1
|
Sleiman A, Miller KB, Flores D, Kuan J, Altwasser K, Smith BJ, Kozbenko T, Hocking R, Wood SJ, Huff J, Adam-Guillermin C, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to learning and memory impairment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:57-84. [PMID: 39228295 DOI: 10.1002/em.22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Understanding radiation-induced non-cancer effects on the central nervous system (CNS) is essential for the risk assessment of medical (e.g., radiotherapy) and occupational (e.g., nuclear workers and astronauts) exposures. Herein, the adverse outcome pathway (AOP) approach was used to consolidate relevant studies in the area of cognitive decline for identification of research gaps, countermeasure development, and for eventual use in risk assessments. AOPs are an analytical construct describing critical events to an adverse outcome (AO) in a simplified form beginning with a molecular initiating event (MIE). An AOP was constructed utilizing mechanistic information to build empirical support for the key event relationships (KERs) between the MIE of deposition of energy to the AO of learning and memory impairment through multiple key events (KEs). The evidence for the AOP was acquired through a documented scoping review of the literature. In this AOP, the MIE is connected to the AO via six KEs: increased oxidative stress, increased deoxyribonucleic acid (DNA) strand breaks, altered stress response signaling, tissue resident cell activation, increased pro-inflammatory mediators, and abnormal neural remodeling that encompasses atypical structural and functional alterations of neural cells and surrounding environment. Deposition of energy directly leads to oxidative stress, increased DNA strand breaks, an increase of pro-inflammatory mediators and tissue resident cell activation. These KEs, which are themselves interconnected, can lead to abnormal neural remodeling impacting learning and memory processes. Identified knowledge gaps include improving quantitative understanding of the AOP across several KERs and additional testing of proposed modulating factors through experimental work. Broadly, it is envisioned that the outcome of these efforts could be extended to other cognitive disorders and complement ongoing work by international radiation governing bodies in their review of the system of radiological protection.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, St. Paul Lez Durance, Provence, France
| | - Kathleen B Miller
- Department of Health and Exercise Science, Morrison College Family of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Danicia Flores
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jaqueline Kuan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Robyn Hocking
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Janice Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Park J, Overbey EG, Narayanan SA, Kim J, Tierney BT, Damle N, Najjar D, Ryon KA, Proszynski J, Kleinman A, Hirschberg JW, MacKay M, Afshin EE, Granstein R, Gurvitch J, Hudson BM, Rininger A, Mullane S, Church SE, Meydan C, Church G, Beheshti A, Mateus J, Mason CE. Spatial multi-omics of human skin reveals KRAS and inflammatory responses to spaceflight. Nat Commun 2024; 15:4773. [PMID: 38862494 PMCID: PMC11166909 DOI: 10.1038/s41467-024-48625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/26/2024] [Indexed: 06/13/2024] Open
Abstract
Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature. Post-flight samples showed significant up-regulation of genes related to inflammation and KRAS signaling across all skin regions. These spaceflight-associated changes mapped to specific cellular responses, including altered interferon responses, DNA damage, epithelial barrier disruptions, T-cell migration, and hindered regeneration were located primarily in outer tissue compartments. We also linked epithelial disruption to microbial shifts in skin swab and immune cell activity to PBMC single-cell data from the same crew and timepoints. Our findings present the inaugural collection and examination of astronaut skin, offering insights for future space missions and response countermeasures.
