1
|
Cao X, Ling C, Liu Y, Gu Y, Huang J, Sun W. Pleiotropic Gene HMGA2 Regulates Myoblast Proliferation and Affects Body Size of Sheep. Animals (Basel) 2024; 14:2721. [PMID: 39335310 PMCID: PMC11428621 DOI: 10.3390/ani14182721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Uncovering genes associated with muscle growth and body size will benefit the molecular breeding of meat Hu sheep. HMGA2 has proven to be an important gene in mouse muscle growth and is associated with the body size of various species. However, its roles in sheep are still limited. Using sheep myoblast as a cell model, the overexpression of HMGA2 significantly promoted sheep myoblast proliferation, while interference with HMGA2 expression inhibited proliferation, indicated by qPCR, EdU, and CCK-8 assays. Furthermore, the dual-luciferase reporter system indicated that the region NC_056056.1: 154134300-154134882 (-618 to -1200 bp upstream of the HMGA2 transcription start site) was one of the habitats of the HMGA2 core promoter, given the observation that this fragment led to a ~3-fold increase in luciferase activity. Interestingly, SNP rs428001129 (NC_056056.1:g.154134315 C>A) was detected in this fragment by Sanger sequencing of the PCR product of pooled DNA from 458 crossbred sheep. This SNP was found to affect the promoter activity and was significantly associated with chest width at birth and two months old, as well as chest depth at two and six months old. The data obtained in this study demonstrated the phenotypic regulatory role of the HMGA2 gene in sheep production traits and the potential of rs428001129 in marker-assisted selection for sheep breeding in terms of chest width and chest depth.
Collapse
Affiliation(s)
- Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Chen Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongqi Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Zhao S, Zhang Y, Bao S, Jiang L, Li Q, Kong Y, Cao J. A novel HMGA2/MPC-1/mTOR signaling pathway promotes cell growth via facilitating Cr (VI)-induced glycolysis. Chem Biol Interact 2024; 399:111141. [PMID: 38992767 DOI: 10.1016/j.cbi.2024.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Mitochondrial Pyruvate Carrier 1 (MPC1) is localized on mitochondrial outer membrane to mediate the transport of pyruvate from cytosol to mitochondria. It is also well known to act as a tumor suppressor. Hexavalent chromium (Cr (VI)) contamination poses a global challenge due to its high toxicity and carcinogenesis. This research was intended to probe the potential mechanism of MPC1 in the effect of Cr (VI)-induced carcinogenesis. First, Cr (VI)-treatments decreased the expression of MPC1 in vitro and in vivo. Overexpression of MPC1 inhibited Cr (VI)-induced glycolysis and migration in A549 cells. Then, high mobility group A2 (HMGA2) protein strongly suppressed the transcription of MPC1 by binding to its promoter, and HMGA2/MPC1 axis played an important role in oxidative phosphorylation (OXPHOS), glycolysis and cell migration. Furthermore, endoplasmic reticulum (ER) stress made a great effect on the interaction between HMGA2 and MPC1. Finally, the mammalian target of the rapamycin (mTOR) was determined to mediate MPC1-regulated OXPHOS, aerobic glycolysis and cell migration. Collectively, our data revealed a novel HMGA2/MPC-1/mTOR signaling pathway to promote cell growth via facilitating the metabolism reprogramming from OXPHOS to aerobic glycolysis, which might be a potential therapy for cancers.
Collapse
Affiliation(s)
- Siyang Zhao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China; Institute of Plant Resources, Dalian Minzu University, No.18 Liaohe West Road, Dalian, 116600, China
| | - Yahui Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Shibo Bao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
3
|
Luo S, Zhang C, Gao Z, Jiang L, Li Q, Shi X, Kong Y, Cao J. ER stress-enhanced HMGA2 plays an important role in Cr (VI)-induced glycolysis and inhibited oxidative phosphorylation by targeting the transcription of ATF4. Chem Biol Interact 2023; 369:110293. [PMID: 36473502 DOI: 10.1016/j.cbi.2022.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022]
Abstract
Hexavalent chromium [Cr (VI)] is a proven human carcinogen which is widely used in steel manufacturing and painting. Here, the involvement of high mobility group A2 (HMGA2) in Cr (VI)-mediated glycolysis and oxidative phosphorylation (OXPHOS) was investigated. First, Cr (VI) treatment induced aerobic glycolysis by increasing the expression of GLUT1, HK II, PKM2 and LDHA enzymes, and reduced OXPHOS by decreasing mitochondrial mass, the expression of COX IV and ND1, and increasing Ca2+ content in mitochondria in A549 and HELF cells. And overexpression of HMGA2 induced aerobic glycolysis and decreased OXPHOS. Secondly, using endoplasmic reticulum (ER) stress inhibitor, 4-phenylbutyric acid (4-PBA) and knockdown of activating transcription factor 4 (ATF4) gene by siRNA, we demonstrated that ER stress and ATF4 elevation mediated Cr (VI)-induced glycolysis and inhibited OXPHOS. Furthermore, using tunicamycin (Tm), siHMGA2, transfection of HMGA2 and siATF4, we demonstrated that ER stress-enhanced interaction of HMGA2 and ATF4 resulted in Cr (VI)-induced glycolysis and inhibited OXPHOS. Additionally, ChIP assay revealed that HMGA2 protein could directly bind to the promoter sequence of ATF4 gene, which modulated Cr (VI)-induced ATF4 elevation. Finally, in lung tissues of BALB/c mice injected with HMGA2 plasmids, it is verified that HMGA2 involved in regulation of ATF4, glycolysis and OXPHOS in vivo. Combining, our data discovered that ER stress-enhanced the interaction of HMGA2 and ATF4 played an important role in Cr (VI)-mediated glycolysis and OXPHOS. These results imply a root cause for the carcinogenicity of Cr (VI), and could guide development of novel therapeutics for cancers.
