers were found in the deep area of the OA cartilage. CONCLUSION MALDI-IMS identifies and localizes disease-specific peptides and proteins in cartilage. All the OA-related peptides and proteins detected display a stronger intensity in the deep cartilage. MS-based molecular imaging is demonstrated to be an innovative method for studying OA pathology.
Collapse
|
42
|
Pendegrass CJ, El-Husseiny M, Blunn GW. The development of fibronectin-functionalised hydroxyapatite coatings to improve dermal fibroblast attachment in vitro. ACTA ACUST UNITED AC 2012; 94:564-9. [DOI: 10.1302/0301-620x.94b4.27698] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The success of long-term transcutaneous implants depends on dermal attachment to prevent downgrowth of the epithelium and infection. Hydroxyapatite (HA) coatings and fibronectin (Fn) have independently been shown to regulate fibroblast activity and improve attachment. In an attempt to enhance this phenomenon we adsorbed Fn onto HA-coated substrates. Our study was designed to test the hypothesis that adsorption of Fn onto HA produces a surface that will increase the attachment of dermal fibroblasts better than HA alone or titanium alloy controls. Iodinated Fn was used to investigate the durability of the protein coating and a bioassay using human dermal fibroblasts was performed to assess the effects of the coating on cell attachment. Cell attachment data were compared with those for HA alone and titanium alloy controls at one, four and 24 hours. Protein attachment peaked within one hour of incubation and the maximum binding efficiency was achieved with an initial droplet of 1000 ng. We showed that after 24 hours one-fifth of the initial Fn coating remained on the substrates, and this resulted in a significant, three-, four-, and sevenfold increase in dermal fibroblast attachment strength compared to uncoated controls at one, four and 24 hours, respectively.
Collapse
Affiliation(s)
- C. J. Pendegrass
- The Centre for Biomedical Engineering,
University College London, The Royal National
Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex
HA7 4LP, UK
| | - M. El-Husseiny
- The Centre for Biomedical Engineering,
University College London, The Royal National
Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex
HA7 4LP, UK
| | - G. W. Blunn
- The Centre for Biomedical Engineering,
University College London, The Royal National
Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex
HA7 4LP, UK
| |
Collapse
|
43
|
YU H, ZHU Y. Expression of ADAMTS-7 and ADAMTS-12 in the Nucleus Pulposus During Degeneration of Rat Caudal Intervetebral Disc. J Vet Med Sci 2012; 74:9-15. [PMID: 21869572 DOI: 10.1292/jvms.10-0556] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hao YU
- Department of Orthopaedics, The First Hospital of China Medical University
- Department of Hand Surgery, Fengtian Hospital Affiliated to Shenyang Medical College
| | - Yue ZHU
- Department of Orthopaedics, The First Hospital of China Medical University
| |
Collapse
|
44
|
Suleman F, Gualeni B, Gregson HJ, Leighton MP, Piróg KA, Edwards S, Holden P, Boot-Handford RP, Briggs MD. A novel form of chondrocyte stress is triggered by a COMP mutation causing pseudoachondroplasia. Hum Mutat 2011; 33:218-31. [PMID: 22006726 PMCID: PMC3320758 DOI: 10.1002/humu.21631] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/16/2011] [Indexed: 12/23/2022]
Abstract
Pseudoachondroplasia (PSACH) results from mutations in cartilage oligomeric matrix protein (COMP) and the p.D469del mutation within the type III repeats of COMP accounts for approximately 30% of PSACH. To determine disease mechanisms of PSACH in vivo, we introduced the Comp D469del mutation into the mouse genome. Mutant animals were normal at birth but grew slower than their wild-type littermates and developed short-limb dwarfism. In the growth plates of mutant mice chondrocyte columns were reduced in number and poorly organized, while mutant COMP was retained within the endoplasmic reticulum (ER) of cells. Chondrocyte proliferation was reduced and apoptosis was both increased and spatially dysregulated. Previous studies on COMP mutations have shown mutant COMP is co-localized with chaperone proteins, and we have reported an unfolded protein response (UPR) in mouse models of PSACH-MED (multiple epiphyseal dysplasia) harboring mutations in Comp (T585M) and Matn3, Comp etc (V194D). However, we found no evidence of UPR in this mouse model of PSACH. In contrast, microarray analysis identified expression changes in groups of genes implicated in oxidative stress, cell cycle regulation, and apoptosis, which is consistent with the chondrocyte pathology. Overall, these data suggest that a novel form of chondrocyte stress triggered by the expression of mutant COMP is central to the pathogenesis of PSACH.
