1
|
Pryor JL, Sweet DK, Rosbrook P, Qiao J, Looney DP, Mahmood S, Rideout T. Endocrine Responses to Heated Resistance Exercise in Men and Women. J Strength Cond Res 2024; 38:1248-1255. [PMID: 38595219 DOI: 10.1519/jsc.0000000000004768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
ABSTRACT Pryor, JL, Sweet, DK, Rosbrook, P, Qiao, J, Looney, DP, Mahmood, S, and Rideout, T. Endocrine responses to heated resistance exercise in men and women. J Strength Cond Res 38(7): 1248-1255, 2024-We examined the endocrine responses of 16 (female = 8) resistance trained volunteers to a single bout of whole-body high-volume load resistance exercise in hot (HOT; 40° C) and temperate (TEMP; 20° C) environmental conditions. Thermoregulatory and heart rate (HR) data were recorded, and venous blood was acquired before and after resistance exercise to assess serum anabolic and catabolic hormones. In men, testosterone increased after resistance exercise in HOT and TEMP ( p < 0.01), but postexercise testosterone was not different between condition ( p = 0.51). In women, human growth hormone was different between condition at pre-exercise ( p = 0.02) and postexercise ( p = 0.03). After controlling for pre-exercise values, the between-condition postexercise difference was abolished ( p = 0.16). There were no differences in insulin-like growth factor-1 for either sex ( p ≥ 0.06). In women, cortisol increased from pre-exercise to postexercise in HOT ( p = 0.04) but not TEMP ( p = 0.19), generating a between-condition difference at postexercise ( p < 0.01). In men, cortisol increased from pre-exercise to postexercise in HOT only ( p < 0.01). Rectal temperature increased to a greater extent in HOT compared with TEMP in both men ( p = 0.01) and women ( p = 0.02). Heart rate increased after exercise under both conditions in men and women ( p = 0.01), but only women experience greater postexercise HR in HOT vs. TEMP ( p = 0.04). The addition of heat stress to resistance exercise session did not overtly shift the endocrine response toward an anabolic or catabolic response. When acute program variables are prescribed to increase postresistance exercise anabolic hormones, adding heat stress is not synergistic but does increase physiologic strain (i.e., elevated HR and rectal temperature).
Collapse
Affiliation(s)
- J Luke Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Daniel K Sweet
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Paul Rosbrook
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - JianBo Qiao
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - David P Looney
- United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| | - Saleh Mahmood
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Todd Rideout
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| |
Collapse
|
2
|
Pryor JL, Sweet D, Rosbrook P, Qiao J, Hess HW, Looney DP. Resistance Training in the Heat: Mechanisms of Hypertrophy and Performance Enhancement. J Strength Cond Res 2024; 38:1350-1357. [PMID: 38775794 DOI: 10.1519/jsc.0000000000004815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
ABSTRACT Pryor, JL, Sweet, D, Rosbrook, P, Qiao, J, Hess, HW, and Looney, DP. Resistance training in the heat: Mechanisms of hypertrophy and performance enhancement. J Strength Cond Res 38(7): 1350-1357, 2024-The addition of heat stress to resistance exercise or heated resistance exercise (HRE) is growing in popularity as emerging evidence indicates altered neuromuscular function and an amplification of several mechanistic targets of protein synthesis. Studies demonstrating increased protein synthesis activity have shown temperature-dependent mammalian target of rapamycin phosphorylation, supplemental calcium release, augmented heat shock protein expression, and altered immune and hormone activity. These intriguing observations have largely stemmed from myotube, isolated muscle fiber, or rodent models using passive heating alone or in combination with immobilization or injury models. A growing number of translational studies in humans show comparable results employing local tissue or whole-body heat with and without resistance exercise. While few, these translational studies are immensely valuable as they are most applicable to sport and exercise. As such, this brief narrative review aims to discuss evidence primarily from human HRE studies detailing the neuromuscular, hormonal, and molecular responses to HRE and subsequent strength and hypertrophy adaptations. Much remains unknown in this exciting new area of inquiry from both a mechanistic and functional perspective warranting continued research.
Collapse
Affiliation(s)
- J Luke Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Daniel Sweet
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Paul Rosbrook
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - JianBo Qiao
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Hayden W Hess
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - David P Looney
- United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| |
Collapse
|
3
|
Critical Role of Cathepsin L/V in Regulating Endothelial Cell Senescence. BIOLOGY 2022; 12:biology12010042. [PMID: 36671735 PMCID: PMC9855167 DOI: 10.3390/biology12010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
The senescence of vascular endothelial cells (ECs) is characterized as a hallmark of vascular aging, which leads to the initiation, progress, and advancement of cardiovascular diseases. However, the mechanism of the ECs senescence remains elusive. In this study, thoracic aortas were separated from young (8-week-old) and aged (18-month-old) mice. Decreased Ctsl expression and increased vascular remodeling were observed in senescent aorta. H2O2 was used to induce human umbilical vein endothelial cells (HUVECs) senescence, as shown by increased SA-β-gal positive cells and upregulated p21 level. CTSV significantly decreased after H2O2 treatment, while over-expression of CTSV by adenovirus reduced cellular senescence. RNA sequencing analysis was conducted subsequently, and ALDH1A2 was observed to significantly increased in H2O2 group and decreased after over-expression of CTSV. This result was further confirmed by RT-PCR and WB. Moreover, over-expression of CTSV reduced the increase of ERK1/2 and AKT phosphorylation induced by H2O2. Additionally, retinoic acid (RA), the major production of ALDH1A2, was added to CTSV over-expressed senescent HUVECs. Administration of RA activated AKT and ERK1/2, induced the expression of p21, and enhanced SA-β-gal positive cells, while not affecting the expression of CTSV and ALDH1A2. These results were further confirmed in doxorubicin (DOX)-induced senescent ECs. In conclude, we have identified that Ctsl/CTSV plays a key role in ECs senescence by regulating ALDH1A2 to activate AKT/ ERK1/2-P21 pathway. Therefore, targeting Ctsl/CTSV may be a potential therapeutic strategy in EC senescence.