Collapse
Affiliation(s)
- Shengxiang Luo
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, 116044, China
| | - Zeyun Gao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
4
|
Maruyama T, Saito K, Higurashi M, Ishikawa F, Kohno Y, Mori K, Shibanuma M. HMGA2 drives the IGFBP1/AKT pathway to counteract the increase in P27KIP1 protein levels in mtDNA/RNA-less cancer cells. Cancer Sci 2022; 114:152-163. [PMID: 36102493 PMCID: PMC9807519 DOI: 10.1111/cas.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/06/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Recent comprehensive analyses of mtDNA and orthogonal RNA-sequencing data revealed that in numerous human cancers, mtDNA copy numbers and mtRNA amounts are significantly reduced, followed by low respiratory gene expression. Under such conditions (called mt-Low), cells encounter severe cell proliferation defects; therefore, they must acquire countermeasures against this fatal disadvantage during malignant transformation. This study elucidated a countermeasure against the mt-Low condition-induced antiproliferative effects in hepatocellular carcinoma (HCC) cells. The mechanism relied on the architectural transcriptional regulator HMGA2, which was preferably expressed in HCC cells of the mt-Low type in vitro and in vivo. Detailed in vitro analyses suggest that HMGA2 regulates insulin-like growth factor binding protein 1 (IGFBP1) expression, leading to AKT activation, which then phosphorylates the cyclin-dependent kinase inhibitor (CKI), P27KIP1, and facilitates its ubiquitin-mediated degradation. Accordingly, intervention in the HMGA2 function by RNAi resulted in an increase in P27KIP1 levels and an induction of senescence-like cell proliferation inhibition in mt-Low-type HCC cells. Conclusively, the HMGA2/IGFBP1/AKT axis has emerged as a countermeasure against P27KIP1 CKI upregulation under mt-Low conditions, thereby circumventing cell proliferation inhibition and supporting the tumorigenic state. Notably, similar to in vitro cell lines, HMGA2 was likely to regulate IGFBP1 expression in HCC in vivo, thereby contributing to poor patient prognosis. Considering the significant number of cases under mt-Low or the threat of CKI upregulation cancer-wide, the axis is noteworthy as a vulnerability of cancer cells or target for tumor-agnostic therapy inducing irreversible cell proliferation inhibition via CKI upregulation in a large population with cancer.
Collapse
Affiliation(s)
- Tsuyoshi Maruyama
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Koji Saito
- Department of PathologyShowa University School of MedicineTokyoJapan,Department of PathologyTeikyo University HospitalTokyoJapan
| | - Masato Higurashi
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Fumihiro Ishikawa
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Yohko Kohno
- Showa University Koto Toyosu HospitalTokyoJapan
| | - Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical SciencesShowa University School of PharmacyTokyoJapan
| |
Collapse
|
5
|
Mahinfar P, Baradaran B, Davoudian S, Vahidian F, Cho WCS, Mansoori B. Long Non-Coding RNAs in Multidrug Resistance of Glioblastoma. Genes (Basel) 2021; 12:455. [PMID: 33806782 PMCID: PMC8004794 DOI: 10.3390/genes12030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme, is the most aggressive brain tumor in adults. Despite the huge advance in developing novel therapeutic strategies for patients with glioblastoma, the appearance of multidrug resistance (MDR) against the common chemotherapeutic agents, including temozolomide, is considered as one of the important causes for the failure of glioblastoma treatment. On the other hand, recent studies have demonstrated the critical roles of long non-coding RNAs (lncRNAs), particularly in the development of MDR in glioblastoma. Therefore, this article aimed to review lncRNA's contribution to the regulation of MDR and elucidate the underlying mechanisms in glioblastoma, which will open up new lines of inquiry in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | - Sadaf Davoudian
- Humanitas Clinical and Research Center—IRCCS, 20089 Milan, Italy;
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | | | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
6
|
Li Y, Qiang W, Griffin BB, Gao T, Chakravarti D, Bulun S, Kim JJ, Wei JJ. HMGA2-mediated tumorigenesis through angiogenesis in leiomyoma. Fertil Steril 2020; 114:1085-1096. [PMID: 32868105 DOI: 10.1016/j.fertnstert.2020.05.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To study the role of HMGA2 in promoting angiogenesis in uterine leiomyoma (LM). DESIGN This study involved evaluation of vessel density and angiogenic factors in leiomyomas with HMGA2 overexpression; examining angiogenic factor expression and AKT signaling in myometrial (MM) and leiomyoma cells by introducing HMGA2 overexpression in vitro; and exploring vessel formation induced by HMGA2 overexpression both in vitro and in vivo. SETTING University research laboratory. PATIENTS None. INTERVENTIONS None. MAIN OUTCOME MEASURES The main outcome measures include vessel density in leiomyomas with HMGA2 (HMGA2-LM) or MED12 (MED12-LM) alteration; angiogenic factor expression in primary leiomyoma and in vitro cell line model; and vessel formation in leiomyoma cells with HMGA2 overexpression in vitro and in vivo. RESULTS Angiogenic factors and receptors were significantly upregulated at mRNA and protein levels in HMGA2-LM. Specifically, HMGA2-LM exhibited increased expression of VEGFA, EGF, bFGF, TGFα, VEGFR1, and VEGFR2 compared to MED12-LM and myometrium. Overexpression of HMGA2 in MM and LM cell lines resulted in increased secretion of angiogenesis-associated factors. Secreted factors promoted human umbilical vein endothelial cell (HUVEC) migration, tube formation, and wound healing. HMGA2 overexpression upregulated IGF2BP2 and pAKT, and silencing the IGF2BP2 gene reduced pAKT levels and reduced HUVEC migration. Myometrial cells with stable HMGA2 overexpression exhibited increased colony formation and cell growth in vitro and formed xenografts with increased blood vessels. CONCLUSIONS HMGA2-LM have a high vasculature density, which likely contributes to tumor growth and disease burden of this leiomyoma subtype. HMGA2 plays an important role in angiogenesis and the involvement of IGF2BP2-mediated pAKT activity in angiogenesis, which provides a potential novel target for therapy for this subtype of LM.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Wenan Qiang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Brannan Brooks Griffin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Tingting Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Debabrata Chakravarti
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Serdar Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jian-Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
7
|
De Martino M, Fusco A, Esposito F. HMGA and Cancer: A Review on Patent Literatures. Recent Pat Anticancer Drug Discov 2020; 14:258-267. [PMID: 31538905 DOI: 10.2174/1574892814666190919152001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The high mobility group A proteins modulate the transcription of numerous genes by interacting with transcription factors and/or altering the structure of chromatin. These proteins are involved in both benign and malignant neoplasias as a result of several pathways. A large amount of benign human mesenchymal tumors has rearrangements of HMGA genes. On the contrary, malignant tumors show unarranged HMGA overexpression that is frequently and causally related to neoplastic cell transformation. Here, we review the function of the HMGA proteins in human neoplastic disorders, the pathways by which they contribute to carcinogenesis and the new patents focused on targeting HMGA proteins. OBJECTIVE Current review was conducted to check the involvement of HMGA as a druggable target in cancer treatment. METHODS We reviewed the most recent patents focused on targeting HMGA in cancer treatment analyzing patent literature published during the last years, including the World Intellectual Property Organization (WIPO®), United States Patent Trademark Office (USPTO®), Espacenet®, and Google Patents. RESULTS HMGA proteins are intriguing targets for cancer therapy and are objects of different patents based on the use of DNA aptamers, inhibitors, oncolytic viruses, antisense molecules able to block their oncogenic functions. CONCLUSION Powerful strategies able to selectively interfere with HMGA expression and function could represent a helpful approach in the development of new anti-cancer therapies.
