1
|
Neira JA, Conrad JV, Rusteika M, Chu LF. The progress of induced pluripotent stem cells derived from pigs: a mini review of recent advances. Front Cell Dev Biol 2024; 12:1371240. [PMID: 38979033 PMCID: PMC11228285 DOI: 10.3389/fcell.2024.1371240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 07/10/2024] Open
Abstract
Pigs (Sus scrofa) are widely acknowledged as an important large mammalian animal model due to their similarity to human physiology, genetics, and immunology. Leveraging the full potential of this model presents significant opportunities for major advancements in the fields of comparative biology, disease modeling, and regenerative medicine. Thus, the derivation of pluripotent stem cells from this species can offer new tools for disease modeling and serve as a stepping stone to test future autologous or allogeneic cell-based therapies. Over the past few decades, great progress has been made in establishing porcine pluripotent stem cells (pPSCs), including embryonic stem cells (pESCs) derived from pre- and peri-implantation embryos, and porcine induced pluripotent stem cells (piPSCs) using a variety of cellular reprogramming strategies. However, the stabilization of pPSCs was not as straightforward as directly applying the culture conditions developed and optimized for murine or primate PSCs. Therefore, it has historically been challenging to establish stable pPSC lines that could pass stringent pluripotency tests. Here, we review recent advances in the establishment of stable porcine PSCs. We focus on the evolving derivation methods that eventually led to the establishment of pESCs and transgene-free piPSCs, as well as current challenges and opportunities in this rapidly advancing field.
Collapse
Affiliation(s)
- Jaime A Neira
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Li-Fang Chu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
2
|
Chen Y, Li M, Wu Y. The occurrence and development of induced pluripotent stem cells. Front Genet 2024; 15:1389558. [PMID: 38699229 PMCID: PMC11063328 DOI: 10.3389/fgene.2024.1389558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc (OSKM), known as "Yamanaka factors," can reprogram or stimulate the production of induced pluripotent stem cells (iPSCs). Although OSKM is still the gold standard, there are multiple ways to reprogram cells into iPSCs. In recent years, significant progress has been made in improving the efficiency of this technology. Ten years after the first report was published, human pluripotent stem cells have gradually been applied in clinical settings, including disease modeling, cell therapy, new drug development, and cell derivation. Here, we provide a review of the discovery of iPSCs and their applications in disease and development.
Collapse
Affiliation(s)
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Zhang J, Wang Y, Guo J, Zhang N, He J, Zhou Z, Wu F. Direct Reprogramming of Mouse Fibroblasts to Osteoblast-like Cells Using Runx2/Dlx5 Factors on Engineered Stiff Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59209-59223. [PMID: 38102996 DOI: 10.1021/acsami.3c14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Direct reprogramming of somatic cells into functional cells still faces major limitations in terms of efficiency and achieving functional maturity of the reprogramed cells. While different approaches have been developed commonly based on exploiting biochemical signals, introducing appropriate mechanical cues that stimulate the reprogramming process is rarely reported. In this study, collagen-coated polyacrylamide (PAM) hydrogels with stiffness close to that of collagenous bone (40 kPa) were adopted to augment the direct reprogramming process of mouse fibroblasts to osteoblastic-like cells. The results suggested that culturing cells on a hydrogel substrate enhanced the overexpression of osteogenic transcription factors using nonviral vectors and improved the yield of osteoblast-like cells. Particularly, a synergistic effect on achieving osteogenic functionality has been observed for the mechanical cues and overexpression of transcriptional factors, leading to enhanced osteogenic transformation and production of bone mineral matrix. Animal experiments suggested that reprogramed cells generated on matrix hydrogels accelerated bone regeneration and stimulated ectopic osteogenesis. Mechanism analysis suggested the critical involvement of actomyosin contraction and mechanical signal-mediated pathways like the RhoA-ROCK pathway, leading to a synergistic effect on the key transcriptional processes, including chromatin remodeling, nuclear translocation, and epigenetic transition. This study provides insights into the mechanical cue-enhanced direct reprogramming and cell therapy.
Collapse
Affiliation(s)
- Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Yao Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Jing Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Nihui Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Zongke Zhou
- Orthopedic Research Institute & Department of Orthopedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
4
|
Swegen A, Appeltant R, Williams SA. Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation? Biol Rev Camb Philos Soc 2023; 98:1225-1249. [PMID: 37016502 DOI: 10.1111/brv.12951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
The term 'cloning' refers to the production of genetically identical individuals but has meant different things throughout the history of science: a natural means of reproduction in bacteria, a routine procedure in horticulture, and an ever-evolving gamut of molecular technologies in vertebrates. Mammalian cloning can be achieved through embryo splitting, somatic cell nuclear transfer, and most recently, by the use of induced pluripotent stem cells. Several emerging biotechnologies also facilitate the propagation of genomes from one generation to the next whilst bypassing the conventional reproductive processes. In this review, we examine the state of the art of available cloning technologies and their progress in species other than humans and rodent models, in order to provide a critical overview of their readiness and relevance for application in endangered animal conservation.