Collapse
|
4
|
L-theanine induces skeletal muscle fiber type transformation by activation of prox1/CaN signaling pathway in C2C12 myotubes. Biol Chem 2022; 403:959-967. [DOI: 10.1515/hsz-2022-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of this study was to investigate the effect and mechanism of L-theanine (LT) on muscle fiber type transformation in C2C12 myotubes. Our data showed that LT exhibited significantly higher slow oxidative muscle fiber expression and lower glycolytic fibers expression. In addition, LT significantly increased the activities of malate dehydrogenase (MDH) and succinic dehydrogenase (SDH), and decreased lactate dehydrogenase (LDH) activity, the calcineurin (CaN) activity and the protein expressions of nuclear factor of activated T cell 1 (NFATc1), prospero-related homeobox1 (prox1), and calcineurin A (CnA) were significantly increased. However, inhibition of CaN activity by cyclosporine A (CsA) abolished LT-induced increase of slow oxidative muscle fiber expression and decrease of glycolytic fibers expression. Moreover, inhibition of prox1 expression by prox1-siRNA disrupted LT-induced activation of CaN signaling pathway and muscle fiber type transformation. Taken together, these results indicated that LT could promote skeletal muscle fiber type transformation from type II to type I via activation of prox1/CaN signaling pathway.
Collapse
|
5
|
Fennel ZJ, Amorim FT, Deyhle MR, Hafen PS, Mermier CM. The Heat Shock Connection: Skeletal Muscle Hypertrophy and Atrophy. Am J Physiol Regul Integr Comp Physiol 2022; 323:R133-R148. [PMID: 35536704 DOI: 10.1152/ajpregu.00048.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is an integral tissue system that plays a crucial role in the physical function of all vertebrates and is a key target for maintaining or improving health and performance across the lifespan. Based largely on cellular and animal models, there is some evidence that various forms of heat stress with or without resistance exercise may enhance skeletal muscle growth or reduce its loss. It is not clear whether these stimuli are similarly effective in humans or meaningful in comparison to exercise alone across various heating methodologies. Furthermore, the magnitude by which heat stress may influence whole body thermoregulatory responses and the connection to skeletal muscle adaptation remains ambiguous. Finally, the underlying mechanisms, which may include interaction between relevant heat shock proteins and intracellular hypertrophy and atrophy related factors, remain unclear. In this narrative mini-review we examine the relevant literature regarding heat stress alone or in combination with resistance exercise emphasizing skeletal muscle hypertrophy and atrophy across cellular and animal models, as well as human investigations. Additionally, we present working mechanistic theories for heat shock protein mediated signaling effects regarding hypertrophy and atrophy related signaling processes. Importantly, continued research is necessary to determine the practical effects and mechanisms of heat stress with and without resistance exercise on skeletal muscle function via growth and maintenance.
Collapse
Affiliation(s)
| | | | | | - Paul Samuel Hafen
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States.,Indiana University School of Medicine Department of Anatomy, Cell Biology, and Physiology; Indiana Center for Musculoskeletal Health, Indianapolis, IN, United States
| | | |
Collapse
|
6
|
Hirunsai M, Srikuea R. Autophagy-lysosomal signaling responses to heat stress in tenotomy-induced rat skeletal muscle atrophy. Life Sci 2021; 275:119352. [PMID: 33771521 DOI: 10.1016/j.lfs.2021.119352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
AIMS The autophagy-lysosomal system plays a crucial role in maintaining muscle proteostasis. Excessive stimulation of the autophagic machinery is a major contributor to muscle atrophy induced by tendon transection. Hyperthermia is known to attenuate muscle protein loss during disuse conditions; however, little is known regarding the response of the autophagy pathway to heat stress following tenotomy-induced muscle atrophy. The purpose of this study was to evaluate whether heat stress would have a beneficial impact on the activation of autophagy in tenotomized soleus and plantaris muscles. MAIN METHODS Male Wistar rats were divided into control, control plus heat stress, tenotomy, and tenotomy plus heat stress groups. The effects of tenotomy were evaluated at 8 and 14 days with heat treatment applied using thermal blankets (30 min. day-1, at 40.5-41.5 °C, for 7 days). KEY FINDINGS Heat stress could normalize tenotomy-induced muscle loss and over-activation of autophagy-lysosomal signaling; this effect was evidently observed in soleus muscle tenotomized for 14 days. The autophagy-related proteins LC3B-II and LC3B-II/I tended to decrease, and lysosomal cathepsin L protein expression was significantly suppressed. While p62/SQSTM1 was not altered in response to intermittent heat exposure in tenotomized soleus muscle at day 14. Phosphorylation of the 4E-BP1 protein was significantly increased in tenotomized plantaris muscle; whereas heat stress had no impact on phosphorylation of Akt and FoxO3a proteins in both tenotomized muscles examined. SIGNIFICANCE Our results provide evidence that heat stress associated attenuation of tenotomy-induced muscle atrophy is mediated through limiting over-activation of the autophagy-lysosomal pathway in oxidative and glycolytic muscles.