Collapse
Affiliation(s)
- Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy.,Department of Psychology, University of Campania, Caserta 81100, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita degli Studi di Napoli "Federico II", via Pansini 5, Naples 80131, Italy
| |
Collapse
|
8
|
Dai FQ, Li CR, Fan XQ, Tan L, Wang RT, Jin H. miR-150-5p Inhibits Non-Small-Cell Lung Cancer Metastasis and Recurrence by Targeting HMGA2 and β-Catenin Signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:675-685. [PMID: 31121479 PMCID: PMC6529773 DOI: 10.1016/j.omtn.2019.04.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 01/23/2023]
Abstract
Dysregulated microRNAs (miRNAs) play crucial roles in the regulation of cancer stem cells (CSCs), and CSCs are closely associated with tumor initiation, metastasis, and recurrence. Here we found that miR-150-5p was significantly downregulated in CSCs of non-small-cell lung cancer (NSCLC) and its expression level was negatively correlated with disease progression and poor survival in patients with NSCLC. Inhibition of miR-150-5p increased the CSC population and sphere formation of NSCLC cells in vitro and stimulated NSCLC cell tumorigenicity and metastatic colonization in vivo. In contrast, miR-150-5p overexpression potently inhibited sphere-formed NSCLC cell tumor formation, metastatic colonization, and recurrence in xenograft models. Furthermore, we identified that miR-150-5p significantly inhibited wingless (Wnt)-β-catenin signaling by simultaneously targeting glycogen synthase kinase 3 beta interacting protein (GSKIP) and β-catenin in NSCLC cells. miR-150-5p also targeted high mobility group AT-hook 2 (HMGA2), another regulator of CSCs, and Wnt-β-catenin signaling. The restoration of HMGA2 and β-catenin blocked miR-150-5p overexpression-induced inhibition of CSC traits in NSCLC cells. These findings suggest that miR-150-5p functions as a CSC suppressor and that overexpression of miR-150-5p may be a novel strategy to inhibit CSC-induced metastasis and recurrence in NSCLC.
Collapse
Affiliation(s)
- Fu-Qiang Dai
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Cheng-Run Li
- Department of Thoracic Surgery, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Xiao-Qing Fan
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Long Tan
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Ren-Tao Wang
- Department of Respiratory, The General Hospital of Chinese People's Liberation Army, Beijing 100853, China.
| | - Hua Jin
- Department of Thoracic Surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
9
|
Naghizadeh S, Mansoori B, Mohammadi A, Kafil HS, Mousavi Z, Sakhinia E, Baradaran B. Effects of HMGA2 gene downregulation by siRNA on lung carcinoma cell migration in A549 cell lines. J Cell Biochem 2018; 120:5024-5032. [PMID: 30317663 DOI: 10.1002/jcb.27778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although there are multiple treatments for lung cancer, the death rate of this cancer remains high because of metastasis in earlier stages. So a novel treatment for overcoming metastasis is urgently needed. Overexpression of high-mobility group AT-hook 2 (HMGA2), a nonhistone chromosomal protein has been observed in metastatic cancers. So, we suggested that HMGA2 upregulation may play a critical role in treating lung cancer. METHODS The A549 cells were transfected with specific HMGA2 small interfering RNA (siRNA) using transfection reagent. Relative HMGA2 and matrix metallopeptidase 1 (MMP1), C-X-C chemokine receptor type 4 (CXCR4), vimentin, and E-cadherin messenger RNA expression levels were measured by quantitative real-time polymerase chain reaction. To diagnose cytotoxic effect of HMGA2 siRNA and other components of transfection process, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was applied. The migration capacity after transfection with HMGA2 siRNA was detected by wound-healing assay. RESULTS HMGA2 siRNA significantly reduced HMGA2 expression in a dose-dependent manner 48 hours after transfection. Expression levels of MMP1, vimentin, and CXCR4 were reduced, but E-cadherin level was not changed meaningfully. HMGA2 knockdown significantly reduced cell survival rate and also led to the inhibition of cell migration. CONCLUSIONS Our results indicated that RNA interference by downregulation of HMGA2 gene expression and affecting downstream genes led to the inhibition of cell migration and proliferation. Therefore, HMGA2 siRNA might be an alternative treatment option for metastatic lung cancer.
Collapse
Affiliation(s)
- Sanaz Naghizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Mousavi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Binding of high mobility group A proteins to the mammalian genome occurs as a function of AT-content. PLoS Genet 2017; 13:e1007102. [PMID: 29267285 PMCID: PMC5756049 DOI: 10.1371/journal.pgen.1007102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/05/2018] [Accepted: 11/04/2017] [Indexed: 11/26/2022] Open
Abstract
Genomic location can inform on potential function and recruitment signals for chromatin-associated proteins. High mobility group (Hmg) proteins are of similar size as histones with Hmga1 and Hmga2 being particularly abundant in replicating normal tissues and in cancerous cells. While several roles for Hmga proteins have been proposed we lack a comprehensive description of their genomic location as a function of chromatin, DNA sequence and functional domains. Here we report such a characterization in mouse embryonic stem cells in which we introduce biotin-tagged constructs of wild-type and DNA-binding domain mutants. Comparative analysis of the genome-wide distribution of Hmga proteins reveals pervasive binding, a feature that critically depends on a functional DNA-binding domain and which is shared by both Hmga proteins. Assessment of the underlying queues instructive for this binding modality identifies AT richness, defined as high frequency of A or T bases, as the major criterion for local binding. Additionally, we show that other chromatin states such as those linked to cis-regulatory regions have little impact on Hmga binding both in stem and differentiated cells. As a consequence, Hmga proteins are preferentially found at AT-rich regions such as constitutively heterochromatic regions but are absent from enhancers and promoters arguing for a limited role in regulating individual genes. In line with this model, we show that genetic deletion of Hmga proteins in stem cells causes limited transcriptional effects and that binding is conserved in neuronal progenitors. Overall our comparative study describing the in vivo binding modality of Hmga1 and Hmga2 identifies the proteins’ preference for AT-rich DNA genome-wide and argues against a suggested function of Hmga at regulatory regions. Instead we discover pervasive binding with enrichment at regions of higher AT content irrespective of local variation in chromatin modifications. We investigated the chromosomal location of a group of highly abundant nuclear proteins. Our genome-wide results for Hmga1 and Hmga2 reveal a unique binding modality indicating preference for DNA rich in A or T bases in vivo. Importantly this preferential binding to AT-rich sequences occurs throughout the genome irrespectively of other local chromatin features. Genomic location and loss of function experiments challenge the view that Hmga proteins act as local modulators of transcriptional regulation but rather argue for a role as structural components of chromatin.