Collapse
Affiliation(s)
- Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Priority Research Centre for Reproductive Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ruth Appeltant
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
5
|
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Front Cell Dev Biol 2022; 10:940197. [PMID: 35898400 PMCID: PMC9309298 DOI: 10.3389/fcell.2022.940197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 25 years, cloned animals have been produced by transferring somatic cell nuclei into enucleated oocytes (SCNT) in more than 20 mammalian species. Among domestic animals, pigs are likely the leading species in the number of clones produced by SCNT. The greater interest in pig cloning has two main reasons, its relevance for food production and as its use as a suitable model in biomedical applications. Recognized progress in animal cloning has been attained over time, but the overall efficiency of SCNT in pigs remains very low, based on the rate of healthy, live born piglets following embryo transfer. Accumulating evidence from studies in mice and other species indicate that new strategies for promoting chromatin and epigenetic reprogramming may represent the beginning of a new era for pig cloning.
Collapse
|
6
|
Chen X, Xie W, Zhang M, Shi Y, Xu S, Cheng H, Wu L, Pathak JL, Zheng Z. The Emerging Role of Non-Coding RNAs in Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells. Front Cell Dev Biol 2022; 10:903278. [PMID: 35652090 PMCID: PMC9150698 DOI: 10.3389/fcell.2022.903278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autologous bone marrow-derived mesenchymal stem cells (BMSCs) are more easily available and frequently used for bone regeneration in clinics. Osteogenic differentiation of BMSCs involves complex regulatory networks affecting bone formation phenomena. Non-coding RNAs (ncRNAs) refer to RNAs that do not encode proteins, mainly including microRNAs, long non-coding RNAs, circular RNAs, piwi-interacting RNAs, transfer RNA-derived small RNAs, etc. Recent in vitro and in vivo studies had revealed the regulatory role of ncRNAs in osteogenic differentiation of BMSCs. NcRNAs had both stimulatory and inhibitory effects on osteogenic differentiation of BMSCs. During the physiological condition, osteo-stimulatory ncRNAs are upregulated and osteo-inhibitory ncRNAs are downregulated. The opposite effects might occur during bone degenerative disease conditions. Intracellular ncRNAs and ncRNAs from neighboring cells delivered via exosomes participate in the regulatory process of osteogenic differentiation of BMSCs. In this review, we summarize the recent advances in the regulatory role of ncRNAs on osteogenic differentiation of BMSCs during physiological and pathological conditions. We also discuss the prospects of the application of modulation of ncRNAs function in BMSCs to promote bone tissue regeneration in clinics.
Collapse
Affiliation(s)
- Xiaoying Chen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wei Xie
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Ming Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Yuhan Shi
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Shaofen Xu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Haoyu Cheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zheng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Department of Basic Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Martínez-Falguera D, Iborra-Egea O, Gálvez-Montón C. iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams. Biomedicines 2021; 9:1836. [PMID: 34944652 PMCID: PMC8698445 DOI: 10.3390/biomedicines9121836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction is the main driver of heart failure due to ischemia and subsequent cell death, and cell-based strategies have emerged as promising therapeutic methods to replace dead tissue in cardiovascular diseases. Research in this field has been dramatically advanced by the development of laboratory-induced pluripotent stem cells (iPSCs) that harbor the capability to become any cell type. Like other experimental strategies, stem cell therapy must meet multiple requirements before reaching the clinical trial phase, and in vivo models are indispensable for ensuring the safety of such novel therapies. Specifically, translational studies in large animal models are necessary to fully evaluate the therapeutic potential of this approach; to empirically determine the optimal combination of cell types, supplementary factors, and delivery methods to maximize efficacy; and to stringently assess safety. In the present review, we summarize the main strategies employed to generate iPSCs and differentiate them into cardiomyocytes in large animal species; the most critical differences between using small versus large animal models for cardiovascular studies; and the strategies that have been pursued regarding implanted cells' stage of differentiation, origin, and technical application.
Collapse
Affiliation(s)
- Daina Martínez-Falguera
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain;
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Oriol Iborra-Egea
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
8
|
Luo M, Liu Q, Ye S, Liu S, Hu Y, Lv D, Wang G, Li M, Jian C, Huang B. RNA-seq of buffalo fibroblasts over-expressed pluripotent-related genes to investigate characteristics of its preliminarily reprogrammed stage. Res Vet Sci 2021; 144:164-174. [PMID: 34839950 DOI: 10.1016/j.rvsc.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can enhance the efficiency of buffalo genetic improvements because of their differentiation potential and proliferation ability, which are similar to those of embryonic stem cells. However, very few studies have focussed on buffalo iPSCs, and a stable induction system has not been established for buffalo somatic cell reprogramming. In this study, we constructed a PiggyBac transposon vector co-expressing buffalo OCT4, C-MYC, KLF4 and SOX2 genes (PB_OMKS) separated by the nucleotide sequence of three 2A peptides and established the buffalo foetal skin fibroblast (BFSF) cell line BFSF_OMKS. RNA-seq technology and bioinformatics analysis methods were mainly employed to perform a transcriptome analysis between BFSF and BFSF_OMKS. The results revealed that over-expression of OCT4, C-MYC, KLF4 and SOX2 in BFSFs led to the activation of reprogramming-related LIF, activin, BMP4, SMAD1/5/9 and Wnt signals. These results increased our understanding of buffalo somatic cell reprogramming mechanisms and could provide a possible theory for the selection of small-molecule cocktails to promote reprogramming.