Collapse
Affiliation(s)
- Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eliah G Overbey
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - S Anand Narayanan
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden T Tierney
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Ashley Kleinman
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Richard Granstein
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Justin Gurvitch
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Zhang Y, Zhang Y, Shen C, Hao S, Duan W, Liu L, Wei H. Ionizing radiation alters functional neurotransmission in Drosophila larvae. Front Cell Neurosci 2023; 17:1151489. [PMID: 37484822 PMCID: PMC10357008 DOI: 10.3389/fncel.2023.1151489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Patients undergoing cranial ionizing radiation therapy for brain malignancies are at increased risk of long-term neurocognitive decline, which is poorly understood and currently untreatable. Although the molecular pathogenesis has been intensively researched in many organisms, whether and how ionizing radiation alters functional neurotransmission remains unknown. This is the first study addressing physiological changes in neurotransmission after ionizing radiation exposure. Methods To elucidate the cellular mechanisms of radiation damage, using calcium imaging, we analyzed the effects of ionizing radiation on the neurotransmitter-evoked responses of prothoracicotropic hormone (PTTH)-releasing neurons in Drosophila larvae, which play essential roles in normal larval development. Results The neurotransmitters dopamine and tyramine decreased intracellular calcium levels of PTTH neurons in a dose-dependent manner. In gamma irradiated third-instar larvae, a dose of 25 Gy increased the sensitivity of PTTH neurons to dopamine and tyramine, and delayed development, possibly in response to abnormal functional neurotransmission. This irradiation level did not affect the viability and arborization of PTTH neurons and successful survival to adulthood. Exposure to a 40-Gy dose of gamma irradiation decreased the neurotransmitter sensitivity, physiological viability and axo-dendritic length of PTTH neurons. These serious damages led to substantial developmental delays and a precipitous reduction in the percentage of larvae that survived to adulthood. Our results demonstrate that gamma irradiation alters neurotransmitter-evoked responses, indicating synapses are vulnerable targets of ionizing radiation. Discussion The current study provides new insights into ionizing radiation-induced disruption of physiological neurotransmitter signaling, which should be considered in preventive therapeutic interventions to reduce risks of neurological deficits after photon therapy.
Collapse
Affiliation(s)
- Yi Zhang
- North China Research Institute of Electro-Optics, Beijing, China
| | - Yihao Zhang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Cong Shen
- China Electronics Technology Group Corporation No. 45 Research Institute, Beijing, China
| | - Shun Hao
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Wenlan Duan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Hongying Wei
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Wu R, Zhong J, Song L, Zhang M, Chen L, Zhang L, Qiu Z. Untargeted metabolomic analysis of ischemic injury in human umbilical vein endothelial cells reveals the involvement of arginine metabolism. Nutr Metab (Lond) 2023; 20:17. [PMID: 36998018 DOI: 10.1186/s12986-023-00737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
OBJECTIVE In this study, differentially expressed metabolites of vascular endothelial cells were examined to further understand the metabolic regulation of ischemic injury by untargeted metabolomics. METHOD Human umbilical vein endothelial cells (HUVECs) were selected to construct an ischemia model using oxygen-glucose deprivation (OGD) and 0, 3, 6, and 9 h of treatment. After that, cell survival levels were determined by CCK8 detection. Flow cytometry, ROS detection, JC-1 detection, and western blotting were used to measure apoptosis and oxidative stress in cells. Then, combined with UPLC Orbitrap/MS, we verified the impacted metabolism pathways by western blotting and RT‒PCR. RESULTS CCK8 assays showed that the survival of HUVECs was decreased with OGD treatment. Flow cytometry and the expression of cleaved caspase 3 showed that the apoptosis levels of HUVECs increased following OGD treatment. The ROS and JC-1 results further suggested that oxidative stress injury was aggravated. Then, combined with the heatmap, KEGG and IPA, we found that arginine metabolism was differentially altered during different periods of OGD treatment. Furthermore, the expression of four arginine metabolism-related proteins, ASS1, ARG2, ODC1 and SAT1, was found to change during treatment. CONCLUSION Arginine metabolism pathway-related proteins were significantly altered by OGD treatment, which suggests that they may have a potential role in ischemic injury.
Collapse
Affiliation(s)
- Ruihao Wu
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Jiayin Zhong
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Lei Song
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Min Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lulu Chen
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Li Zhang
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China.