Collapse
|
11
|
Wang Z, Xiong F, Wang X, Qi Y, Yu H, Zhu Y, Zhu H. Nuclear receptor retinoid-related orphan receptor alpha promotes apoptosis but is reduced in human gastric cancer. Oncotarget 2017; 8:11105-11113. [PMID: 28052040 PMCID: PMC5355250 DOI: 10.18632/oncotarget.14364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
Retinoid-related orphan receptor α (RORα) is a nuclear receptor, which regulates inflammation and immune responses, lipid metabolism and circadian rhythm. Although RORα suppresses breast tumor invasion, it is unknown whether RORα is dysregulated in gastric cancer leading to cellular survival. Therefore, we hypothesize that RORα is dysfunctional in gastric carcinoma and this causes decreased apoptosis in gastric cancer cells. To test this hypothesis, we employed human gastric cancer tissues with different stages to determine RORα expression, as well as in vitro human gastric cancer cells to determine how RORα is reduced during apoptosis. We found that the expression of RORα was reduced in gastric tissues with cancer, and this correlated with increased TNM stages. The mechanisms underlying RORα reduction is due to the reduced activation of AMP-activated protein kinase (AMPK), as a selective AMPK activator AICAR increased RORα activation and level in human gastric cancer cells. Furthermore, AICAR treatment increased RORα recruitment on the promoters of tumor suppressor genes (i.e., FBXM7, SEMA3F and p21) leading to apoptosis in human gastric cancer cells. Taken together, RORα reduction occurs in gastric cancer leading to the survival of tumor cells, which is attenuated by AMPK. Therefore, both RORα and AMPK are potential targets for the intervention and therapy in gastric carcinoma.
Collapse
Affiliation(s)
- Zhengguang Wang
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Fangyuan Xiong
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Xiaoshan Wang
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yijun Qi
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Haoyuan Yu
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yong Zhu
- Department of Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Huaqing Zhu
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
12
|
Gao X, Dai M, Li Q, Wang Z, Lu Y, Song Z. HMGA2 regulates lung cancer proliferation and metastasis. Thorac Cancer 2017; 8:501-510. [PMID: 28752530 PMCID: PMC5582513 DOI: 10.1111/1759-7714.12476] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND This study aimed to explore the effects of HMGA2 on cell proliferation and metastases in lung cancer and its underlying mechanism. METHODS HMGA2 expression in lung cancer tissues and its association with overall survival were analyzed based on data from a public database. The roles of HMGA2 were validated via loss-of-function and gain-of-function experiments in vitro. HMGA2 regulation by microRNA-195 (miR-195) was validated by real time-PCR, Western blotting, and luciferase reporter assays. RESULTS HMGA2 was upregulated and associated with reduced overall survival in patients with lung adenocarcinoma. HMGA2 knockdown suppressed the proliferation and motility of H1299 cells, while HMGA2 ectopic expression in A549 cells increased cell proliferation and migration. HMGA2 affected cell apoptosis through caspase 3/9 and Bcl-2, and regulated epithelial-to-mesenchymal transition by targeting Twist 1. Moreover, miR-195 was found to directly target the 3' untranslated region of HMGA2 messenger RNA and suppress its expression in lung cancer. CONCLUSION This study demonstrated that HMGA2, regulated by miR-195, played important roles in proliferation, metastases, and epithelial-to-mesenchymal transition in lung cancer. HMGA2 might serve as a biomarker and potential therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Xiaotian Gao
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Cardiac Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Dai
- Department of Cardiothoracic Surgery, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Qinglan Li
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhigang Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yonglin Lu
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeqing Song
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
13
|
Sun J, Sun B, Sun R, Zhu D, Zhao X, Zhang Y, Dong X, Che N, Li J, Liu F, Zhao N, Wang Y, Zhang D. HMGA2 promotes vasculogenic mimicry and tumor aggressiveness by upregulating Twist1 in gastric carcinoma. Sci Rep 2017; 7:2229. [PMID: 28533522 PMCID: PMC5440402 DOI: 10.1038/s41598-017-02494-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/12/2017] [Indexed: 01/29/2023] Open
Abstract
High mobility group protein A2 (HMGA2) is a transcription factor that plays an important role in the invasion and metastasis of gastric carcinoma (GC). The term vasculogenic mimicry (VM) refers to the unique ability of aggressive tumour cells to mimic the pattern of embryonic vasculogenic networks. However, the relationship between HMGA2 and VM formation remains unclear. In the present study, we examined concomitant HMGA2 expression and VM in 228 human GC samples and 4 GC cell lines. Our data indicate that HMGA2 is not only significantly associated with VM formation but also influences the prognosis of patients with gastric carcinoma. Overexpression of HMGA2 significantly increased cell motility, invasiveness, and VM formation both in vitro and in vivo. A luciferase reporter assay, Co-IP and ChIP demonstrated that HMGA2 induced the expression of Twist1 and VE-cadherin by binding to the Twist1 promoter. Moreover, we observed a decrease in VE-cadherin following Twist1 knockdown in cells overexpressing HMGA2. This study indicates that HMGA2 promotes VM in GC via Twist1-VE-cadherin signalling and influences the prognosis of patients with GC.
Collapse
Affiliation(s)
- Junying Sun
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China. .,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China. .,Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China.