Collapse
Affiliation(s)
- Man Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China; College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Quanhui Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China; College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Sheng Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China; College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shulin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China; College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanan Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China; College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Danwei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China; College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Guodong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China; College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Mengmei Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Chongdong Jian
- Department of Neurology, The Affiliated Hospital of Youjiang Medical for Nationalities, Baise, Guangxi 533000, China.
| | - Ben Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi 530004, China; College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
9
|
Zhang Y, He Y, Wu P, Hu S, Zhang Y, Chen C. miR-200c-141 Enhances Sheep Kidney Cell Reprogramming into Pluripotent Cells by Targeting ZEB1. Int J Stem Cells 2021; 14:423-433. [PMID: 34456193 PMCID: PMC8611307 DOI: 10.15283/ijsc21080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022] Open
Abstract
Background and Objectives Sheep-induced pluripotent stem cells (siPSCs) have low reprogramming efficiency, thereby hampering their use in biotechnology and agriculture. Several studies have shown that some microRNAs play an important role in promoting somatic reprogramming in mouse and human. In this study, we investigated the effect of miR-200c-141 on somatic reprogramming in sheep and explored the mechanism of promoting the reprogramming. Methods and Results The lentivirus system driven by tetracycline (TET)-on carrying Oct4, Sox2, c-Myc, Klf4, Nanog, Lin28, hTERT, and SV40LT (OSKMNLST) could reprogram sheep kidney cells into pluripotent cells. Overexpression of miR-200c-141 in combination with OSKMNLST could significantly improve the efficiency of sheep iPSC generation (p<0.01). Sheep iPSCs derived from miR-200c-141 showed embryonic stem cell (ESC)-like pluripotent properties, were positive for alkaline phosphatase and some pluripotent markers by quantitative real-time PCR (qRT-PCR) and immunofluorescence, and were able to differentiate into three germ layers in vitro. Oar-miR-200c was transfected into HEK293FT cells and was able to target the zinc finger E-box-binding homeobox 1 (ZEB1) 3’UTR using dual luciferase reporting analysis. Overexpression of oar-miR-200c in SKCs significantly reduced the expression of ZEB1, but increased the expression of E-cadherin by qRT-PCR and western blotting analysis. Conclusions These results suggest that miR-200c-141 can promote the reprogramming of sheep somatic cells to iPSCs, and oar-miR-200c targeted ZEB1 3’UTR, significantly decreased expression of ZEB1, and increased expression of E-cadherin. Oar-miR-200c may improve the MET process by affecting the TGF-β signaling pathway, thus improving the efficiency of somatic cell reprogramming in sheep.
Collapse
Affiliation(s)
- Yunfeng Zhang
- College of Animal Science and Technology, Shihezi University, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious, Shihezi, China.,State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Xinjiang Academy of Agricultural and Reclamation Sciences, Xinjiang, China
| | - Yanhua He
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Xinjiang Academy of Agricultural and Reclamation Sciences, Xinjiang, China
| | - Peng Wu
- College of Life Technology, Shihezi University, Xinjiang, China
| | - Shengwei Hu
- College of Life Technology, Shihezi University, Xinjiang, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Xinjiang Academy of Agricultural and Reclamation Sciences, Xinjiang, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious, Shihezi, China
| |
Collapse
|
10
|
Chakritbudsabong W, Chaiwattanarungruengpaisan S, Sariya L, Pamonsupornvichit S, Ferreira JN, Sukho P, Gronsang D, Tharasanit T, Dinnyes A, Rungarunlert S. Exogenous LIN28 Is Required for the Maintenance of Self-Renewal and Pluripotency in Presumptive Porcine-Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:709286. [PMID: 34354993 PMCID: PMC8329718 DOI: 10.3389/fcell.2021.709286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Porcine species have been used in preclinical transplantation models for assessing the efficiency and safety of transplants before their application in human trials. Porcine-induced pluripotent stem cells (piPSCs) are traditionally established using four transcription factors (4TF): OCT4, SOX2, KLF4, and C-MYC. However, the inefficiencies in the reprogramming of piPSCs and the maintenance of their self-renewal and pluripotency remain challenges to be resolved. LIN28 was demonstrated to play a vital role in the induction of pluripotency in humans. To investigate whether this factor is similarly required by piPSCs, the effects of adding LIN28 to the 4TF induction method (5F approach) on the efficiency of piPSC reprogramming and maintenance of self-renewal and pluripotency were examined. Using a retroviral vector, porcine fetal fibroblasts were transfected with human OCT4, SOX2, KLF4, and C-MYC with or without LIN28. The colony morphology and chromosomal stability of these piPSC lines were examined and their pluripotency properties were characterized by investigating both their expression of pluripotency-associated