Collapse
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand.
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
7
|
Ihsan M, Deldicque L, Molphy J, Britto F, Cherif A, Racinais S. Skeletal Muscle Signaling Following Whole-Body and Localized Heat Exposure in Humans. Front Physiol 2020; 11:839. [PMID: 32765299 PMCID: PMC7381176 DOI: 10.3389/fphys.2020.00839] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/25/2022] Open
Abstract
This study identified the changes in hypertrophy/atrophy and mitochondrial-related signaling in human skeletal muscle following whole-body (WB) and localized single leg (SL) heat treatment. Nine active male participants were administered either 60 min of passive WB (44–50°C, 50% humidity) or SL (water-perfused suit at 49.5 ± 1.4°C) heat treatment at least 1 week apart in a counterbalanced order. The untreated leg during SL was considered as control (CON). Core, skin, and quadriceps muscle temperature were monitored throughout the experimental trials. Muscle microbiopsy samples were obtained prior to (PRE), and 30 min and 3 h post (POST) following heat treatment. Muscle temperature increased with time (p < 0.0001) in both WB and SL, with no differences between conditions (38.8 ± 0.5°C vs. 38.1 ± 0.6°C, p = 0.065). Core temperature increased only following WB, and was significantly higher compared with SL (39.1 ± 0.3°C vs. 37.1 ± 0.1, p < 0.0001). Compared with PRE, WB up-regulated the phosphorylation status of the majority of the Akt/mTOR pathway (Akt, mTOR, S6K1, rpS6, and p-eIF4E; p ≤ 0.050), with the exception of 4EBP1 (p = 0.139). WB also increased the mRNA of HSPs 72, 90, and 25 (all p < 0.021), and increased or tended to increase the phosphorylation of FOXO1 (p = 0.066) and FOXO3a (p = 0.038). In addition, most (NRF1, NRF2, COX2, and COX4-I2; all p ≤ 0.050), but not all (CS, Cyt c, and COX4-I1; p > 0.441) mRNA content indicative of mitochondrial biogenesis were increased following WB, with no changes evident in these parameters in SL or CON (all p > 0.090). These results indicate that 1 h of WB heat treatment enhanced anabolic (Akt/mTOR), mitochondrial, and cyto-protective signaling (HSP), with a concomitant possible inhibition of FOXO transcription factors.
Collapse
Affiliation(s)
- Mohammed Ihsan
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - John Molphy
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Florian Britto
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anissa Cherif
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Sebastien Racinais
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
8
|
Hyldahl RD, Peake JM. Combining cooling or heating applications with exercise training to enhance performance and muscle adaptations. J Appl Physiol (1985) 2020; 129:353-365. [PMID: 32644914 DOI: 10.1152/japplphysiol.00322.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Athletes use cold water immersion, cryotherapy chambers, or icing in the belief that these strategies improve postexercise recovery and promote greater adaptations to training. A number of studies have systematically investigated how regular cold water immersion influences long-term performance and muscle adaptations. The effects of regular cold water immersion after endurance or high-intensity interval training on aerobic capacity, lactate threshold, power output, and time trial performance are equivocal. Evidence for changes in angiogenesis and mitochondrial biogenesis in muscle in response to regular cold water immersion is also mixed. More consistent evidence is available that regular cold water immersion after strength training attenuates gains in muscle mass and strength. These effects are attributable to reduced activation of satellite cells, ribosomal biogenesis, anabolic signaling, and muscle protein synthesis. Athletes use passive heating to warm up before competition or improve postexercise recovery. Emerging evidence indicates that regular exposure to ambient heat, wearing garments perfused with hot water, or microwave diathermy can mimic the effects of endurance training by stimulating angiogenesis and mitochondrial biogenesis in muscle. Some passive heating applications may also mitigate muscle atrophy through their effects on mitochondrial biogenesis and muscle fiber hypertrophy. More research is needed to consolidate these findings, however. Future research in this field should focus on 1) the optimal modality, temperature, duration, and frequency of cooling and heating to enhance long-term performance and muscle adaptations and 2) whether molecular and morphological changes in muscle in response to cooling and heating applications translate to improvements in exercise performance.
