1
|
Grifoni D, Bustaffa E, Sabatino L, Calastrini F, Minichilli F, Gaggini M, Berti S, Vassalle C. The Dark Triad of Particulate Matter, Oxidative Stress and Coronary Artery Disease: What About the Antioxidant Therapeutic Potential. Antioxidants (Basel) 2025; 14:572. [PMID: 40427454 DOI: 10.3390/antiox14050572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Particulate matter (PM) is a complex mixture of particles with different adverse effects on health, especially on the cardiovascular (CV) risk and disease (e.g., increased risk of total and CV mortality, ischemic heart disease, heart failure, stroke, hypertension, dyslipidemia and type 2 diabetes). Since oxidative stress (OS) and inflammation are the main key mechanisms by which PM exerted its biological effects on health, several oxidative and inflammatory-related biomarkers have been measured and associated with PM; abnormalities in these parameters in relation to PM highlight the key role of this relationship in terms of adverse health effects, including CV conditions. Antioxidant strategies might prevent/reverse, almost partly, CV effects related to PM exposure, by addressing OS and inflammation, although the clinical gain of these interventional tools is not yet clearly demonstrated. This review aims to summarize PM source and composition, discussing OS and inflammatory events associated with environmental PM exposure as key mechanistic determinants of CV risk and acute event precipitation. Moreover, the modifying potential of antioxidants, especially in subjects more susceptible to the adverse effects of air pollution and/or more highly exposed, will be discussed as a promising research area beyond conventional strategies actually available to prevent the harmful effects of PM (e.g., reduction of pollution sources and population exposure, assessment of air quality standards) in order to better face this dark triad composed of PM, OS and CV disease.
Collapse
Affiliation(s)
- Daniele Grifoni
- Institute of Bioeconomy (IBE), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Laboratory of Monitoring and Environmental Modelling for the Sustainable Development (LaMMA Consortium), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Elisa Bustaffa
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Calastrini
- Institute of Bioeconomy (IBE), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Laboratory of Monitoring and Environmental Modelling for the Sustainable Development (LaMMA Consortium), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Fabrizio Minichilli
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Sergio Berti
- Fondazione CNR-Regione Toscana G Monasterio, Ospedale del Cuore "Gaetano Pasquinucci", Via Aurelia Sud, 54100 Massa, Italy
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
2
|
Hua Q, Meng X, Gong J, Qiu X, Shang J, Xue T, Zhu T. Ozone exposure and cardiovascular disease: A narrative review of epidemiology evidence and underlying mechanisms. FUNDAMENTAL RESEARCH 2025; 5:249-263. [PMID: 40166088 PMCID: PMC11955045 DOI: 10.1016/j.fmre.2024.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2025] Open
Abstract
Ozone (O3) poses a significant global public health concern as it exerts adverse effects on human cardiovascular health. Nevertheless, there remains a lack of comprehensive understanding regarding the relationships between O3 exposure and the risk of cardiovascular diseases (CVD), as well as the underlying biological mechanisms. To address this knowledge gap, this narrative review meticulously summarizes the existing epidemiological evidence, susceptibility, and potential underlying biological mechanisms linking O3 exposure with CVD. An increasing body of epidemiological studies has demonstrated that O3 exposure heightens the incidence and mortality of CVD, including specific subtypes such as ischemic heart disease, hypertension, and heart failure. Certain populations display heightened vulnerability to these effects, particularly children, the elderly, obese individuals, and those with pre-existing conditions. Proposed biological mechanisms suggest that O3 exposure engenders respiratory and systemic inflammation, oxidative stress, disruption of autonomic nervous and neuroendocrine systems, as well as impairment of coagulation function, glucose, and lipid metabolism. Ultimately, these processes contribute to vascular dysfunction and the development of CVD. However, some studies have reported the absence of associations between O3 and CVD, or even potentially protective effects of O3. Inconsistencies among the literature may be attributed to inaccurate assessment of personal O3 exposure levels in epidemiologic studies, as well as confounding effects stemming from co-pollutants and temperature. Consequently, our findings underscore the imperative for further research, including the development of reliable methodologies for assessing personal O3 exposure, exploration of O3 exposure's impact on cardiovascular health, and elucidation of its biological mechanisms. These endeavors will consolidate the causal relationship between O3 and cardiovascular diseases, subsequently aiding efforts to mitigate the risks associated with O3 exposure.