Collapse
Affiliation(s)
- Farhana Suleman
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Haudenschild DR, Hong E, Yik JHN, Chromy B, Mörgelin M, Snow KD, Acharya C, Takada Y, Di Cesare PE. Enhanced activity of transforming growth factor β1 (TGF-β1) bound to cartilage oligomeric matrix protein. J Biol Chem 2011; 286:43250-8. [PMID: 21940632 DOI: 10.1074/jbc.m111.234716] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is an important non-collagenous cartilage protein that is essential for the structural integrity of the cartilage extracellular matrix. The repeated modular structure of COMP allows it to "bridge" and assemble multiple cartilage extracellular matrix components such as collagens, matrilins, and proteoglycans. With its modular structure, COMP also has the potential to act as a scaffold for growth factors, thereby affecting how and when the growth factors are presented to cell-surface receptors. However, it is not known whether COMP binds growth factors. We studied the binding interaction between COMP and TGF-β1 in vitro and determined the effect of COMP on TGF-β1-induced signal transduction in reporter cell lines and primary cells. Our results demonstrate that mature COMP protein binds to multiple TGF-β1 molecules and that the peak binding occurs at slightly acidic pH. These interactions were confirmed by dual polarization interferometry and visualized by rotary shadow electron microscopy. There is cation-independent binding of TGF-β1 to the C-terminal domain of COMP. In the presence of manganese, an additional TGF-β-binding site is present in the TSP3 repeats of COMP. Finally, we show that COMP-bound TGF-β1 causes increased TGF-β1-dependent transcription. We conclude that TGF-β1 binds to COMP and that TGF-β1 bound to COMP has enhanced bioactivity.
Collapse
Affiliation(s)
- Dominik R Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, California 95817, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Identification and characterization of cartilage oligomeric matrix protein as a novel pathogenic factor in keloids. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1951-60. [PMID: 21872564 DOI: 10.1016/j.ajpath.2011.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 11/20/2022]
Abstract
To elucidate pathogenic molecules in keloids, microarray analysis was performed using RNAs extracted from keloid-derived fibroblasts and normal skin-derived fibroblasts from the same patient with a typical keloid. Among 11 up-regulated extracellular matrix genes, cartilage oligomeric matrix protein (COMP) was most prominently increased. Up-regulation of COMP mRNA and protein was confirmed in the keloid tissue by quantitative RT-PCR and Western blot. Using immunohistochemistry, we compared 15 keloids and 6 control normal tissues using a COMP-specific antibody and found that COMP stained positively in 10 keloids (66.7%), whereas no staining was observed in normal tissues, demonstrating the ectopic expression of COMP in keloids. Comparing keloids smaller or larger than 10 cm(2), the larger keloids were significantly more intensely stained with the COMP-specific antibody. Because COMP reportedly accelerates collagen type I fibril assembly, we examined whether extracellular type I collagen deposition is altered by silencing COMP mRNA by small interfering RNA (siRNA). Immunocytochemistry showed at 96 hours after transfection with COMP siRNA that the extracellular deposition of type I collagen was decreased compared to that observed with control siRNA. Further, COMP knockdown decreased amount collagens type I to V in the medium and on the cell surfaces. Our data suggest that COMP facilitates keloid formation by accelerating collagen deposition, thus providing a new therapeutic target.
Collapse
|
47
|
|
48
|
Skeletal dysplasias associated with mild myopathy-a clinical and molecular review. J Biomed Biotechnol 2010; 2010:686457. [PMID: 20508815 PMCID: PMC2875749 DOI: 10.1155/2010/686457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/15/2010] [Indexed: 11/17/2022] Open
Abstract
Musculoskeletal system is a complex assembly of tissues which acts as scaffold for the body and enables locomotion. It is often overlooked that different components of this system may biomechanically interact and affect each other. Skeletal dysplasias are diseases predominantly affecting the development of the osseous skeleton. However, in some cases skeletal dysplasia patients are referred to neuromuscular clinics prior to the correct skeletal diagnosis. The muscular complications seen in these cases are usually mild and may stem directly from the muscle defect and/or from the altered interactions between the individual components of the musculoskeletal system. A correct early diagnosis may enable better management of the patients and a better quality of life. This paper attempts to summarise the different components of the musculoskeletal system which are affected in skeletal dysplasias and lists several interesting examples of such diseases in order to enable better understanding of the complexity of human musculoskeletal system.
Collapse
|