| | - Ran Sun
- Department of Surgery, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Dongwang Zhu
- Department of Prosthodontics, Affiliated Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yanhui Zhang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Jing Li
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Yong Wang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, Tianjin General Hospital, Tianjin Medical University, Tianjin, 300052, China
| |
Collapse
|
14
|
Li W, Wang Z, Zha L, Kong D, Liao G, Li H. HMGA2 regulates epithelial-mesenchymal transition and the acquisition of tumor stem cell properties through TWIST1 in gastric cancer. Oncol Rep 2016; 37:185-192. [DOI: 10.3892/or.2016.5255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/06/2016] [Indexed: 11/05/2022] Open
|
15
|
Shi Z, Wu D, Tang R, Li X, Chen R, Xue S, Zhang C, Sun X. Silencing of HMGA2 promotes apoptosis and inhibits migration and invasion of prostate cancer cells. J Biosci 2016; 41:229-36. [DOI: 10.1007/s12038-016-9603-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
HDAC inhibition impedes epithelial-mesenchymal plasticity and suppresses metastatic, castration-resistant prostate cancer. Oncogene 2015; 35:3781-95. [PMID: 26640144 PMCID: PMC4896852 DOI: 10.1038/onc.2015.444] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/28/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023]
Abstract
PI3K/AKT and RAS/MAPK pathway co-activation in the prostate epithelium promotes both epithelial-mesenchymal transition (EMT) and metastatic castration-resistant prostate cancer (mCRPC), which is currently incurable. To study the dynamic regulation of the EMT process, we developed novel genetically-defined cellular and in vivo model systems from which epithelial, EMT, and mesenchymal-like tumor cells with Pten deletion and Kras activation can be isolated. When cultured individually, each population has the capacity to regenerate all three tumor cell populations, indicative of epithelial-mesenchymal plasticity. Despite harboring the same genetic alterations, mesenchymal-like tumor cells are resistant to PI3K and MAPK pathway inhibitors, suggesting that epigenetic mechanisms may regulate the EMT process, as well as dictate the heterogeneous responses of cancer cells to therapy. Among differentially expressed epigenetic regulators, the chromatin remodeling protein HMGA2 is significantly upregulated in EMT and mesenchymal-like tumors cells, as well as in human mCRPC. Knockdown of HMGA2, or suppressing HMGA2 expression with the histone deacetylase (HDAC) inhibitor LBH589, inhibits epithelial-mesenchymal plasticity and stemness activities in vitro and dramatically reduces tumor growth and metastasis in vivo through successful targeting of EMT and mesenchymal-like tumor cells. Importantly, LBH589 treatment in combination with castration prevents mCRPC development and significantly prolongs survival following castration by enhancing p53 and AR acetylation and in turn sensitizing castration-resistant mesenchymal-like tumor cells to ADT. Taken together, these findings demonstrate that cellular plasticity is regulated epigenetically, and that mesenchymal-like tumor cell populations in mCRPC that are resistant to conventional and targeted therapies can be effectively treated with the epigenetic inhibitor LBH589.
Collapse
|
17
|
Madison BB, Jeganathan AN, Mizuno R, Winslow MM, Castells A, Cuatrecasas M, Rustgi AK. Let-7 Represses Carcinogenesis and a Stem Cell Phenotype in the Intestine via Regulation of Hmga2. PLoS Genet 2015; 11:e1005408. [PMID: 26244988 PMCID: PMC4526516 DOI: 10.1371/journal.pgen.1005408] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
Let-7 miRNAs comprise one of the largest and most highly expressed family of miRNAs among vertebrates, and is critical for promoting differentiation, regulating metabolism, inhibiting cellular proliferation, and repressing carcinogenesis in a variety of tissues. The large size of the Let-7 family of miRNAs has complicated the development of mutant animal models. Here we describe the comprehensive repression of all Let-7 miRNAs in the intestinal epithelium via low-level tissue-specific expression of the Lin28b RNA-binding protein and a conditional knockout of the MirLet7c-2/Mirlet7b locus. This ablation of Let-7 triggers the development of intestinal adenocarcinomas concomitant with reduced survival. Analysis of both mouse and human intestinal cancer specimens reveals that stem cell markers were significantly associated with loss of Let-7 miRNA expression, and that a number of Let-7 targets were elevated, including Hmga1 and Hmga2. Functional studies in 3-D enteroids revealed that Hmga2 is necessary and sufficient to mediate many characteristics of Let-7 depletion, namely accelerating cell cycle progression and enhancing a stem cell phenotype. In addition, inactivation of a single Hmga2 allele in the mouse intestine epithelium significantly represses tumorigenesis driven by Lin28b. In aggregate, we conclude that Let-7 depletion drives a stem cell phenotype and the development of intestinal cancer, primarily via Hmga2. Cancer develops following multiple genetic mutations (i.e. in tumor suppressors and oncogenes), and mutations that cooperate or synergize are often advantageous to cancer cell growth. To study how multiple genes might cooperate, it is usually informative to generate candidate mutations in cells or in mice. Large gene families, such as the Let-7 family, are difficult to silence or mutate because of the large amount of redundancy that exists between similar copies of the same gene; the mutation of one will often be masked or compensated by the continued function of others. In the mouse intestine we have achieved comprehensive depletion of all Let-7 miRNAs in this large multi-genic family through use of an inhibitory protein, called LIN28B, that specifically represses Let-7, and genetic inactivation of another gene cluster called MirLet7c-2/Mirlet7b. Mice with this comprehensive depletion of Let-7 develop intestinal cancers that resemble human colon cancers. Our further analysis identified another gene, HMGA2, downstream of this pathway that is critical to this outcome.
Collapse
Affiliation(s)
- Blair B. Madison
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Arjun N. Jeganathan
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Rei Mizuno
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Monte M. Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, CIBERehd, IDIBAPS, Barcelona, Catalonia, Spain
| | - Miriam Cuatrecasas
- Department of Pathology, Pharmacology and Microbiology, Hospital Clínic, CDB, University of Barcelona, Barcelona, Catalonia, Spain
| | - Anil K. Rustgi
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zhu X, Liu J, Xu X, Zhang C, Dai D. Genome-wide analysis of histone modifications by ChIP-chip to identify silenced genes in gastric cancer. Oncol Rep 2015; 33:2567-74. [PMID: 25738530 DOI: 10.3892/or.2015.3824] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/30/2015] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to identify novel histone modification markers in gastric cancer (GC) by chromatin immunoprecipitation microarray (ChIP-chip) analysis and to determine whether these markers were able to discriminate between normal and GC cells. We also tested for correlations with DNA methylation. We probed a human CpG island microarray with DNA from a GC cell line (MKN45) by chromatin immunoprecipitation (ChIP). ChIP-reverse-transcriptase quantitative polymerase chain reaction PCR (RT-qPCR) was used to validate the microarray results. Additionally, mRNA expression levels and the DNA methylation of potential target genes were evaluated by RT-qPCR and methylation-specific PCR (MSP). The moults showed that 134 genes exhibited the highest signal-to-noise ratio of H3-K9 trimethylation over acetylation and 46 genes exhibited the highest signal-to-noise ratio of H3-K9 trimethylation over H3-K4 trimethylation in MKN45 cells. The ChIP-qPCR results agreed with those obtained from the ChIP-chip analysis. Aberrant DNA methylation status and mRNA expression levels were also identified for selected genes (PSD, SMARCC1 and Vps37A) in the GC cell lines. The results suggest that CpG island microarray coupled with ChIP (ChIP-chip) can identify novel targets of gene silencing in GC. Additionally, ChIP-chip is the best approach for assessing the genome-wide status of epigenetic regulation, which may allow for a broader genomic understanding compared to the knowledge that has been accumulated from single-gene studies.