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Zhaohui Qiu
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China.
| |
Collapse
|
5
|
Benković V, Milić M, Oršolić N, Horvat Knežević A, Brozović G, Borojević N. Brain DNA damaging effects of volatile anesthetics and 1 and 2 Gy gamma irradiation in vivo: Preliminary results. Toxicol Ind Health 2023; 39:67-80. [PMID: 36602468 DOI: 10.1177/07482337221145599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although both can cause DNA damage, the combined impact of volatile anesthetics halothane/sevoflurane/isoflurane and radiotherapeutic exposure on sensitive brain cells in vivo has not been previously analyzed. Healthy Swiss albino male mice (240 in total, 48 groups) were exposed to either halothane/sevoflurane/isoflurane therapeutic doses alone (2 h); 1 or 2 gray of gamma radiation alone; or combined exposure. Frontal lobe brain samples from five animals were taken immediately and 2, 6, and 24 h after exposure. DNA damage and cellular repair index were analyzed using the alkaline comet assay and the tail intensity parameter. Elevated tail intensity levels for sevoflurane/halothane were the highest at 6 h and returned to baseline within 24 h for sevoflurane, but not for halothane, while isoflurane treatment caused lower tail intensity than control values. Combined exposure demonstrated a slightly halothane/sevoflurane protective and isoflurane protective effect, which was stronger for 2 than for 1 gray. Cellular repair indices and tail intensity histograms indicated different modes of action in DNA damage creation. Isoflurane/sevoflurane/halothane preconditioning demonstrated protective effects in sensitive brain cells in vivo. Owing to the constant increases in the combined use of radiotherapy and volatile anesthetics, further studies should explore the mechanisms behind these effects, including longer and multiple exposure treatments and in vivo brain tumor models.
Collapse
Affiliation(s)
- Vesna Benković
- Faculty of Science, 117036University of Zagreb, Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, 118938Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nada Oršolić
- Faculty of Science, 117036University of Zagreb, Zagreb, Croatia
| | | | - Gordana Brozović
- Department of Anesthesiology, Reanimatology and ICU, University Hospital for Tumors, 499232Sestre Milosrdnice University Hospital Centre, Zagreb, Croatia.,Faculty of Dental Medicine and Health, 84992University of Osijek, Osijek, Croatia
| | - Nikola Borojević
- 8256Warrington and Halton Teaching Hospitals NHS Foundation Trust, Warrington, UK
| |
Collapse
|
6
|
Biological Effects of Scattered Versus Scanned Proton Beams on Normal Tissues in Total Body Irradiated Mice: Survival, Genotoxicity, Oxidative Stress and Inflammation. Antioxidants (Basel) 2020; 9:antiox9121170. [PMID: 33255388 PMCID: PMC7761103 DOI: 10.3390/antiox9121170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Side effects of proton therapy are poorly studied. Moreover, the differences in the method of dose delivery on normal tissues are not taken into account when proton beams are scanned instead of being scattered. We proposed here to study the effects of both modalities of proton beam delivery on blood; skin; lung and heart in a murine model. In that purpose; C57BL/6 mice were total body irradiated by 190.6 MeV proton beams either by Double Scattering (DS) or by Pencil Beam Scanning (PBS) in the plateau phase before the Bragg Peak. Mouse survival was evaluated. Blood and organs were removed three months after irradiation. Biomarkers of genotoxicity; oxidative stress and inflammation were measured. Proton irradiation was shown to increase lymphocyte micronucleus frequency; lung superoxide dismutase activity; erythrocyte and skin glutathione peroxidase activity; erythrocyte catalase activity; lung; heart and skin oxidized glutathione level; erythrocyte and lung lipid peroxidation and erythrocyte protein carbonylation even 3 months post-irradiation. When comparing both methods of proton beam delivery; mouse survival was not different. However, PBS significantly increased lymphocyte micronucleus frequency; erythrocyte glutathione peroxidase activity and heart oxidized glutathione level compared to DS. These results point out the necessity to take into account the way of delivering dose in PT as it could influence late side effects.