Collapse
Affiliation(s)
- Qiaoyi Hua
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xin Meng
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jicheng Gong
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100871, China
| | - Tong Zhu
- SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Ge Y, Nash MS, Winnik WM, Bruno M, Padgett WT, Grindstaff RD, Hazari MS, Farraj AK. Proteomics Reveals Divergent Cardiac Inflammatory and Metabolic Responses After Inhalation of Ambient Particulate Matter With or Without Ozone. Cardiovasc Toxicol 2024; 24:1348-1363. [PMID: 39397197 DOI: 10.1007/s12012-024-09931-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Inhalation of ambient particulate matter (PM) and ozone (O3) has been associated with increased cardiovascular morbidity and mortality. However, the interactive effects of PM and O3 on cardiac dysfunction and disease have not been thoroughly examined, especially at a proteomic level. The purpose of this study was to identify and compare proteome changes in spontaneously hypertensive (SH) rats co-exposed to concentrated ambient particulates (CAPs) and O3, with a focus on investigating inflammatory and metabolic pathways, which are the two major ones implicated in the pathophysiology of cardiac dysfunction. For this, we measured and compared changes in expression status of 9 critical pro- and anti-inflammatory cytokines using multiplexed ELISA and 450 metabolic proteins involved in ATP production, oxidative phosphorylation, cytoskeletal organization, and stress response using two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) in cardiac tissue of SH rats exposed to CAPs alone, O3 alone, and CAPs + O3. Proteomic expression profiling revealed that CAPs alone, O3 alone, and CAPs + O3 differentially altered protein expression patterns, and utilized divergent mechanisms to affect inflammatory and metabolic pathways and responses. Ingenuity Pathway Analysis (IPA) of the proteomic data demonstrated that the metabolic protein network centered by gap junction alpha-1 protein (GJA 1) was interconnected with the inflammatory cytokine network centered by nuclear factor kappa beta (NF-kB) potentially suggesting inflammation-induced alterations in metabolic pathways, or vice versa, collectively contributing to the development of cardiac dysfunction in response to CAPs and O3 exposure. These findings may enhance understanding of the pathophysiology of cardiac dysfunction induced by air pollution and provide testable hypotheses regarding mechanisms of action.
Collapse
Affiliation(s)
- Yue Ge
- The Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, 27711, USA.
| | - Maliha S Nash
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Witold M Winnik
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Maribel Bruno
- The Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - William T Padgett
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Rachel D Grindstaff
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Mehdi S Hazari
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| | - Aimen K Farraj
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Durham, NC, 27711, USA
| |
Collapse
|
4
|
Zhou X, Wei C, Chen Z, Xia X, Wang L, Li X. Potential mechanisms of ischemic stroke induced by heat exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175815. [PMID: 39197783 DOI: 10.1016/j.scitotenv.2024.175815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Recent decades of epidemiological and clinical research have suggested that heat exposure could be a potential risk factor for ischemic stroke. Despite climate factors having a minor impact on individuals compared with established risk factors such as smoking, their widespread and persistent effects significantly affect public health. The mechanisms by which heat exposure triggers ischemic stroke are currently unclear. However, several potential mechanisms, such as the impact of temperature variability on stroke risk factors, inflammation, oxidative stress, and coagulation system changes, have been proposed. This article details the potential mechanisms by which heat exposure may induce ischemic stroke, aiming to guide the prevention and treatment of high-risk groups in hot climates and support public health policy development.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chanjuan Wei
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Kuntic M, Kuntic I, Hahad O, Lelieveld J, Münzel T, Daiber A. Impact of air pollution on cardiovascular aging. Mech Ageing Dev 2023; 214:111857. [PMID: 37611809 DOI: 10.1016/j.mad.2023.111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The world population is aging rapidly, and by some estimates, the number of people older than 60 will double in the next 30 years. With the increase in life expectancy, adverse effects of environmental exposures start playing a more prominent role in human health. Air pollution is now widely considered the most detrimental of all environmental risk factors, with some studies estimating that almost 20% of all deaths globally could be attributed to poor air quality. Cardiovascular diseases are the leading cause of death worldwide and will continue to account for the most significant percentage of non-communicable disease burden. Cardiovascular aging with defined pathomechanisms is a major trigger of cardiovascular disease in old age. Effects of environmental risk factors on cardiovascular aging should be considered in order to increase the health span and reduce the burden of cardiovascular disease in older populations. In this review, we explore the effects of air pollution on cardiovascular aging, from the molecular mechanisms to cardiovascular manifestations of aging and, finally, the age-related cardiovascular outcomes. We also explore the distinction between the effects of air pollution on healthy aging and disease progression. Future efforts should focus on extending the health span rather than the lifespan.