Collapse
Affiliation(s)
- Xinjiang Zhu
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Jian Liu
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Xiaoyang Xu
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Chundong Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Dongqiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
19
|
Kaur H, Hütt-Cabezas M, Weingart MF, Xu J, Kuwahara Y, Erdreich-Epstein A, Weissman BE, Eberhart CG, Raabe EH. The chromatin-modifying protein HMGA2 promotes atypical teratoid/rhabdoid cell tumorigenicity. J Neuropathol Exp Neurol 2015; 74:177-85. [PMID: 25575139 PMCID: PMC4695975 DOI: 10.1097/nen.0000000000000161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is an aggressive pediatric central nervous system tumor. The poor prognosis of AT/RT warrants identification of novel therapeutic targets and strategies. High-mobility Group AT-hook 2 (HMGA2) is a developmentally important chromatin-modifying protein that positively regulates tumor growth, self-renewal, and invasion in other cancer types. High-mobility group A2 was recently identified as being upregulated in AT/RT tissue, but the role of HMGA2 in brain tumors remains unknown. We used lentiviral short-hairpin RNA to suppress HMGA2 in AT/RT cell lines and found that loss of HMGA2 led to decreased cell growth, proliferation, and colony formation and increased apoptosis. We also found that suppression of HMGA2 negatively affected in vivo orthotopic xenograft tumor growth, more than doubling median survival of mice from 58 days to 153 days. Our results indicate a role for HMGA2 in AT/RT in vitro and in vivo and demonstrate that HMGA2 is a potential therapeutic target in these lethal pediatric tumors.
Collapse
Affiliation(s)
- Harpreet Kaur
- From the Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center (HK, MH-C, MFW, CGE, EHR), Division of Pediatric Oncology (EHR), Johns Hopkins University School of Medicine, Bloomberg Children's Hospital, Baltimore, Maryland; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (YK, BEW); and Division of Hematology, Oncology, and Blood and Bone Marrow Transplant, Children's Hospital Los Angeles (JX, AE-E); and the University of Southern California (AE-E), Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tan EJ, Kahata K, Idås O, Thuault S, Heldin CH, Moustakas A. The high mobility group A2 protein epigenetically silences the Cdh1 gene during epithelial-to-mesenchymal transition. Nucleic Acids Res 2014; 43:162-78. [PMID: 25492890 PMCID: PMC4288184 DOI: 10.1093/nar/gku1293] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The loss of the tumour suppressor E-cadherin (Cdh1) is a key event during tumourigenesis and epithelial-mesenchymal transition (EMT). Transforming growth factor-β (TGFβ) triggers EMT by inducing the expression of non-histone chromatin protein High Mobility Group A2 (HMGA2). We have previously shown that HMGA2, together with Smads, regulate a network of EMT-transcription factors (EMT-TFs) like Snail1, Snail2, ZEB1, ZEB2 and Twist1, most of which are well-known repressors of the Cdh1 gene. In this study, we show that the Cdh1 promoter is hypermethylated and epigenetically silenced in our constitutive EMT cell model, whereby HMGA2 is ectopically expressed in mammary epithelial NMuMG cells and these cells are highly motile and invasive. Furthermore, HMGA2 remodels the chromatin to favour binding of de novo DNA methyltransferase 3A (DNMT3A) to the Cdh1 promoter. E-cadherin expression could be restored after treatment with the DNA de-methylating agent 5-aza-2'-deoxycytidine. Here, we describe a new epigenetic role for HMGA2, which follows the actions that HMGA2 initiates via the EMT-TFs, thus achieving sustained silencing of E-cadherin expression and promoting tumour cell invasion.
Collapse
Affiliation(s)
- E-Jean Tan
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-75124, Sweden
| | - Kaoru Kahata
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-75124, Sweden
| | - Oskar Idås
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-75124, Sweden
| | - Sylvie Thuault
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-75124, Sweden
| | - Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-75124, Sweden
| | - Aristidis Moustakas
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala SE-75124, Sweden Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala SE-75123, Sweden
| |
Collapse
|
21
|
He WL, Li YH, Hou WJ, Ke ZF, Chen XL, Lu LY, Cai SR, Song W, Zhang CH, He YL. RAD51 potentiates synergistic effects of chemotherapy with PCI-24781 and cis-diamminedichloroplatinum on gastric cancer. World J Gastroenterol 2014; 20:10094-10107. [PMID: 25110436 PMCID: PMC4123338 DOI: 10.3748/wjg.v20.i29.10094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/20/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the efficacy of PCI-24781, a broad-spectrum, hydroxamic acid-derived histone deacetylase inhibitor, in the treatment of gastric cancer (GC).
METHODS: With or without treatment of PCI-24781 and/or cis-diamminedichloroplatinum (CDDP), GC cell lines were subjected to functional analysis, including cell growth, apoptosis and clonogenic assays. Chromatin immunoprecipitation and luciferase reporter assays were used to determine the interacting molecules and the activity of the enzyme. An in vivo study was carried out in GC xenograft mice. Cell culture-based assays were represented as mean ± SD. ANOVA tests were used to assess differences across groups. All pairwise comparisons between tumor weights among treatment groups were made using the Tukey-Kramer method for multiple comparison adjustment to control experimental-wise type I error rates. Significance was set at P < 0.05.
RESULTS: PCI-24781 significantly reduced the growth of the GC cells, enhanced cell apoptosis and suppressed clonogenicity, and these effects synergized with the effects of CDDP. PCI-24781 modulated the cell cycle and significantly reduced the expression of RAD51, which is related to homologous recombination. Depletion of RAD51 augmented the biological functions of PCI-24781, CDDP and the combination treatment, whereas overexpressing RAD51 had the opposite effects. Increased binding of the transcription suppressor E2F4 on the RAD51 promoter appeared to play a major role in these processes. Furthermore, significant suppression of tumor growth and weight in vivo was obtained following PCI-24781 treatment, which synergized with the anticancer effect of CDDP.
CONCLUSION: These data suggest that RAD51 potentiates the synergistic effects of chemotherapy with PCI-24781 and CDDP on GC.