Collapse
|
7
|
Hypoxia destroys the microstructure of microtubules and causes dysfunction of endothelial cells via the PI3K/Stathmin1 pathway. Cell Biosci 2019; 9:20. [PMID: 30820314 PMCID: PMC6380067 DOI: 10.1186/s13578-019-0283-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/13/2019] [Indexed: 11/30/2022] Open
Abstract
Background Endothelial cells (EC) are sensitive to changes in the microenvironment, including hypoxia and ischemia. Disruption of the microtubular network has been reported in cases of ischemia. However, the signaling pathways involved in hypoxia-induced microtubular disruption are unknown. The purpose of this study was to investigate the molecular mechanisms involved in hypoxia-induced microtubular disassembly in human umbilical vein endothelial cells (HUVECs). Results HUVECs were cultured under normoxic or hypoxic conditions and pretreated with or without colchicine or paclitaxel. The MTT assay, Transwell assay, trans-endothelial permeability assay, and 5-bromo-2′-deoxy-uridine staining were used to test the survival rate, migration, permeability, and proliferation of cells, respectively. Transmission electron microscopy and phalloidin staining were used to observe the microstructure and polymerization of microtubules. The results show that the functions of HUVECs and the microtubular structure were destroyed by hypoxia, but were protected by paclitaxel and a reactive oxygen species (ROS) inhibitor. We further used western blot, a luciferase assay, and co-immunoprecipitation to describe a non-transcription-independent mechanism for PI3K activation-inhibited microtubular stability mediated by Stathmin1, a PI3K interactor that functions in microtubule depolymerization. Finally, we determined that hypoxia and ROS blocked the interaction between PI3K and Stathmin1 to activate disassembly of microtubules. Conclusion Thus, our data demonstrate that hypoxia induced the production of ROS and damaged EC function by destroying the microtubular structure through the PI3K/stathmin1 pathway.
Collapse
|
8
|
Yang J, Zhang G, Dong D, Shang P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models. Int J Mol Sci 2018; 19:E2608. [PMID: 30177626 PMCID: PMC6163331 DOI: 10.3390/ijms19092608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
The space environment chiefly includes microgravity and radiation, which seriously threatens the health of astronauts. Bone loss and muscle atrophy are the two most significant changes in mammals after long-term residency in space. In this review, we summarized current understanding of the effects of microgravity and radiation on the musculoskeletal system and discussed the corresponding mechanisms that are related to iron overload and oxidative damage. Furthermore, we enumerated some countermeasures that have a therapeutic potential for bone loss and muscle atrophy through using iron chelators and antioxidants. Future studies for better understanding the mechanism of iron and redox homeostasis imbalance induced by the space environment and developing the countermeasures against iron overload and oxidative damage consequently may facilitate human to travel more safely in space.
Collapse
Affiliation(s)
- Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dandan Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an 710072, China.
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China.
| |
Collapse
|
9
|
Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi Pharm J 2018; 26:876-885. [PMID: 30202231 PMCID: PMC6128707 DOI: 10.1016/j.jsps.2018.03.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/14/2018] [Indexed: 02/06/2023] Open
Abstract
Resveratrol (RL), a natural polyphenol, is known for its diverse biological effects against various human cancer cell lines. But low aqueous solubility, poor bioavailability, and stability limit its efficacy against prostate cancer. In this study polymeric nanoparticles encapsulating resveratrol (RLPLGA) were designed and their cytotoxic and mode of apoptotic cells death against prostate cancer cell line (LNCaP) was determined. Nanoparticles were prepared by solvent displacement method and characterized for particle size, TEM, entrapment efficiency, DSC and drug release study. RLPLGA exhibited a significant decrease in cell viability with 50% and 90% inhibitory concentration (IC50 and IC90) of 15.6 ± 1.49 and 41.1 ± 2.19 μM respectively against the LNCaP cells. This effect was mediated by apoptosis as confirmed by cell cycle arrest at G1-S transition phase, externalization of phosphatidylserine, DNA nicking, loss of mitochondrial membrane potential and reactive oxygen species generation in LNCaP cells. Furthermore, significantly greater cytotoxicity to LNCaP cells was observed with nanoparticles as compared to that of free RL at all tested concentrations. RLPLGA nanoparticles presented no adverse cytotoxic effects on murine macrophages even at 200 μM. Our findings support the potential use of developed resveratrol loaded nanoparticle for the prostate cancer chemoprevention/ chemotherapy with no adverse effect on normal cells.