Collapse
Affiliation(s)
- Marin Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Ivana Kuntic
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany
| | - Omar Hahad
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Thomas Münzel
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| | - Andreas Daiber
- University Medical Center Mainz, Department for Cardiology 1, Molecular Cardiology, Mainz, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
6
|
Zhao J, Yang Q, Liu Z, Xu P, Tian L, Yan J, Li K, Lin B, Bian L, Xi Z, Liu X. The impact of subchronic ozone exposure on serum metabolome and the mechanisms of abnormal bile acid and arachidonic acid metabolisms in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114573. [PMID: 36701875 DOI: 10.1016/j.ecoenv.2023.114573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 06/17/2023]
Abstract
Ambient ozone (O3) pollution can induce respiratory and cardiovascular toxicity. However, its impact on the metabolome and the underlying mechanisms remain unclear. This study first investigated the serum metabolite changes in rats exposed to 0.5 ppm O3 for 3 months using untargeted metabolomic approach. Results showed chronic ozone exposure significantly altered the serum levels of 34 metabolites with potential increased risk of digestive, respiratory and cardiovascular disease. Moreover, bile acid synthesis and secretion, and arachidonic acid (AA) metabolism became the most prominent affected metabolic pathways after O3 exposure. Further studies on the mechanisms found that the elevated serum toxic bile acid was not due to the increased biosynthesis in the liver, but the reduced reuptake from the portal vein to hepatocytes owing to repressed Ntcp and Oatp1a1, and the decreased bile acid efflux in hepatocytes as a results of inhibited Bsep, Ostalpha and Ostbeta. Meanwhile, decreased expressions of detoxification enzyme of SULT2A1 and the important regulators of FXR, PXR and HNF4α also contributed to the abnormal bile acids. In addition, O3 promoted the conversion of AA into thromboxane A2 (TXA2) and 20-hydroxyarachidonic acid (20-HETE) in the liver by up-regulation of Fads2, Cyp4a and Tbxas1 which resulting in decreased AA and linoleic acid (LA), and increased thromboxane B2 (TXB2) and 20-HETE in the serum. Furthermore, apparent hepatic chronic inflammation, fibrosis and abnormal function were found in ozone-exposed rats. These results indicated chronic ozone exposure could alter serum metabolites by interfering their metabolism in the liver, and inducing liver injury to aggravate metabolic disorders.
Collapse
Affiliation(s)
- Jiao Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Qingcheng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Zhiyuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Pengfei Xu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| |
Collapse
|
7
|
Wu T, Li Z, Wei Y. Advances in understanding mechanisms underlying mitochondrial structure and function damage by ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160589. [PMID: 36462650 DOI: 10.1016/j.scitotenv.2022.160589] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Mitochondria are double-membraned organelles found in eukaryotic cells. The integrity of mitochondrial structure and function determines cell destiny. Mitochondria are also the "energy factories of cells." The production of energy is accompanied by reactive oxygen species (ROS) generation. Generally, the production and consumption of ROS maintains a balance in cells. Ozone is a highly oxidizing, harmful substance in ground-level atmosphere. Ozone inhalation causes oxidative injury owing to the generation of ROS, resulting in mitochondrial oxidative stress overload. Oxidative damage to the mitochondria induces a vicious cycle of ROS production which might destroy mitochondrial DNA and mitochondrial structure and function in cells. ROS can alter the phosphorylation of various signaling molecules, triggering a series of downstream signaling pathway reactions. These include inflammatory responses, pyroptosis, autophagy, and apoptosis. Changes involving these molecular mechanisms may be related to the occurrence of disease. According to numerous epidemiological investigations, ozone exposure induces respiratory, cardiovascular, and nervous system diseases in humans. In addition, these systems require large quantities of energy. Hence, the mitochondrial damage caused by ozone may act as a bridge between human diseases. However, the specific molecular mechanisms involved require further investigation. This review discusses our understanding of the structure and function of mitochondria the mechanisms underlying ozone-induced mitochondrial damage.