genes and proteins and in vitro and in vivo differentiation capabilities. Alkaline phosphatase assay revealed the reprogramming efficiencies to be 0.33 and 0.17% for the 4TF and 5TF approaches, respectively, but the maintenance of self-renewal and pluripotency until passage 40 was 6.67 and 100%, respectively. Most of the 4TF-piPSC colonies were flat in shape, showed weak positivity for alkaline phosphatase, and expressed a significantly high level of SSEA-4 protein, except for one cell line (VSMUi001-A) whose properties were similar to those of the 5TF-piPSCs; that is, tightly packed and dome-like in shape, markedly positive for alkaline phosphatase, and expressing endogenous pluripotency genes (pOCT4, pSOX2, pNANOG, and pLIN28), significantly high levels of pluripotent proteins (OCT4, SOX2, NANOG, LIN28, and SSEA-1), and a significantly low level of SSEA-4 protein. VSMUi001-A and all 5F-piPSC lines formed embryoid bodies, underwent spontaneous cardiogenic differentiation with cardiac beating, expressed cardiomyocyte markers, and developed teratomas. In conclusion, in addition to the 4TF, LIN28 is required for the effective induction of piPSCs and the maintenance of their long-term self-renewal and pluripotency toward the development of all germ layers. These piPSCs have the potential applicability for veterinary science.
Collapse
Affiliation(s)
- Warunya Chakritbudsabong
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MOZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MOZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Sirikron Pamonsupornvichit
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MOZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Joao N Ferreira
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Panithi Sukho
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Dulyatad Gronsang
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Andras Dinnyes
- BioTalentum Ltd., Gödöllő, Hungary.,Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.,College of Life Sciences, Sichuan University, Chengdu, China
| | - Sasitorn Rungarunlert
- Laboratory of Cellular Biomedicine and Veterinary Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.,Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
11
|
Su Y, Zhu J, Salman S, Tang Y. Induced pluripotent stem cells from farm animals. J Anim Sci 2021; 98:5937369. [PMID: 33098420 DOI: 10.1093/jas/skaa343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The development of the induced pluripotent stem cells (iPSCs) technology has revolutionized the world on the establishment of pluripotent stem cells (PSCs) across a great variety of animal species. Generation of iPSCs from domesticated animals would provide unrestricted cell resources for the study of embryonic development and cell differentiation of these species, for screening and establishing desired traits for sustainable agricultural production, and as veterinary and preclinical therapeutic tools for animal and human diseases. Induced PSCs from domesticated animals thus harbor enormous scientific, economical, and societal values. Although much progress has been made toward the generation of PSCs from these species, major obstacles remain precluding the exclamation of the establishment of bona fide iPSCs. The most prominent of them remain the inability of these cells to silence exogenous reprogramming factors, the obvious reliance on exogenous factors for their self-renewal, and the restricted development potential in vivo. In this review, we summarize the history and current progress in domestic farm animal iPSC generation, with a focus on swine, ruminants (cattle, ovine, and caprine), horses, and avian species (quails and chickens). We also discuss the problems associated with the farm animal iPSCs and potential future directions toward the complete reprogramming of somatic cells from farm animals.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Saleh Salman
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| |
Collapse
|
12
|
Scarfone RA, Pena SM, Russell KA, Betts DH, Koch TG. The use of induced pluripotent stem cells in domestic animals: a narrative review. BMC Vet Res 2020; 16:477. [PMID: 33292200 PMCID: PMC7722595 DOI: 10.1186/s12917-020-02696-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are undifferentiated stem cells characterized by the ability to differentiate into any cell type in the body. iPSCs are a relatively new and rapidly developing technology in many fields of biology, including developmental anatomy and physiology, pathology, and toxicology. These cells have great potential in research as they are self-renewing and pluripotent with minimal ethical concerns. Protocols for their production have been developed for many domestic animal species, which have since been used to further our knowledge in the progression and treatment of diseases. This research is valuable both for veterinary medicine as well as for the prospect of translation to human medicine. Safety, cost, and feasibility are potential barriers for this technology that must be considered before widespread clinical adoption. This review will analyze the literature pertaining to iPSCs derived from various domestic species with a focus on iPSC production and characterization, applications for tissue and disease research, and applications for disease treatment.
Collapse
Affiliation(s)
- Rachel A Scarfone
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Samantha M Pena
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
13
|
Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev 2020; 32:11-39. [PMID: 32188555 DOI: 10.1071/rd19272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and invitro breeding schemes.