Collapse
|
10
|
Dewangan J, Tandon D, Srivastava S, Verma AK, Yapuri A, Rath SK. Novel combination of salinomycin and resveratrol synergistically enhances the anti-proliferative and pro-apoptotic effects on human breast cancer cells. Apoptosis 2017; 22:1246-1259. [DOI: 10.1007/s10495-017-1394-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences. Int J Mol Sci 2017; 18:ijms18061166. [PMID: 28561779 PMCID: PMC5485990 DOI: 10.3390/ijms18061166] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 01/05/2023] Open
Abstract
In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.
Collapse
|
12
|
Lumniczky K, Szatmári T, Sáfrány G. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain. Front Immunol 2017; 8:517. [PMID: 28529513 PMCID: PMC5418235 DOI: 10.3389/fimmu.2017.00517] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023] Open
Abstract
Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed.
Collapse
Affiliation(s)
- Katalin Lumniczky
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Tünde Szatmári
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Géza Sáfrány
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| |
Collapse
|
13
|
Balakin VE, Shemyakov AE, Zaichkina SI, Rozanova OM, Smirnova EN, Romanchenko SP, Sorokina SS, Strelnikova NS. Hypofractionated irradiation of the solid form of Ehrlich ascites carcinoma in mice by a thin scanning proton beam. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Bellone JA, Rudobeck E, Hartman RE, Szücs A, Vlkolinský R. A Single Low Dose of Proton Radiation Induces Long-Term Behavioral and Electrophysiological Changes in Mice. Radiat Res 2015. [DOI: 10.1667/rr13903.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 2014; 59:R419-72. [PMID: 25361443 DOI: 10.1088/0031-9155/59/22/r419] [Citation(s) in RCA: 657] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton therapy treatments are based on a proton RBE (relative biological effectiveness) relative to high-energy photons of 1.1. The use of this generic, spatially invariant RBE within tumors and normal tissues disregards the evidence that proton RBE varies with linear energy transfer (LET), physiological and biological factors, and clinical endpoint. Based on the available experimental data from published literature, this review analyzes relationships of RBE with dose, biological endpoint and physical properties of proton beams. The review distinguishes between endpoints relevant for tumor control probability and those potentially relevant for normal tissue complication. Numerous endpoints and experiments on sub-cellular damage and repair effects are discussed. Despite the large amount of data, considerable uncertainties in proton RBE values remain. As an average RBE for cell survival in the center of a typical spread-out Bragg peak (SOBP), the data support a value of ~1.15 at 2 Gy/fraction. The proton RBE increases with increasing LETd and thus with depth in an SOBP from ~1.1 in the entrance region, to ~1.15 in the center, ~1.35 at the distal edge and ~1.7 in the distal fall-off (when averaged over all cell lines, which may not be clinically representative). For small modulation widths the values could be increased. Furthermore, there is a trend of an increase in RBE as (α/β)x decreases. In most cases the RBE also increases with decreasing dose, specifically for systems with low (α/β)x. Data on RBE for endpoints other than clonogenic cell survival are too diverse to allow general statements other than that the RBE is, on average, in line with a value of ~1.1. This review can serve as a source for defining input parameters for applying or refining biophysical models and to identify endpoints where additional radiobiological data are needed in order to reduce the uncertainties to clinically acceptable levels.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 30 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
16
|
Girdhani S, Sachs R, Hlatky L. Biological Effects of Proton Radiation: What We Know and Don't Know. Radiat Res 2013; 179:257-72. [DOI: 10.1667/rr2839.1] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Aktas S, Comelekoglu U, Yilmaz SN, Yalin S, Arslantas S, Yilmaz BC, Sogut F, Berkoz M, Sungur MA. Electrophysiological, biochemical and ultrastructural effects of radiotherapy on normal rat sciatic nerve. Int J Radiat Biol 2012; 89:155-61. [DOI: 10.3109/09553002.2013.734941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|