Collapse
Affiliation(s)
- Tingting Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
8
|
Hazari MS, Phillips K, Stratford KM, Khan M, Thompson L, Oshiro W, Hudson G, Herr DW, Farraj AK. Exposure to Intermittent Noise Exacerbates the Cardiovascular Response of Wistar-Kyoto Rats to Ozone Inhalation and Arrhythmogenic Challenge. Cardiovasc Toxicol 2021; 21:336-348. [PMID: 33389603 PMCID: PMC8074345 DOI: 10.1007/s12012-020-09623-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022]
Abstract
Noise has become a prevalent public health problem across the world. Although there is a significant amount of data demonstrating the harmful effects of noise on the body, very little is known about how it impacts subsequent responses to other environmental stressors like air pollution, which tend to colocalize in urban centers. Therefore, this study was conducted to determine the effect of intermittent noise on cardiovascular function and subsequent responses to ozone (O3). Male Wistar-Kyoto rats implanted with radiotelemeters to non-invasively measure heart rate (HR) and blood pressure (BP), and assess heart rate variability (HRV) and baroreflex sensitivity (BRS) were kept in the quiet or exposed to intermittent white noise (85-90 dB) for one week and then exposed to either O3 (0.8 ppm) or filtered air. Left ventricular function and arrhythmia sensitivity were measured 24 h after exposure. Intermittent noise caused an initial increase in HR and BP, which decreased significantly later in the regimen and coincided with an increase in HRV and BRS. Noise caused HR and BP to be significantly elevated early during O3 and lower at the end when compared to animals kept in the quiet while the increased HRV and BRS persisted during the 24 h after. Lastly, noise increased arrhythmogenesis and may predispose the heart to mechanical function changes after O3. This is the first study to demonstrate that intermittent noise worsens the cardiovascular response to inhaled O3. These effects may occur due to autonomic changes and dysregulation of homeostatic controls, which persist one day after exposure to noise. Hence, co-exposure to noise should be taken into account when assessing the health effects of urban air pollution.
Collapse
Affiliation(s)
- Mehdi S Hazari
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA.
| | - Kaitlyn Phillips
- Department of Environmental Science and Engineering, Gillings School of Public Health, University of North Carolina - Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kimberly M Stratford
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Malek Khan
- Inhalation Toxicology Facilities Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Leslie Thompson
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA
| | - Wendy Oshiro
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA
| | - George Hudson
- Inhalation Toxicology Facilities Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - David W Herr
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Aimen K Farraj
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 Alexander Drive, B105, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
9
|
Tong H, Snow SJ, Chen H, Schladweiler MC, Carswell G, Chorley B, Kodavanti UP. Fish oil and olive oil-enriched diets alleviate acute ozone-induced cardiovascular effects in rats. Toxicol Appl Pharmacol 2020; 409:115296. [PMID: 33091443 DOI: 10.1016/j.taap.2020.115296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
Fish oil (FO) and olive oil (OO) supplementations attenuate the cardiovascular responses to inhaled concentrated ambient particles in human volunteers. This study was designed to examine the cardiovascular effects of ozone (O3) exposure and the efficacy of FO and OO-enriched diets in attenuating the cardiovascular effects from O3 exposure in rats. Rats were fed either a normal diet (ND), a diet enriched with 6% FO or OO starting at 4 weeks of age. Eight weeks following the start of these diet, animals were exposed to filtered air (FA) or 0.8 ppm O3, 4 h/day for 2 consecutive days. Immediately after exposure, cardiac function was measured as the indices of left-ventricular developed pressure (LVDP) and contractility (dP/dtmax and dP/dtmin) before ischemia. In addition, selective microRNAs (miRNAs) of inflammation, endothelial function, and cardiac function were assessed in cardiac tissues to examine the molecular alterations of diets and O3 exposure. Pre-ischemic LVDP and dP/dtmax were lower after O3 exposure in rats fed ND but not FO and OO. Cardiac miRNAs expressions were altered by both diet and O3 exposure. Specifically, O3-induced up-regulation of miR-150-5p and miR-208a-5p were attenuated by FO and/or OO. miR-21 was up-regulated by both FO and OO after O3 exposure. This study demonstrated that O3-induced cardiovascular responses appear to be blunted by FO and OO diets. O3-induced alterations in miRNAs linked to inflammation, cardiac function, and endothelial dysfunction support these pathways are involved, and dietary supplementation with FO or OO may alleviate these adverse cardiovascular effects in rats.