Collapse
Affiliation(s)
- Micaela Navarro
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Delia A Soto
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Carlos A Pinzon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA; and Corresponding author.
| |
Collapse
|
14
|
Qiao S, Deng Y, Li S, Yang X, Shi D, Li X. Partially Reprogrammed Induced Pluripotent Stem Cells Using MicroRNA Cluster miR-302s in Guangxi Bama Minipig Fibroblasts. Cell Reprogram 2019; 21:229-237. [PMID: 31479283 DOI: 10.1089/cell.2019.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pig-induced pluripotent stem cells (piPSCs) have great potential application in regenerative medicine. The miR-302s cluster alone has been shown to reprogram mouse and human somatic cells into induced pluripotent stem cells (iPSCs) without exogenous transcription factors. However, miR-302s alone have not been reported to reprogram cells in large livestock. In this study, we induced pig somatic cells into partially reprogrammed piPSCs using overexpression of the miR-302s cluster (miR-302s-piPSC) and investigated the early reprogramming events during the miRNA induction process. The results showed that miR-302s-piPSCs exhibited some characteristics of pluripotent stem cells including expression of pluripotency markers-particularly, efficient activation of endogenous OCT4-and differentiation to the three germ layers in vitro. During the early reprogramming process, somatic cells first underwent epithelial-mesenchymal transition and then mesenchymal-epithelial transition to eventually form miR-302s-piPSCs. These data show, for the first time, that single factor miR-302s successfully induced pig somatic cells into miR-302s-piPSCs. This study provides a new tool and research direction for the induction of pluripotent stem cells in a large livestock.
Collapse
Affiliation(s)
- Shuye Qiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Sheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiaoling Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
15
|
Akkouch A, Eliason S, Sweat ME, Romero-Bustillos M, Zhu M, Qian F, Amendt BA, Hong L. Enhancement of MicroRNA-200c on Osteogenic Differentiation and Bone Regeneration by Targeting Sox2-Mediated Wnt Signaling and Klf4. Hum Gene Ther 2019; 30:1405-1418. [PMID: 31288577 DOI: 10.1089/hum.2019.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MicroRNA (miR)-200c functions in antitumorigenesis and mediates inflammation and osteogenic differentiation. In this study, we discovered that miR-200c was upregulated in human bone marrow mesenchymal stromal cells (hBMSCs) during osteogenic differentiation. Inhibition of endogenous miR-200c resulted in downregulated osteogenic differentiation of hBMSCs and reduced bone volume in the maxilla and mandible of a transgenic mouse model. Overexpression of miR-200c by transfection of naked plasmid DNA (pDNA) encoding miR-200c significantly promoted the biomarkers of osteogenic differentiation in hBMSCs, including alkaline phosphatase, Runt-related transcription factor 2, osteocalcin, and mineral deposition. The pDNA encoding miR-200c also significantly enhanced bone formation and regeneration in calvarial defects of rat models. In addition, miR-200c overexpression was shown to downregulate SRY (sex determining region Y)-box 2 (Sox2) and Kruppel-like factor 4 by directly targeting 3'-untranslated regions and upregulate the activity of Wnt signaling inhibited by Sox2. These results strongly indicated that miR-200c may serve as a unique osteoinductive agent applied for bone healing and regeneration.
Collapse
Affiliation(s)
- Adil Akkouch
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa
| | - Steven Eliason
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa.,Center for Craniofacial Anomalies Research, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Mason E Sweat
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | - Min Zhu
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa
| | - Fang Qian
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa.,Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa.,Center for Craniofacial Anomalies Research, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Liu Hong
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa.,Center for Craniofacial Anomalies Research, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
16
|
Li L, Zhang D, Ren Y, Ye S, Zheng B, Liu S, Zaheer Ahmed J, Li M, Shi D, Huang B. The modification of mitochondrial energy metabolism and histone of goat somatic cells under small molecules compounds induction. Reprod Domest Anim 2019; 54:138-149. [PMID: 30098220 DOI: 10.1111/rda.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022]
Abstract
In recent years, induced pluripotent stem cells (iPSCs) technique is able to allow us to generate pluripotency from somatic cells in vitro through the over expression of several transcription factors. Normally, viral vectors and transcription factors are commonly used on iPSC technique, which could cause many barriers on further application. In this study, we attempt to process a new method to obtain pluripotency from goat somatic cells in vitro under fully chemically defined condition. The results showed that chemically induced pluripotent stem cells-like cells (CiPSC-like cells) colonies were generated from goat ear fibroblasts by fully small-molecule compounds. Those three dimensions colonies were similar with mouse iPSCs in morphology and had strong positive alkaline phosphatase (AP) activity and expressed pluripotency related genes OCT4, SOX2, NANOG, CDH1, TDGF, GDF3, DAX1, REX1, which determined by RT-PCR. Those colonies could also differentiate into different cell types derived from three germ layers proved by RT-PCR and immunofluorescence assays. The expression of glycolysis-related genes about PGAM1, KPYM2 and HXK2 in CiPSC-like colonies formation groups was significantly higher than their parental fibroblasts, but not in the non-CiPSC-like colonies formation group. The expression of histone acetylation and methylation-related genes, HAT1 and SMYD3, was not significantly up-regulated within different groups compared to their parental fibroblasts, respectively. Yet, the expression of histone methylation-related gene, KDM5B, was significantly up-regulated on the cells from non-colonies formation group compared to parental fibroblasts, but the expression of KDM5B of the cells from CiPSC-like cell colonies was not significantly difference compared to that of parental fibroblasts. In conclusion, this is the first report that CiPSC-like cells could be generated in vitro from goat rather than just mouse under fully chemically defined condition. The generation of CiPSC-like colonies may be depended on the correct modification of energy metabolism and histone epigenetic during the reprogramming, rather than just the over-expression of those pluripotency-related genes. This study will strongly support us to further establish the stable goat CiPSC lines without any integration of exogenous genes.