Collapse
Affiliation(s)
- Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jonathan M Peake
- Queensland University of Technology, School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia.,Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Kim K, Monroe JC, Gavin TP, Roseguini BT. Skeletal muscle adaptations to heat therapy. J Appl Physiol (1985) 2020; 128:1635-1642. [PMID: 32352340 DOI: 10.1152/japplphysiol.00061.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The therapeutic effects of heat have been harnessed for centuries to treat skeletal muscle disorders and other pathologies. However, the fundamental mechanisms underlying the well-documented clinical benefits associated with heat therapy (HT) remain poorly defined. Foundational studies in cultured skeletal muscle and endothelial cells, as well as in rodents, revealed that episodic exposure to heat stress activates a number of intracellular signaling networks and promotes skeletal muscle remodeling. Renewed interest in the physiology of HT in recent years has provided greater understanding of the signals and molecular players involved in the skeletal muscle adaptations to episodic exposures to HT. It is increasingly clear that heat stress promotes signaling mechanisms involved in angiogenesis, muscle hypertrophy, mitochondrial biogenesis, and glucose metabolism through not only elevations in tissue temperature but also other perturbations, including increased intramyocellular calcium and enhanced energy turnover. The few available translational studies seem to indicate that the earlier observations in rodents also apply to human skeletal muscle. Indeed, recent findings revealed that both local and whole-body HT may promote capillary growth, enhance mitochondrial content and function, improve insulin sensitivity and attenuate disuse-induced muscle wasting. This accumulating body of work implies that HT may be a practical treatment to combat skeletal abnormalities in individuals with chronic disease who are unwilling or cannot participate in traditional exercise-training regimens.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Jacob C Monroe
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| | - Bruno T Roseguini
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
10
|
Hirunsai M, Srikuea R. Heat stress ameliorates tenotomy-induced inflammation in muscle-specific response via regulation of macrophage subtypes. J Appl Physiol (1985) 2020; 128:612-626. [DOI: 10.1152/japplphysiol.00594.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During disuse-induced muscle atrophy, macrophages play a significant role in inflammatory responses that occur with muscle degeneration and repair. Heat treatment has been shown to alleviate muscle atrophy; however, the effect of heat on inflammatory responses following tenotomy has not been evaluated. This study examined the effects of heat stress on proinflammatory (M1-like) and anti-inflammatory (M2-like) macrophage populations. Also, cytokine protein expression in oxidative soleus and glycolytic plantaris muscles following Achilles tendon transection (tenotomy) was analyzed. Male Wistar rats were assigned into control, control plus heat stress, tenotomy, and tenotomy plus heat stress groups. Tenotomy was performed for 8 (TEN8) and 14 (TEN14) days to induce muscle inflammation. Heat treatments, 30 min at 40.5–41.5°C, were given 24 h before and 1–6 consecutive days after tenotomy (TEN8 group) or every other day (TEN14 group). Tenotomy induced muscle necrosis, extensive infiltration of M1- (CD68+), and M2- (CD163+) like macrophages and increased tumor necrosis factor-α (TNFα) but not interleukin-10 (IL-10) protein expression. Heat stress caused a reduction in necrotic fibers, M1-like macrophage invasion, and TNFα protein expression in tenotomized soleus muscle. Additionally, heat stress enhanced M2-like macrophage accumulation during the 14 days following tenotomy in soleus muscle but did not affect IL-10 protein level. Our results indicate that heat stress can limit tenotomy-induced inflammatory responses through modulation of macrophage subtypes and TNFα protein expression, preferentially in oxidative muscle. These findings shed light on the ability of heat stress as a therapeutic strategy to manipulate macrophages for optimal inflammation during muscle atrophy. NEW & NOTEWORTHY We investigated differential effects of heat stress on modulating inflammation following 8 and 14 days of tenotomy in soleus and plantaris muscles. Heat exposure could reduce necrosis, suppress pro-inflammatory macrophage infiltration, and diminish TNFα protein expression in tenotomized muscle, which preferentially occurred in soleus muscle. Additionally, heat stress enhanced anti-inflammatory macrophages in soleus muscle in the 14-day study period. Neither tenotomy nor heat stress had an impact on IL-10 protein expression in either muscle examined.
Collapse
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Nakamura M, Yoshida T, Kiyono R, Sato S, Takahashi N. The effect of low-intensity resistance training after heat stress on muscle size and strength of triceps brachii: a randomized controlled trial. BMC Musculoskelet Disord 2019; 20:603. [PMID: 31830963 PMCID: PMC6909535 DOI: 10.1186/s12891-019-2991-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to clarify whether there is a synergistic effect on muscular strength and hypertrophy when low-intensity resistance training is performed after heat stress. METHODS Thirty healthy young male volunteers were randomly allocated to either the low-intensity resistance training with heat stress group or the control group. The control group performed low-intensity resistance training alone. In the low-intensity resistance training with heat stress group, a hot pack was applied to cover the muscle belly of the triceps brachii for 20 min before the training. The duration of the intervention was 6 weeks. In both groups, the training resistance was 30% of the one repetition maximum, applied in three sets with eight repetitions each and 60-s intervals. The one repetition maximum of elbow extension and muscle thickness of triceps brachii were measured before and after 6 weeks of low intensity resistance training. RESULTS There was no significant change in the one-repetition maximum and muscle thickness in the control group, whereas there was a significant increase in the muscle strength and thickness in the low-intensity resistance training with heat stress group. CONCLUSION The combination of heat stress and low-intensity resistance training was an effective method for increasing muscle strength and volume. TRIAL REGISTRATION University Hospital Medical Information Network Clinical Trials Registry (UMIN000036167; March 11, 2019).