Collapse
Affiliation(s)
- Haiyan Tong
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Chapel Hill, NC 27514, United States.
| | - Samantha J Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Hao Chen
- Oak Ridge Institute of Science and Education, Oak Ridge, TN 37830, United States.
| | - Mette C Schladweiler
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Gleta Carswell
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Brian Chorley
- Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| |
Collapse
|
10
|
Miller MR. Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med 2020; 151:69-87. [PMID: 31923583 PMCID: PMC7322534 DOI: 10.1016/j.freeradbiomed.2020.01.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular causes have been estimated to be responsible for more than two thirds of the considerable mortality attributed to air pollution. There is now a substantial body of research demonstrating that exposure to air pollution has many detrimental effects throughout the cardiovascular system. Multiple biological mechanisms are responsible, however, oxidative stress is a prominent observation at many levels of the cardiovascular impairment induced by pollutant exposure. This review provides an overview of the evidence that oxidative stress is a key pathway for the different cardiovascular actions of air pollution.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH4 3RL, United Kingdom.
| |
Collapse
|
11
|
Bingham A, Platt M. A Non-ST Elevation Myocardial Infarction Associated with Alternative Medicine Ozone Infusion. J Emerg Med 2019; 58:106-109. [PMID: 31708316 DOI: 10.1016/j.jemermed.2019.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Alternative medicine is frequently used by patients even though most treatments are without demonstrable benefit and have not been properly evaluated for medical safety. Intravenous ozone is a modern form of alternative medicine. Even though ozone has been used medically for more than a century, ozone as an infusion is scientifically untested and potentially dangerous. This case notes a patient who underwent an ozone infusion who experienced syncope and a non-ST elevation myocardial infarction immediately thereafter. CASE REPORT A 50-year-old white woman presented after experiencing syncope after completion of ozone infusion therapy. The ozone infusion consisted of her blood being drawn and ozone gas being injected into the sample. This blood was subsequently transfused back into the patient's blood stream via peripheral intravenous catheter. An initial electrocardiogram revealed no signs of infarction or ischemia, but her initial troponin I was elevated and continued to rise. She was admitted for a non-ST elevation myocardial infarction and underwent an extensive cardiac evaluation. It was determined that the oxidative myocardial stress secondary to ozone was associated with the non-ST elevation myocardial infarction. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: More patients are turning to alternative medicine. Unfortunately, the published literature regarding intravenous ozone exposure is scant; however, a multitude of studies have shown that ozone can have hazardous effects, including that of detrimental cardiovascular oxidative stress. Emergency physicians need to be aware of these novel treatments and their potential undetermined effects.
Collapse
Affiliation(s)
- Andrew Bingham
- Department of Emergency Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Melissa Platt
- Department of Emergency Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
12
|
Kelly FJ, Fussell JC. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic Biol Med 2017; 110:345-367. [PMID: 28669628 DOI: 10.1016/j.freeradbiomed.2017.06.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
13
|
Goodman JE, Prueitt RL, Sax SN, Pizzurro DM, Lynch HN, Zu K, Venditti FJ. Ozone exposure and systemic biomarkers: Evaluation of evidence for adverse cardiovascular health impacts. Crit Rev Toxicol 2016; 45:412-52. [PMID: 25959700 DOI: 10.3109/10408444.2015.1031371] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The US Environmental Protection Agency (EPA) recently concluded that there is likely to be a causal relationship between short-term (< 30 days) ozone exposure and cardiovascular (CV) effects; however, biological mechanisms to link transient effects with chronic cardiovascular disease (CVD) have not been established. Some studies assessed changes in circulating levels of biomarkers associated with inflammation, oxidative stress, coagulation, vasoreactivity, lipidology, and glucose metabolism after ozone exposure to elucidate a biological mechanism. We conducted a weight-of-evidence (WoE) analysis to determine if there is evidence supporting an association between changes in these biomarkers and short-term ozone exposure that would indicate a biological mechanism for CVD below the ozone National Ambient Air Quality Standard (NAAQS) of 75 parts per billion (ppb). Epidemiology findings were mixed for all biomarker categories, with only a few studies reporting statistically significant changes and with no consistency in the direction of the reported effects. Controlled human exposure studies of 2 to 5 hours conducted at ozone concentrations above 75 ppb reported small elevations in biomarkers for inflammation and oxidative stress that were of uncertain clinical relevance. Experimental animal studies reported more consistent results among certain biomarkers, although these were also conducted at ozone exposures well above 75 ppb and provided limited information on ozone exposure-response relationships. Overall, the current WoE does not provide a convincing case for a causal relationship between short-term ozone exposure below the NAAQS and adverse changes in levels of biomarkers within and across categories, but, because of study limitations, they cannot not provide definitive evidence of a lack of causation.