Collapse
|
22
|
Coexpression of HMGA2 and Oct4 predicts an unfavorable prognosis in human gastric cancer. Med Oncol 2014; 31:130. [PMID: 25037576 DOI: 10.1007/s12032-014-0130-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/09/2014] [Indexed: 01/05/2023]
Abstract
High mobility group protein A2 (HMGA2) and octamer-binding transcription factor 4 (Oct4) are transcription factors that play major roles in the acquisition of cancer stemness phenotypes and tumorigenicity of malignant neoplasms. The aim of this study was to analyze the association between HMGA2 and Oct4 expression and various clinicopathologic features in gastric cancer patients including invasion, metastasis, and clinical prognosis, in addition to overall survival. Immunohistochemistry was performed to explore the expression of HMGA2 and Oct4 in 158 gastric cancer and surrounding non-tumor tissues. Moreover, HMGA2 and Oct4 mRNA and protein levels were also detected by qRT-PCR and Western blotting, respectively, in 86 clinical tissue specimens and various gastric epithelial cell lines (GES-1, SGC7901, MKN45, and MKN27). Finally, associations between HMGA2 and Oct4 expression and clinicopathological features were analyzed by Pearson correlation coefficient. Survival analysis was performed by univariate and multivariate analyses. Taken together, we found that HMGA2 and Oct4 expression was significantly higher in gastric cancer tissues compared with non-cancerous tissues (P < 0.01), and HMGA2 and Oct4 protein levels were significantly higher in poorly differentiated gastric cancer cell lines (MKN45), moderately differentiated cell lines (SGC7901), and well-differentiated cell lines (MKN28) compared with human immortalized gastric epithelial cell lines (GES-1) (P < 0.01). Elevated HMGA2 and Oct4 levels were significantly associated with poor clinical prognosis (P < 0.05). Further conclusion showed that coexpression of HMGA2 and Oct4 in gastric cancer correlated with tumor invasion, metastasis, and clinical prognosis and predicted an unfavorable clinical outcome. These transcription factors may represent useful biomarkers to identify patients at high risk of postoperative recurrence.
Collapse
|
23
|
Sahai V, Kumar K, Knab LM, Chow CR, Raza SS, Bentrem DJ, Ebine K, Munshi HG. BET bromodomain inhibitors block growth of pancreatic cancer cells in three-dimensional collagen. Mol Cancer Ther 2014; 13:1907-17. [PMID: 24807963 DOI: 10.1158/1535-7163.mct-13-0925] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with pronounced fibrosis that contributes to chemoresistance, in part, through increased histone acetylation. Because bromodomain (BRD) and extra terminal domain (BET) proteins are "readers" of histone acetylation marks, we targeted BET proteins in PDAC cells grown in three-dimensional collagen. We show that treatment with BET inhibitors decreases growth of PDAC cells (AsPC1, CD18, and Panc1) in collagen. Transfection with siRNA against BRD4, which is increased in human PDAC tumors, also decreases growth of PDAC cells. BET inhibitors additionally decrease growth in collagen of PDAC cells that have undergone epithelial-to-mesenchymal transition or have become resistant to chemotherapy. Although BET inhibitors and BRD4 siRNA repress c-MYC only in AsPC1 and CD18 cells, downregulating c-MYC decreases growth of all three PDAC cell lines in collagen. FOSL1, which is also targeted by BET inhibitors and BRD4 siRNA in AsPC1, CD18, and Panc1 cells, additionally regulates growth of all three PDAC cell lines in collagen. BET inhibitors and BRD4 siRNA repress HMGA2, an architectural protein that modulates chromatin state and also contributes to chemoresistance, in PDAC cells grown in collagen. Importantly, we show that there is a statistically significant correlation between BRD4 and HMGA2 in human PDAC tumors. Significantly, overexpression of HMGA2 partially mitigates the effect of BET inhibitors on growth and c-MYC and/or FOSL1 expression in collagen. Overall, these results demonstrate that BET inhibitors block growth of PDAC cells in collagen and that BET proteins may be potential targets for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Vaibhav Sahai
- Authors' Affiliations: Divisions of Hematology/Oncology and
| | - Krishan Kumar
- Authors' Affiliations: Divisions of Hematology/Oncology and Jesse Brown VA Medical Center; and
| | - Lawrence M Knab
- Surgical Oncology, Feinberg School of Medicine, Northwestern University
| | | | - Sania S Raza
- Authors' Affiliations: Divisions of Hematology/Oncology and
| | - David J Bentrem
- Surgical Oncology, Feinberg School of Medicine, Northwestern University; Jesse Brown VA Medical Center; and The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Kazumi Ebine
- Authors' Affiliations: Divisions of Hematology/Oncology and
| | - Hidayatullah G Munshi
- Authors' Affiliations: Divisions of Hematology/Oncology and Jesse Brown VA Medical Center; and The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| |
Collapse
|
24
|
Ozturk N, Singh I, Mehta A, Braun T, Barreto G. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev Biol 2014; 2:5. [PMID: 25364713 PMCID: PMC4207033 DOI: 10.3389/fcell.2014.00005] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/07/2014] [Indexed: 01/12/2023] Open
Abstract
High mobility group (HMG) proteins are the most abundant non-histone chromatin associated proteins. HMG proteins bind to DNA and nucleosome and alter the structure of chromatin locally and globally. Accessibility to DNA within chromatin is a central factor that affects DNA-dependent nuclear processes, such as transcription, replication, recombination, and repair. HMG proteins associate with different multi-protein complexes to regulate these processes by mediating accessibility to DNA. HMG proteins can be subdivided into three families: HMGA, HMGB, and HMGN. In this review, we will focus on recent advances in understanding the function of HMGA family members, specifically their role in gene transcription regulation during development and cancer.
Collapse
Affiliation(s)
- Nihan Ozturk
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Indrabahadur Singh
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Aditi Mehta
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| | - Guillermo Barreto
- LOEWE Research Group Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research Bad Nauheim, Germany
| |
Collapse
|
25
|
A mitochondrial thioredoxin-sensitive mechanism regulates TGF-β-mediated gene expression associated with epithelial–mesenchymal transition. Biochem Biophys Res Commun 2014; 443:821-7. [DOI: 10.1016/j.bbrc.2013.12.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 12/28/2022]
|
26
|
Wu J, Wei JJ. HMGA2 and high-grade serous ovarian carcinoma. J Mol Med (Berl) 2013; 91:1155-65. [PMID: 23686260 DOI: 10.1007/s00109-013-1055-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 02/07/2023]
Abstract
HMGA2, the High Mobility Group A2 gene, plays a very important role in fetal development and carcinogenesis. As an oncofetal gene, it is upregulated in tumors of both epithelial and mesenchymal tissue origin. Chromosomal translocations of HMGA2 are common in mesenchymal tumors, whereas the regulatory mechanisms of HMGA2 in malignant epithelial tumors are much more complex. As an architectural transcription factor, it is involved in multiple biological pathways by targeting different downstream genes in different cancers. HMGA2 is upregulated in both the early and late stages of high-grade serous ovarian carcinoma (HGSOC) and, according to The Cancer Genomic Atlas, is among a signature of genes overexpressed in ovarian cancer. Recent identification of miR-182 as a mediator of BRCA1 and HMGA2 deregulation in ovarian cancer cells may guide us toward a better understanding of the roles of HMGA2 in ovarian carcinogenesis. In this article, we will review recent developments and findings related to HMGA2, including its regulation, oncogenic properties, major functional pathways associated with the tumorigenesis of HGSOC, and its potential role as a biomarker for clinical application.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | | |
Collapse
|
27
|
Dangi-Garimella S, Sahai V, Ebine K, Kumar K, Munshi HG. Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression. PLoS One 2013; 8:e64566. [PMID: 23696899 PMCID: PMC3655998 DOI: 10.1371/journal.pone.0064566] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/16/2013] [Indexed: 12/29/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a pronounced collagen-rich stromal reaction that has been shown to contribute to chemo-resistance. We have previously shown that PDAC cells are resistant to gemcitabine chemotherapy in the collagen microenvironment because of increased expression of the chromatin remodeling protein high mobility group A2 (HMGA2). We have now found that human PDAC tumors display higher levels of histone H3K9 and H3K27 acetylation in fibrotic regions. We show that relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels demonstrate increased histone H3K9 and H3K27 acetylation, along with increased expression of p300, PCAF and GCN5 histone acetyltransferases (HATs). Knocking down HMGA2 attenuates the effect of collagen on histone H3K9 and H3K27 acetylation and on collagen-induced p300, PCAF and GCN5 expression. We also show that human PDAC tumors with HMGA2 demonstrate increased histone H3K9 and H3K27 acetylation. Additionally, we show that cells in three-dimensional collagen gels demonstrate increased protection against gemcitabine. Significantly, down-regulation of HMGA2 or p300, PCAF and GCN5 HATs sensitizes the cells to gemcitabine in three-dimensional collagen. Overall, our results increase our understanding of how the collagen microenvironment contributes to chemo-resistance in vitro and identify HATs as potential therapeutic targets against this deadly cancer.