Collapse
Affiliation(s)
- Masatoshi Nakamura
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan. .,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan.
| | - Tomoichi Yoshida
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Ryosuke Kiyono
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Shigeru Sato
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Nobushige Takahashi
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| |
Collapse
|
12
|
Ihsan M, Périard JD, Racinais S. Integrating Heat Training in the Rehabilitation Toolbox for the Injured Athlete. Front Physiol 2019; 10:1488. [PMID: 31920696 PMCID: PMC6917657 DOI: 10.3389/fphys.2019.01488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohammed Ihsan
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | | |
Collapse
|
13
|
Voronkov AV, Gerashchenko AD, Pozdnyakov DI, Khusainov DV. EFFECTS OF VARIOUS AVERSIVE ENVIRONMENTS ON OXYGEN CONSUMPTION OF MUSCLE AND BLOOD IN MICE UNDER CONDITIONS OF THE “FORCED SWIMMING” TEST. PHARMACY & PHARMACOLOGY 2019. [DOI: 10.19163/2307-9266-2019-7-3-148-157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of the study is to assess the effect of various aversive environments on the oxygen consumption in muscles and blood in mice Under conditions of the “forced swimming” test.Materials and methods. The study was performed on outbred male mice. Exhausting physical activity was modeled in the “forced swimming” test in various aversive environments. The oxygen consumption by the muscle tissue, as well as the oxygen capacity of the blood, were estimated using the respirometry method (AKPM1-01L (“Alfa Bassens”, Russia)).Results. In the course of the study it was found out that in the group of the animals swimming in hot water (at the temperature of 41°C) as an aversive environment, there was no significant change in the oxygen consumption by mitochondria of striated muscle and by red blood cells in comparison with the intact group of the animals. At the same time, in the group of the mice, where cold water (at the temperature of 15°C) as an aversive environment was used, a statistically significant (by the end of the experiment) decrease in the swimming time was observed in relation to the intact group of the animals. It was accompanied by a decrease in the oxygen consumption by muscle mitochondria, with a constant level of the blood oxygenation. Under conditions of exhausting physical exertion, in the group of the animals that received Metaprot®, an increase in working capacity was noted in both hot and cold water. After peak days of working capacity, a slight decrease in physical activity was observed in both experimental groups. At the same time, it should be noted that oxygenation of blood and muscle tissue against the background of exhausting physical exertion in the group that received Metaprot®, did not differ from the group of intact animals in various aversive environments.Conclusion. Thus, based on the obtained data, it can be assumed that under conditions of “forced swimming” with loading, the most profound changes in the structure and functions of the striated muscles are observed in animals in cold (15°С) water That is reflected in a decrease in the physical strain and in reducing the oxygen consumption by muscle tissue. The use of the drug Metaprot® promoted correcting the changes in the physical performance of the animals, which was reflected in its increase by 144.8% (p <0.05), compared with the initial swimming time of this group, without the oxygen consumption by erythrocytes and mitochondria of striated muscles.
Collapse
Affiliation(s)
- A. V. Voronkov
- Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
| | - A. D. Gerashchenko
- Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
| | - D. I. Pozdnyakov
- Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
| | - D. V. Khusainov
- Pyatigorsk Medical and Pharmaceutical Institute – branch of Volgograd State Medical University
| |
Collapse
|
14
|
Kim K, Reid BA, Ro B, Casey CA, Song Q, Kuang S, Roseguini BT. Heat therapy improves soleus muscle force in a model of ischemia-induced muscle damage. J Appl Physiol (1985) 2019; 127:215-228. [PMID: 31161885 DOI: 10.1152/japplphysiol.00115.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leg muscle ischemia in patients with peripheral artery disease (PAD) leads to alterations in skeletal muscle morphology and reduced leg strength. We tested the hypothesis that exposure to heat therapy (HT) would improve skeletal muscle function in a mouse model of ischemia-induced muscle damage. Male 42-wk-old C57Bl/6 mice underwent ligation of the femoral artery and were randomly assigned to receive HT (immersion in a water bath at 37°C, 39°C, or 41°C for 30 min) or a control intervention for 3 wk. At the end of the treatment, the animals were anesthetized and the soleus and extensor digitorum longus (EDL) muscles were harvested for the assessment of contractile function and examination of muscle morphology. A subset of animals was used to examine the impact of a single HT session on the expression of genes involved in myogenesis and the regulation of muscle mass. Relative soleus muscle mass was significantly higher in animals exposed to HT at 39°C compared with the control group (control: 0.36 ± 0.01 mg/g versus 39°C: 0.40 ± 0.01 mg/g, P = 0.024). Maximal absolute force of the soleus was also significantly higher in animals treated with HT at 37°C and 39°C (control: 274.7 ± 6.6 mN; 37°C: 300.1 ± 7.7 mN; 39°C: 299.5 ± 10 mN, P < 0.05). In the soleus, but not the EDL muscle, a single session of HT enhanced the mRNA expression of myogenic factors as well as of both positive and negative regulators of muscle mass. These findings suggest that the beneficial effects of HT are muscle specific and dependent on the treatment temperature in a model of PAD. NEW & NOTEWORTHY This is the first study to comprehensively examine the impact of temperature and muscle fiber type composition on the adaptations to repeated heat stress in a model of ischemia-induced muscle damage. Exposure to heat therapy (HT) at 37°C and 39°C, but not at 41°C, improved force development of the isolated soleus muscle. These results suggest that HT may be a practical therapeutic tool to restore muscle mass and strength in patients with peripheral artery disease.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| | - Blake A Reid
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| | - Bohyun Ro
- Department of Physical Education, Dong-A University , Busan , Korea
| | - Caitlin A Casey
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| | - Qifan Song
- Department of Statistics, Purdue University , West Lafayette, Indiana
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University , West Lafayette, Indiana
| | - Bruno T Roseguini
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| |
Collapse
|
15
|