Collapse
|
14
|
Prueitt RL, Lynch HN, Zu K, Sax SN, Venditti FJ, Goodman JE. Weight-of-evidence evaluation of long-term ozone exposure and cardiovascular effects. Crit Rev Toxicol 2015; 44:791-822. [PMID: 25257962 DOI: 10.3109/10408444.2014.937855] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We conducted a weight-of-evidence (WoE) analysis to assess whether the current body of research supports a causal relationship between long-term ozone exposure (defined by EPA as at least 30 days in duration) at ambient levels and cardiovascular (CV) effects. We used a novel WoE framework based on the United States Environmental Protection Agency's National Ambient Air Quality Standards causal framework for this analysis. Specifically, we critically evaluated and integrated the relevant epidemiology and experimental animal data and classified a causal determination based on categories proposed by the Institute of Medicine's 2008 report, Improving the Presumptive Disability Decision-making Process for Veterans. We found that the risks of CV effects are largely null across human and experimental animal studies. The few positive associations reported in studies of CV morbidity and mortality are very small in magnitude, mainly reported in single-pollutant models, and likely attributable to bias, chance, or confounding. The few positive effects in experimental animal studies were observed mainly in ex vivo studies at high exposures, and even the in vivo findings are not likely relevant to humans. The available data also do not support a biologically plausible mechanism for the effects of ozone on the CV system. Overall, the current WoE provides no convincing case for a causal relationship between long-term exposure to ambient ozone and adverse effects on the CV system in humans, but the limitations of the available studies preclude definitive conclusions regarding a lack of causation; thus, we categorize the strength of evidence for a causal relationship between long-term exposure to ozone and CV effects as "below equipoise."
Collapse
|
15
|
Goodman JE, Prueitt RL, Sax SN, Lynch HN, Zu K, Lemay JC, King JM, Venditti FJ. Weight-of-evidence evaluation of short-term ozone exposure and cardiovascular effects. Crit Rev Toxicol 2015; 44:725-90. [PMID: 25257961 DOI: 10.3109/10408444.2014.937854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is a relatively large body of research on the potential cardiovascular (CV) effects associated with short-term ozone exposure (defined by EPA as less than 30 days in duration). We conducted a weight-of-evidence (WoE) analysis to assess whether it supports a causal relationship using a novel WoE framework adapted from the US EPA's National Ambient Air Quality Standards causality framework. Specifically, we synthesized and critically evaluated the relevant epidemiology, controlled human exposure, and experimental animal data and made a causal determination using the same categories proposed by the Institute of Medicine report Improving the Presumptive Disability Decision-making Process for Veterans ( IOM 2008). We found that the totality of the data indicates that the results for CV effects are largely null across human and experimental animal studies. The few statistically significant associations reported in epidemiology studies of CV morbidity and mortality are very small in magnitude and likely attributable to confounding, bias, or chance. In experimental animal studies, the reported statistically significant effects at high exposures are not observed at lower exposures and thus not likely relevant to current ambient ozone exposures in humans. The available data also do not support a biologically plausible mechanism for CV effects of ozone. Overall, the current WoE provides no convincing case for a causal relationship between short-term exposure to ambient ozone and adverse effects on the CV system in humans, but the limitations of the available studies preclude definitive conclusions regarding a lack of causation. Thus, we categorize the strength of evidence for a causal relationship between short-term exposure to ozone and CV effects as "below equipoise."