Collapse
Affiliation(s)
- Surabhi Dangi-Garimella
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (SD); (HGM)
| | - Vaibhav Sahai
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Kazumi Ebine
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Krishan Kumar
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hidayatullah G. Munshi
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Northwestern University, Chicago, Illinois, United States of America
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (SD); (HGM)
| |
Collapse
|
28
|
Jiang D, Lai MY, Chen JZ, Wei LX. Effect of HMGA2 gene silencing on Wnt/β-Catenin signaling pathway in gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2013; 21:1062-1069. [DOI: 10.11569/wcjd.v21.i12.1062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To induce HMGA2 gene silencing with shRNAs in gastric cancer cell line MKN-45 and to study the interaction between HMGA2 and the Wnt/β-Catenin signaling pathway.
METHODS: A shRNA eukaryotic expression vector that expresses shRNAs of HMGA2 was constructed and transfected into gastric cancer cell line MKN-45. The mRNA and protein expression of HMGA2 was measured by RT-PCR and Western blot 48 h and 72 h after transfection to evaluate the effect of RNA interference. The mRNA and protein expression of β-Catenin, c-myc and cyclin D1 were also measured by RT-PCR and Western blot.
RESULTS: The expression of HMGA2 mRNA 48 h after transfection was significantly lower in the shHMG-A2-1 group than in the shHMGA2-2 group, shHMGA2-3 group, scrambled group and blank control group (0.58 ± 0.07 vs 0.92 ± 0.13, 0.90 ± 0.16, 1.07 ± 0.14, 1.19 ± 0.09, all P < 0.05), but showed no significant difference among the latter four groups (all P > 0.05). Since HMGA2 expression was most significantly silenced in the shHMGA2-1 group (51.3% at 48 h), the plasmid pLLU2G-shHMGA2-1 was chosen for use in subsequent experiments. The expression of HMGA2 protein 72 h after transfection in the shHMGA2-1 group was significantly lower than that in the scrambled group and blank group (0.11 ± 0.03 vs 0.48 ± 0.12, 0.55 ± 0.08, both P < 0.05). The silencing efficiency of transfection of shHMGA2-1 was 80% at 72 h. After silencing the HMGA2 gene, the expression of β-Catenin, c-myc and cyclin D1 mRNAs and proteins was significantly inhibited in the shHMGA2-1 group compared to the blank control group and the scrambled group (β-Catenin mRNA: 0.53 ± 0.04 vs 1.07 ± 0.02, 0.91 ± 0.02; β-Catenin protein: 0.44 ± 0.05 vs 0.69 ± 0.04, 0.67 ± 0.10; c-myc mRNA: 0.39 ± 0.04 vs 0.88 ± 0.05, 0.84 ± 0.03; c-myc protein: 0.25 ± 0.07 vs 0.75 ± 0.09, 0.66 ± 0.10; cyclin D1 mRNA: 0.31 ± 0.02 vs 0.52 ± 0.03, 0.51 ± 0.01; cyclin D1 protein: 0.12 ± 0.01 vs 0.73 ± 0.12, 0.61 ± 0.07; all P < 0.05).
CONCLUSION: The recombinant plasmid PLLU2G-shHMGA2 could effectively inhibit the expression of HMGA2 gene in gastric cancer cell line MKN-45. Silencing of the HMGA2 gene restrained the expression of β-Catenin and its downstream target genes c-myc and cyclin D1. HMGA2 controls the growth and apoptosis of gastric cancer cells possibly via the Wnt/β-Catenin signal pathway.
Collapse
|
29
|
HMGA2 elicits EMT by activating the Wnt/β-catenin pathway in gastric cancer. Dig Dis Sci 2013; 58:724-33. [PMID: 23135750 DOI: 10.1007/s10620-012-2399-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/28/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND The high mobility group protein A2 (HMGA2) is an architectural transcription factor that plays an important role in the development and progression of many malignant neoplasms. High expression of HMGA2 in gastric cancer correlates with invasiveness of cancer and is an independent prognostic factor. The reason for this might be HMGA2 promoting epithelial-mesenchymal transitions (EMT), which is the key process of metastasis for some underlying mechanisms. AIMS This study was designed to test whether HMGA2 participates in the EMT and to further understand the underlying mechanisms of EMT promoted by HMGA2. METHODS We examined the cell biology and molecular biology changes after overexpression and knockdown HMGA2 of gastric cancer cells in vitro and vivo. To further understand the underlying mechanisms of EMT promoted by HMGA2, based on our previous study, we examined the changes of target genes of HMGA2 after overexpression and knockdown HMGA2 of gastric cancer cells. RESULTS The results indicated that overexpressing HMGA2 enabled enhancing the oncogenic properties of gastric epithelial origin cell in vitro and in vivo. Furthermore, our study showed that HMGA2 was able to elicit EMT and regulate several genes which are closely related to the Wnt/β-catenin pathway by directly binding to their promoter thereby activating the Wnt/β-catenin pathway. CONCLUSIONS The Wnt/β-catenin pathway activated by HMGA2 might be the underlying mechanism of EMT in gastric cancer cells.
Collapse
|