Xing T, Gao F, Tume RK, Zhou G, Xu X. Stress Effects on Meat Quality: A Mechanistic Perspective. Compr Rev Food Sci Food Saf 2018; 18:380-401. [PMID: 33336942 DOI: 10.1111/1541-4337.12417] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Stress inevitably occurs from the farm to abattoir in modern livestock husbandry. The effects of stress on the behavioral and physiological status and ultimate meat quality have been well documented. However, reports on the mechanism of stress effects on physiological and biochemical changes and their consequent effects on meat quality attributes have been somewhat disjointed and limited. Furthermore, the causes of variability in meat quality traits among different animal species, muscle fibers within an animal, and even positions within a piece of meat in response to stress are still not entirely clear. This review 1st summarizes the primary stress factors, including heat stress, preslaughter handling stress, oxidative stress, and other stress factors affecting animal welfare; carcass quality; and eating quality. This review further delineates potential stress-induced pathways or mediators, including AMP-activated protein kinase-mediated energy metabolism, crosstalk among calcium signaling pathways and reactive oxygen species, protein modification, apoptosis, calpain and cathepsin proteolytic systems, and heat shock proteins that exert effects that cause biochemical changes during the early postmortem period and affect the subsequent meat quality. To obtain meat of high quality, further studies are needed to unravel the intricate mechanisms involving the aforementioned signaling pathways or mediators and their crosstalk.
Collapse
Affiliation(s)
- Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Ronald K Tume
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| | - Guanghong Zhou
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| | - Xinglian Xu
- College of Food Science and Technology, Nanjing Agricultural Univ., Nanjing, 210095, Jiangsu, China
| |
Collapse
|
16
|
Apostolopoulos A, Nakamura A, Yokoyama S, Aoshima M, Fujimoto R, Nakamura K, Ito R, Goto K. Nuclear Accumulation of HSP70 in Mouse Skeletal Muscles in Response to Heat Stress, Aging, and Unloading With or Without Reloading. Front Genet 2018; 9:617. [PMID: 30619453 PMCID: PMC6307543 DOI: 10.3389/fgene.2018.00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/23/2018] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to investigate the nuclear accumulation of heat shock protein 70 (HSP70), a molecular chaperonin in mouse skeletal muscle in response to aging, heat stress, and hindlimb unloading with or without reloading. Profiles of HSP70-specific nuclear transporter Hikeshi in skeletal muscles were also evaluated. Heat stress-associated nuclear accumulation of HSP70 was observed in slow soleus (SOL) and fast plantaris (PLA) muscles of young (10-week-old) mice. Mean nuclear expression level of HSP70 in slow medial gastrocnemius (MGAS) and PLA muscles of aged (100-week-old) mice increased ~4.8 and ~1.7 times, compared to that of young (10-week-old) mice. Reloading following 2-week hindlimb unloading caused accumulation of HSP70 in myonuclei in MGAS and PLA of young mice ( p < 0.05). However, reloading-associated nuclear accumulation of HSP70 was not observed in both types of muscles of aged mice. On the other hand, 2-week hindlimb unloading had no impact on the nuclear accumulation of HSP70 in both muscles of young and aged mice. Nuclear expression level of Hikeshi in both MGAS and PLA in mice was suppressed by aging. No significant changes in the nuclear Hikeshi in both muscles were induced by unloading with or without reloading. Results of this study indicate that the nuclear accumulation of HSP70 might show a protective response against cellular stresses in skeletal muscle and that the protective response may be suppressed by aging. Protective response to aging might depend on muscle fiber types.
Collapse
Affiliation(s)
- Antonios Apostolopoulos
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom.,Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Ayane Nakamura
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Shingo Yokoyama
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Megumi Aoshima
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Risa Fujimoto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Kodai Nakamura
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| | - Rika Ito
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan.,Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Katsumasa Goto
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Japan
| |
Collapse
|
17
|
Ohira T, Higashibata A, Seki M, Kurata Y, Kimura Y, Hirano H, Kusakari Y, Minamisawa S, Kudo T, Takahashi S, Ohira Y, Furukawa S. The effects of heat stress on morphological properties and intracellular signaling of denervated and intact soleus muscles in rats. Physiol Rep 2018; 5:5/15/e13350. [PMID: 28784851 PMCID: PMC5555886 DOI: 10.14814/phy2.13350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
The effects of heat stress on the morphological properties and intracellular signaling of innervated and denervated soleus muscles were investigated. Heat stress was applied to rats by immersing their hindlimbs in a warm water bath (42°C, 30 min/day, every other day following unilateral denervation) under anesthesia. During 14 days of experimental period, heat stress for a total of seven times promoted growth‐related hypertrophy in sham‐operated muscles and attenuated atrophy in denervated muscles. In denervated muscles, the transcription of ubiquitin ligase, atrogin‐1/muscle atrophy F‐box (Atrogin‐1), and muscle RING‐finger protein‐1 (MuRF‐1), genes was upregulated and ubiquitination of proteins was also increased. Intermittent heat stress inhibited the upregulation of Atrogin‐1, but not MuRF‐1 transcription. And the denervation‐caused reduction in phosphorylated protein kinase B (Akt), 70‐kDa heat‐shock protein (HSP70), and peroxisome proliferator‐activated receptor γ coactivator‐1α (PGC‐1α), which are negative regulators of Atrogin‐1 and MuRF‐1 transcription, was mitigated. In sham‐operated muscles, repeated application of heat stress did not affect Atrogin‐1 and MuRF‐1 transcription, but increased the level of phosphorylated Akt and HSP70, but not PGC‐1α. Furthermore, the phosphorylation of Akt and ribosomal protein S6, which is known to stimulate protein synthesis, was increased immediately after a single heat stress particularly in the sham‐operated muscles. The effect of a heat stress was suppressed in denervated muscles. These results indicated that the beneficial effects of heat stress on the morphological properties of muscles were brought regardless of innervation. However, the responses of intracellular signaling to heat stress were distinct between the innervated and denervated muscles.