Collapse
|
16
|
Vella RE, Pillon NJ, Zarrouki B, Croze ML, Koppe L, Guichardant M, Pesenti S, Chauvin MA, Rieusset J, Géloën A, Soulage CO. Ozone exposure triggers insulin resistance through muscle c-Jun N-terminal kinase activation. Diabetes 2015; 64:1011-24. [PMID: 25277399 DOI: 10.2337/db13-1181] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A growing body of evidence suggests that exposure to traffic-related air pollution is a risk factor for type 2 diabetes. Ozone, a major photochemical pollutant in urban areas, is negatively associated with fasting glucose and insulin levels, but most aspects of this association remain to be elucidated. Using an environmentally realistic concentration (0.8 parts per million), we demonstrated that exposure of rats to ozone induced whole-body insulin resistance and oxidative stress, with associated endoplasmic reticulum (ER) stress, c-Jun N-terminal kinase (JNK) activation, and disruption of insulin signaling in skeletal muscle. Bronchoalveolar lavage fluids from ozone-treated rats reproduced this effect in C2C12 myotubes, suggesting that toxic lung mediators were responsible for the phenotype. Pretreatment with the chemical chaperone 4-phenylbutyric acid, the JNK inhibitor SP600125, or the antioxidant N-acetylcysteine alleviated insulin resistance, demonstrating that ozone sequentially triggered oxidative stress, ER stress, and JNK activation to impair insulin signaling in muscle. This study is the first to report that ozone plays a causative role in the development of insulin resistance, suggesting that it could boost the development of diabetes. We therefore provide a potential mechanism linking pollutant exposure and the increased incidence of metabolic diseases.
Collapse
Affiliation(s)
- Roxane E Vella
- Université de Lyon, Oullins, France Institut National de la Santé et de la Recherche Médicale, UMR 1060 CarMeN, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Villeurbanne, France Institut National des Sciences Appliquées de Lyon, Multi-disciplinary Institute of Lipid Biochemistry (IMBL), Villeurbanne, France
| | - Nicolas J Pillon
- Université de Lyon, Oullins, France Institut National de la Santé et de la Recherche Médicale, UMR 1060 CarMeN, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Villeurbanne, France Institut National des Sciences Appliquées de Lyon, Multi-disciplinary Institute of Lipid Biochemistry (IMBL), Villeurbanne, France
| | - Bader Zarrouki
- Université de Lyon, Oullins, France Institut National de la Santé et de la Recherche Médicale, UMR 1060 CarMeN, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Villeurbanne, France Institut National des Sciences Appliquées de Lyon, Multi-disciplinary Institute of Lipid Biochemistry (IMBL), Villeurbanne, France
| | - Marine L Croze
- Université de Lyon, Oullins, France Institut National de la Santé et de la Recherche Médicale, UMR 1060 CarMeN, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Villeurbanne, France Institut National des Sciences Appliquées de Lyon, Multi-disciplinary Institute of Lipid Biochemistry (IMBL), Villeurbanne, France
| | - Laetitia Koppe
- Université de Lyon, Oullins, France Institut National de la Santé et de la Recherche Médicale, UMR 1060 CarMeN, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Villeurbanne, France Institut National des Sciences Appliquées de Lyon, Multi-disciplinary Institute of Lipid Biochemistry (IMBL), Villeurbanne, France
| | - Michel Guichardant
- Université de Lyon, Oullins, France Institut National de la Santé et de la Recherche Médicale, UMR 1060 CarMeN, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Villeurbanne, France Institut National des Sciences Appliquées de Lyon, Multi-disciplinary Institute of Lipid Biochemistry (IMBL), Villeurbanne, France
| | - Sandra Pesenti
- Université de Lyon, Oullins, France Institut National de la Santé et de la Recherche Médicale, UMR 1060 CarMeN, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Villeurbanne, France
| | - Marie-Agnès Chauvin
- Université de Lyon, Oullins, France Institut National de la Santé et de la Recherche Médicale, UMR 1060 CarMeN, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Villeurbanne, France
| | - Jennifer Rieusset
- Université de Lyon, Oullins, France Institut National de la Santé et de la Recherche Médicale, UMR 1060 CarMeN, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Villeurbanne, France
| | - Alain Géloën
- Université de Lyon, Oullins, France Institut National de la Santé et de la Recherche Médicale, UMR 1060 CarMeN, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Villeurbanne, France Institut National des Sciences Appliquées de Lyon, Multi-disciplinary Institute of Lipid Biochemistry (IMBL), Villeurbanne, France
| | - Christophe O Soulage
- Université de Lyon, Oullins, France Institut National de la Santé et de la Recherche Médicale, UMR 1060 CarMeN, Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Villeurbanne, France Institut National des Sciences Appliquées de Lyon, Multi-disciplinary Institute of Lipid Biochemistry (IMBL), Villeurbanne, France