Collapse
Affiliation(s)
- Lanyu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Dandan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yanyan Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Sheng Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Beibei Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shulin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jam Zaheer Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Mengmei Li
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Ben Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
17
|
MicroRNAs: Important Regulators of Induced Pluripotent Stem Cell Generation and Differentiation. Stem Cell Rev Rep 2017; 14:71-81. [DOI: 10.1007/s12015-017-9785-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Common microRNA-mRNA interactions exist among distinct porcine iPSC lines independent of their metastable pluripotent states. Cell Death Dis 2017; 8:e3027. [PMID: 29048434 PMCID: PMC5596602 DOI: 10.1038/cddis.2017.426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
Previous evidences have proved that porcine-induced pluripotent stem cells (piPSCs) could be induced to distinctive metastable pluripotent states. This raises the issue of whether there is a common transcriptomic profile existing among the piPSC lines at distinctive state. In this study, we performed conjoint analysis of small RNA-seq and mRNA-seq for three piPSC lines which represent LIF dependence, FGF2 dependence and LFB2i dependence, respectively. Interestingly, we found there are 16 common microRNAs which potentially target 13 common mRNAs among the three piPSC lines. Dual-luciferase reporter assay validated that miR-370, one of the 16 common microRNAs, could directly target the 3′UTR of LIN28A. When the differentiation occurred, miR-370 could be activated in piPSCs and switched off the expression of LIN28A. Ectopic expression of miR-370 in piPSCs could reduce LIN28A expression, decrease the alkaline phosphatase activity, slow down the proliferation, and further cause the downregulation of downstream pluripotent genes (OCT4, SOX2, NANOG, SALL4 and ESRRB) and upregulation of differentiation relevant genes (SOX9, JARID2 and JMJD4). Moreover, these phenotypes caused by miR-370 could be rescued by overexpressing LIN28A. Collectively, our findings suggest that a set of common miRNA–mRNA interactions exist among the distinct piPSC lines, which orchestrate the self-renewal and differentiation of piPSCs independent of their metastable pluripotent states.
Collapse
|
19
|
Fukuda T, Tani T, Haraguchi S, Donai K, Nakajima N, Uenishi H, Eitsuka T, Miyagawa M, Song S, Onuma M, Hoshino Y, Sato E, Honda A. Expression of Six Proteins Causes Reprogramming of Porcine Fibroblasts Into Induced Pluripotent Stem Cells With Both Active X Chromosomes. J Cell Biochem 2016; 118:537-553. [DOI: 10.1002/jcb.25727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Tomokazu Fukuda
- United Graduate School of Agricultural Sciences; Iwate University; 4-3-5, Ueda Morioka 020-8551 Iwate Japan
| | - Tetsuya Tani
- Laboratory of Animal Reproduction; Department of Advanced Bioscience; Faculty of Agriculture; Kindai University; 3327-204 Nakamachi Nara 631-8505 Japan
| | - Seiki Haraguchi
- Division of Animal Sciences; Animal Biotechnology Unit; Institute of Agrobiological Sciences; National Agriculture and Food Research Organization (NARO); Tsukuba Ibaraki 305-0901 Japan
| | - Kenichiro Donai
- Graduate School of Agricultural Science; Tohoku University; Sendai 981-8555 Japan
| | - Nobuyoshi Nakajima
- Center for Environmental Biology and Ecosystem Studies; National Institute of Environmental Studies; Tsukuba Japan
| | - Hirohide Uenishi
- Animal Bioregulation Unit; Division of Animal Sciences; Institute of Agrobiological Sciences; National Agriculture and Food Research Organization (NARO); 1-2 Owashi Tsukuba Ibaraki 305-8634 Japan
| | - Takahiro Eitsuka
- Faculty of Applied Life Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata Japan
| | - Makoto Miyagawa
- Central Experimental Animal Center; Teikyo University School of Medicine; Japan
| | - Sanghoun Song
- Faculty of Life and Environmental Science; Shimane University; Matsue Shimane Japan
| | - Manabu Onuma
- Center for Environmental Biology and Ecosystem Studies; National Institute of Environmental Studies; Tsukuba Japan
| | - Yumi Hoshino
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science; Hiroshima University; Higashi-Hiroshima, Kagamiyama 1-4-4 Hiroshima 739-8528 Japan
| | - Eimei Sato
- National Livestock Breeding Center; Odakurahara, Odakura, Nishigo-mura, Nishishirakawa-gun Fukushima 961-8511 Japan
| | - Arata Honda
- Organization for Promotion of Tenure Track; University of Miyazaki; 5200 Kihara Kiyotake Miyazaki 889-1692 Japan
| |
Collapse
|
20
|