Collapse
Affiliation(s)
- Takashi Ohira
- Division of Aerospace Medicine, Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan .,Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | - Akira Higashibata
- Japanese Experiment Module Utilization Center, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | - Masaya Seki
- Advanced Engineering Services Co. Ltd., Tsukuba, Ibaraki, Japan
| | - Yoichi Kurata
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinobu Ohira
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Satoshi Furukawa
- Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Short-term heat stress induces mitochondrial degradation and biogenesis and enhances mitochondrial quality in porcine oocytes. J Therm Biol 2018; 74:256-263. [PMID: 29801636 DOI: 10.1016/j.jtherbio.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/21/2018] [Accepted: 04/22/2018] [Indexed: 01/29/2023]
Abstract
Mitochondria in oocytes play important roles in many processes, including early embryo development. Promotion of mitochondrial degradation and biogenesis through Sirtuin 1 (SIRT1) activation enhances mitochondrial function and oocyte quality. Previous studies that used somatic cells have shown that short-term heat stress (SHS) induces SIRT1-regulated mitochondrial biogenesis. In this study, we examined whether SHS can induce mitochondrial degradation and biogenesis in porcine oocytes. We collected cumulus cell-oocyte complexes (COCs) from prepubertal gilt ovaries acquired from a slaughterhouse. COCs were treated at 41.5 °C (vehicle: 38.5 °C) for the first one hour of in vitro maturation, and the mitochondrial kinetics, oocyte function, and developmental competence of oocytes were examined. SHS increased the expression level of heat shock protein 72, which induced the high expression of SIRT1 and the phosphorylation of AMP-activated protein kinase. SHS did not alter the mitochondrial DNA copy number in oocytes, but induced mitochondrial degradation and biogenesis, which enhanced the mitochondrial membrane potential and ATP content in oocytes, and improved the ability of the oocytes to develop into blastocysts.
Collapse
|
19
|
Tamura Y, Matsunaga Y, Kitaoka Y, Hatta H. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle. J Gerontol A Biol Sci Med Sci 2017; 72:299-308. [PMID: 27071782 DOI: 10.1093/gerona/glw063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/22/2016] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial and endoplasmic reticulum (ER) stress, and subsequently activated responses (mitochondrial/ER unfolded protein responses; UPRmt/UPRER), are involved in the pathogenesis of sarcopenia. To extend both basic and translational knowledge, we examined (i) whether age-induced mitochondrial and ER stress depend on skeletal muscle type in mice and (ii) whether heat stress treatment, a suggested strategy for sarcopenia, improves age-induced mitochondrial and ER stress. Aged (21-month-old) mice showed more severe mitochondrial stress and UPRmt than young (12-week-old) mice, based on increased oxidative stress, mitochondrial proteases, and mitochondrial E3 ubiquitin ligase. The aged mice also showed ER stress and UPRER, based on decreased ER enzymes and increased ER stress-related cell death. These changes were much more evident in soleus muscle than in gastrocnemius and plantaris muscles. After daily heat stress treatment (40 °C chamber for 30 minutes per day) for 4 weeks, mice showed remarkable improvements in age-related changes in soleus muscle. Heat stress had only minor effects in gastrocnemius and plantaris muscles. Based on these findings, age-associated mitochondrial stress, ER stress, and UPRmt/ER vary qualitatively with skeletal muscle type. Our results suggest a molecular basis for the beneficial effects of heat stress on muscle atrophy with age in soleus muscle.
Collapse
Affiliation(s)
- Yuki Tamura
- Department of Sports Sciences, The University of Tokyo, Japan
| | | | - Yu Kitaoka
- Department of Sports Sciences, The University of Tokyo, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Japan
| |
Collapse
|
20
|
Ohno Y, Egawa T, Yokoyama S, Nakai A, Sugiura T, Ohira Y, Yoshioka T, Goto K. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice. Acta Physiol (Oxf) 2015; 215:191-203. [PMID: 26347147 DOI: 10.1111/apha.12600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/20/2015] [Accepted: 09/03/2015] [Indexed: 01/30/2023]
Abstract
AIM Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. METHODS Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. RESULTS Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. CONCLUSION Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway.