| |
Collapse
|
17
|
Wang G, Jiang R, Zhao Z, Song W. Effects of ozone and fine particulate matter (PM(2.5)) on rat system inflammation and cardiac function. Toxicol Lett 2012. [PMID: 23182954 DOI: 10.1016/j.toxlet.2012.11.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In order to understand the toxic mechanisms of cardiovascular system injuries induced by ambient PM(2.5) and/or ozone, a subacute toxicological animal experiment was designed with exposure twice a week for 3 continuous weeks. Wistar rats were randomly categorized into 8 groups (n=6): 1 control group, 3 groups exposed to fine particulate matters (PM(2.5)) alone at 3 doses (0.2, 0.8, or 3.2 mg/rat), 1 group to ozone (0.81 ppm) alone and 3 groups to ozone plus PM(2.5) at 3 doses (0.2, 0.8, or 3.2 mg/rat). Heart rate (HR) and electrocardiogram (ECG) was monitored at approximately 24-h both after the 3rd exposure and the last (6th) exposure, and systolic blood pressure (SBP) was monitored at approximately 24-h after the 6th exposure. Biomarkers of systemic inflammation and injuries (CRP, IL-6, LDH, CK), heart oxidative stress (MDA, SOD) and endothelial function (ET-1, VEGF) were analyzed after the 6th exposure. Additionally, myocardial ultrastructural alterations were observed under transmission electron microscopy (TEM) for histopathological analyses. Results showed that PM(2.5) alone exposure could trigger the significant increase of CRP, MDA, CK, ET-1 and SBP and decrease of heart rate variability (HRV), a marker of cardiac autonomic nervous system (ANS) function. Ozone alone exposure in rats did not show significant alterations in any indicators. Ozone plus PM(2.5) exposure, however, induced CRP, IL-6, CK, LDH and MDA increase, SOD and HRV decrease significantly in a dose-response way. Meanwhile, abnormal ECG types were monitored in rats exposed to PM(2.5) with and without ozone and obvious myocardial ultrastructural changes were observed by TEM. In conclusion, PM(2.5) alone exposure could cause inflammation, endothelial function and ANS injuries, and ozone potentiated these effects induced by PM(2.5).
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Environmental Health, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai 200032,China
| | | | | | | |
Collapse
|
18
|
Tankersley CG, Georgakopoulos D, Tang WY, Abston E, Bierman A, Sborz N. Effects of ozone and particulate matter on cardiac mechanics: role of the atrial natriuretic peptide gene. Toxicol Sci 2012; 131:95-107. [PMID: 22977167 DOI: 10.1093/toxsci/kfs273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A positive association between air pollution exposure and increased human risk of chronic heart disease progression is well established. In the current study, we test two hypotheses: (1) the cardiac compensatory changes in response to air pollution are dependent on its composition and (2) specific cardiac adaptations are regulated by atrial natriuretic peptide (ANP). We address these hypotheses by initially examining the exposure effects of ozone (O(3)) and/or particulate matter (PM) on cardiac function in C57Bl/6J (B6) mice. Subsequently, the results are compared with cardiac functional changes to the same exposures in Nppa (the precursor gene for ANP) knockout (KO) mice. Separate groups of mice underwent 3 consecutive days of the same exposure sequence for 3h each consisting of the following: (1) 6h of filtered air (FAFA), (2) O(3) then FA (O(3)FA), (3) FA then carbon black (FACB), or (4) O(3) then CB. Cardiac function was assessed using a conductance catheter to generate cardiac pressure-volume loops 8-10h following each exposure sequence. As compared with FAFA, each sequence led to a substantial drop (as much as 33%) in stroke volume and cardiac output. However, these losses of cardiac function occurred by different compensatory mechanisms dependent on the pollutant composition. For example, O(3)FA exposure led to reductions in both end-systolic and end-diastolic left ventricular (LV) volumes, whereas FACB exposure led an increase in end-diastolic LV volume. These same cardiac compensatory changes were largely abolished in Nppa KO mice following O(3)FA or FACB exposure. These results suggest that cardiac functional changes in response to air pollution exposure are strongly dependent on the pollutant constituents, especially related to O(3) and/or PM. Furthermore, ANP regulation appears to be crucial to these cardiac compensatory mechanisms induced by air pollution.
Collapse
Affiliation(s)
- Clarke G Tankersley
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Sethi R, Manchanda S, Perepu RSP, Kumar A, Garcia C, Kennedy RH, Palakurthi S, Dostal D. Differential expression of caveolin-1 and caveolin-3: potential marker for cardiac toxicity subsequent to chronic ozone inhalation. Mol Cell Biochem 2012; 369:9-15. [DOI: 10.1007/s11010-012-1363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 06/08/2012] [Indexed: 11/30/2022]
|