Deng W, Cao X, Wang Q, Wang Y, Chen J, Yu Q, Zhang Z, Zhou J, Xu W, Du P, Chen J, Gao X, Yu J, Xu X. Prolonged Three-Dimensional Co-Delivery of Yamanaka Factors for Cell Reprogramming. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19916-19927. [PMID: 27428246 DOI: 10.1021/acsami.6b05825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Reprogramming somatic cells into a pluripotent state has been widely investigated in two-dimensional (2D) systems but not described in the more biologically faithful three-dimensional (3D) scaffolds. Here, we devise a 3D porous tissue engineering scaffold that could achieve successful and efficient induction of pluripotency. To construct this 3D scaffold, nonviral hybrid nanoparticles were fabricated beforehand by employing calcium phosphate and cationized Pleurotus eryngii polysaccharide to codeliver plasmids OCT4, SOX2, KLF4 ,and C-MYC (pOSKM). These hybrid nanoparticles were then loaded into a 3D porous collagen scaffold to obtain the so-called pOSKM-activated 3D scaffold. This 3D scaffold could reprogram human umbilical cord mesenchymal stem cells (HUMSCs) into a pluripotent state, generating 3D cell spheres which showed positive expression of pluripotency markers in the 3D scaffolds and tightly packed colonies when transferred to 2D feeder layers. Besides sharing similar morphology, epigenetic modification, and expression of pluripotency genes with the embryonic stem cells, the 3D system-generated colonies could also be expanded on feeder layers for more than 20 passages, indicating the successful establishment of stable induced pluripotent stem cell (iPSC) lines. Our findings represent a first employment of porous 3D scaffolds to achieve successful reprogramming via a one-time transfection, offering a safe, simple, and effective alternative strategy for iPSC generation.
Collapse
Affiliation(s)
- Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Qiang Wang
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Jingjing Chen
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Zhijian Zhang
- Center for Drug/Gene Delivery and Tissue Engineering and School of Medicine, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Jie Zhou
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Wenqian Xu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Pan Du
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Jiaxin Chen
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Xiangdong Gao
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| |
Collapse
|
21
|
Zhang W, Zhong L, Wang J, Han J. Distinct MicroRNA Expression Signatures of Porcine Induced Pluripotent Stem Cells under Mouse and Human ESC Culture Conditions. PLoS One 2016; 11:e0158655. [PMID: 27384321 PMCID: PMC4934789 DOI: 10.1371/journal.pone.0158655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
It is well known that microRNAs play a very important role in regulating reprogramming, pluripotency and cell fate decisions. Porcine induced pluripotent stem cells (piPSCs) are now available for studying the pluripotent regulation network in pigs. Two types of piPSCs have been derived from human and mouse embryonic stem cell (ESC) culture conditions: hpiPSCs and mpiPSCs, respectively. The hpiPSCs were morphologically similar to human ESCs, and the mpiPSCs resembled mouse ESCs. However, our current understanding of the role of microRNAs in the development of piPSCs is still very limited. Here, we performed small RNA sequencing to profile the miRNA expression in porcine fibroblasts (pEFs), hpiPSCs and mpiPSCs. There were 22 differential expressed (DE) miRNAs down-regulated in both types of piPSCs compared with pEFs, such as ssc-miR-145-5p and ssc-miR-98. There were 27 DE miRNAs up-regulated in both types of piPSCs compared with pEFs. Among these up-regulated DE miRNAs in piPSCs, ssc-miR-217, ssc-miR-216, ssc-miR-142-5p, ssc-miR-182, ssc-miR-183 and ssc-miR-96-5p have much higher expression levels in mpiPSCs, while ssc-miR-106a, ssc-miR-363, ssc-miR-146b, ssc-miR-195, ssc-miR-497, ssc-miR-935 and ssc-miR-20b highly expressed in hpiPSCs. Quantitative stem-loop RT-PCR was performed to confirm selected DE miRNAs expression levels. The results were consistent with small RNA sequencing. Different expression patterns were observed for key miRNA clusters, such as the miR-17-92 cluster, the let-7 family, the miR-106a-363 cluster and the miR-182-183 cluster, in the mpiPSCs and hpiPSCs. Novel miRNAs were also predicted in this study, including a putative porcine miR-302 cluster: ssc_38503, ssc_38503 and ssc_38501 (which resemble human miR-302a and miR-302b) found in both types of piPSCs. The miR-106a-363 cluster and putative miR-302 cluster increased the reprogramming efficiency of pEFs. The study revealed significant differences in the miRNA signatures of hpiPSCs and mpiPSCs under different pluripotent states that were derived from different culture conditions. These differentially expressed miRNAs may play important roles in pluripotent regulation in pigs, and this information will facilitate the understanding of the mechanism of pluripotency in pigs.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Zhong