Collapse
Affiliation(s)
- Y. Ohno
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| | - T. Egawa
- Department of Physiology; Graduate School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
- Research Fellow of the Japan Society for the Promotion of Science; Tokyo Japan
| | - S. Yokoyama
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| | - A. Nakai
- Department of Molecular Biology; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - T. Sugiura
- Faculty of Education; Yamaguchi University; Yamaguchi Japan
| | - Y. Ohira
- Graduate School of Health and Sports Science; Doshisha University; Kyotanabe Japan
| | | | - K. Goto
- Laboratory of Physiology; School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
- Department of Physiology; Graduate School of Health Sciences; Toyohashi SOZO University; Toyohashi Japan
| |
Collapse
|
21
|
Jia AF, Feng JH, Zhang MH, Chang Y, Li ZY, Hu CH, Zhen L, Zhang SS, Peng QQ. Effects of immunological challenge induced by lipopolysaccharide on skeletal muscle fiber type conversion of piglets1. J Anim Sci 2015; 93:5194-203. [DOI: 10.2527/jas.2015-9391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- A. F. Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - J. H. Feng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - M. H. Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Y. Chang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Z. Y. Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - C. H. Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - L. Zhen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - S. S. Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Q. Q. Peng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| |
Collapse
|
22
|
Zhong Y, Zhao J, Gu YJ, Zhao YF, Zhou YW, Fu GX. Differential levels of cathepsin B and L in serum between young and aged healthy people and their association with matrix metalloproteinase 2. Arch Gerontol Geriatr 2015; 61:285-8. [PMID: 25991043 DOI: 10.1016/j.archger.2015.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Most publications describe cathepsin B and L as tumor and metastasis factors. These proteases also play a very important role in aging process. The aim of this study was to evaluate the serum level of cathepsin B and L with aging and their association with matrix metalloproteinase 2 (MMP2), which was reported to associate with age-related diseases. METHODS This research was conducted using blood samples provided by healthy people (n=90, 63 men and 27 women). Subjects were subdivided into groups with respect to age: young (about 18-30 years old, n=30), middle age (about 36-50 years old, n=30), and aged (above 56 years old, n=30). Altered serum level of cathepsin B, cathepsin L, and MMP2 with aging was studied by enzyme-linked immunosorbent assay (ELISA) and Western blotting using discriminative antibodies specific for each factor. RESULTS ELISA and Western blotting revealed that the serum level of cathepsin L and MMP2, but not cathepsin B significantly decreased in aged group compared with young group. Cathepsin L positively correlates with MMP2 among the whole healthy people (r(2)=0.869, p<0.0001). CONCLUSION The serum level of cathepsin L decreased with age, while cathepsin B remained no significant difference between young and aged individuals. In addition, cathepsin L positively correlates with MMP2. PRACTICE The cathepsin L may be used as a monitoring index in age-related diseases. IMPLICATIONS In addition to cathepsin B, cathepsin L may be also involved in the aging process.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Jian Zhao
- Jin Shan Branch Hospital of Sixth People's Hospital of Shanghai, No. 147 Health Road, Zhujing Town, Jinshan District, Shanghai 201500, PR China
| | - Ying-Jia Gu
- Jin Shan Branch Hospital of Sixth People's Hospital of Shanghai, No. 147 Health Road, Zhujing Town, Jinshan District, Shanghai 201500, PR China
| | - Yi-Fan Zhao
- Jin Shan Branch Hospital of Sixth People's Hospital of Shanghai, No. 147 Health Road, Zhujing Town, Jinshan District, Shanghai 201500, PR China
| | - Yan-Wu Zhou
- Jin Shan Branch Hospital of Sixth People's Hospital of Shanghai, No. 147 Health Road, Zhujing Town, Jinshan District, Shanghai 201500, PR China
| | - Guo-Xiang Fu
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China.
| |
Collapse
|
23
|
Silverstein MG, Ordanes D, Wylie AT, Files DC, Milligan C, Presley TD, Kavanagh K. Inducing Muscle Heat Shock Protein 70 Improves Insulin Sensitivity and Muscular Performance in Aged Mice. J Gerontol A Biol Sci Med Sci 2014; 70:800-8. [PMID: 25123646 DOI: 10.1093/gerona/glu119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/21/2014] [Indexed: 01/14/2023] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones with roles in longevity and muscular preservation. We aimed to show elevating HSP70 improves indices of health span. Aged C57/BL6 mice acclimated to a western diet were randomized into: geranylgeranylacetone (GGA)-treated (100 mg/kg/d), biweekly heat therapy (HT), or control. The GGA and HT are well-known pharmacological and environmental inducers of HSP70, respectively. Assessments before and after 8 weeks of treatment included glycemic endpoints, body composition, and muscular endurance, power, and perfusion. An HT mice had more than threefold, and GGA mice had a twofold greater HSP70 compared with control. Despite comparable body compositions, both treatment groups had significantly better insulin sensitivity and insulin signaling capacity. Compared with baseline, HT mice ran 23% longer than at study start, which was significantly more than GGA or control. Hanging ability (muscular endurance) also tended to be best preserved in HT mice. Muscle power, contractile force, capillary perfusion, and innervation were not different. Heat treatment has a clear benefit on muscular endurance, whereas HT and GGA both improved insulin sensitivity. Different effects may relate to muscle HSP70 levels. An HSP induction could be a promising approach for improving health span in the aged mice.
Collapse
Affiliation(s)
| | | | | | - D Clark Files
- Internal Medicine-Pulmonary, Critical Care, Allergy and Immunology, and
| | - Carol Milligan
- Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | |
Collapse
|