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jing Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Pluripotent stem cells and livestock genetic engineering. Transgenic Res 2016; 25:289-306. [PMID: 26894405 DOI: 10.1007/s11248-016-9929-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023]
Abstract
The unlimited proliferative ability and capacity to contribute to germline chimeras make pluripotent embryonic stem cells (ESCs) perfect candidates for complex genetic engineering. The utility of ESCs is best exemplified by the numerous genetic models that have been developed in mice, for which such cells are readily available. However, the traditional systems for mouse genetic engineering may not be practical for livestock species, as it requires several generations of mating and selection in order to establish homozygous founders. Nevertheless, the self-renewal and pluripotent characteristics of ESCs could provide advantages for livestock genetic engineering such as ease of genetic manipulation and improved efficiency of cloning by nuclear transplantation. These advantages have resulted in many attempts to isolate livestock ESCs, yet it has been generally concluded that the culture conditions tested so far are not supportive of livestock ESCs self-renewal and proliferation. In contrast, there are numerous reports of derivation of livestock induced pluripotent stem cells (iPSCs), with demonstrated capacity for long term proliferation and in vivo pluripotency, as indicated by teratoma formation assay. However, to what extent these iPSCs represent fully reprogrammed PSCs remains controversial, as most livestock iPSCs depend on continuous expression of reprogramming factors. Moreover, germline chimerism has not been robustly demonstrated, with only one successful report with very low efficiency. Therefore, even 34 years after derivation of mouse ESCs and their extensive use in the generation of genetic models, the livestock genetic engineering field can stand to gain enormously from continued investigations into the derivation and application of ESCs and iPSCs.
Collapse
|
23
|
Hu C, Li L. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells. Regen Med 2015; 11:105-32. [PMID: 26679838 DOI: 10.2217/rme.15.79] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
24
|
Abstract
This review deals with the latest advances in the study of embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) from domesticated species, with a focus on pigs, cattle, sheep, goats, horses, cats, and dogs. Whereas the derivation of fully pluripotent ESC from these species has proved slow, reprogramming of somatic cells to iPSC has been more straightforward. However, most of these iPSC depend on the continued expression of the introduced transgenes, a major drawback to their utility. The persistent failure in generating ESC and the dependency of iPSC on ectopic genes probably stem from an inability to maintain the stability of the endogenous gene networks necessary to maintain pluripotency. Based on work in humans and rodents, achievement of full pluripotency will likely require fine adjustments in the growth factors and signaling inhibitors provided to the cells. Finally, we discuss the future utility of these cells for biomedical and agricultural purposes.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| | - Ye Yuan
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| | - R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; , ,
| |
Collapse
|
25
|
Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J Stem Cells 2015; 7:315-328. [PMID: 25815117 PMCID: PMC4369489 DOI: 10.4252/wjsc.v7.i2.315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem (iPS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived iPS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming mRNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of iPS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of iPS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals.
Collapse
|
26
|
Chen C, Meng F, Wan H, Zhou Q. [Interaction between microRNAs and OCT4]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:55-8. [PMID: 25603874 PMCID: PMC5999741 DOI: 10.3779/j.issn.1009-3419.2015.01.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OCT4基因是POU转录因子家族中的一员,它能与含八聚体基序(ATGCAAAT)的DNA结合。OCT4是一个关键的转录因子,在未分化胚胎干细胞中参与维持多能性和自我更新性,在许多种癌症包括肺癌、生殖细胞肿瘤、乳腺癌、宫颈癌、前列腺癌、胃癌、肝癌和卵巢癌中过表达。MicroRNAs(miRNAs)是一种小的非编码RNA,通过和靶基因mRNA碱基配对来调控mRNA表达,降解mRNA或阻碍蛋白合成。一些miRNAs被证实在癌细胞中调控干细胞因子如OCT4、NANOG、SOX2和KLF4,进而调控癌细胞的增殖、凋亡、分化、抗药性和免疫性。
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanrong Meng
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Haisu Wan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute,
Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
27
|
Li M, Li L, Zhang J, Verma V, Liu Q, Shi D, Huang B. An Insight on Small Molecule Induced Foot-Print Free Naive Pluripotent Stem Cells in Livestock. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/scd.2015.51001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|