1
|
Hirose H, Fujimasa S, Kanemaru S, Yoshimoto S, Matsumoto N, Anan H, Matsuzaki E. Sphingosine-1-phosphate receptor 1-mediated odontogenic differentiation of mouse apical papilla-derived stem cells. J Dent Sci 2024; 19:2323-2331. [PMID: 39347102 PMCID: PMC11437261 DOI: 10.1016/j.jds.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/05/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Sphingosine-1-phosphate (S1P) exhibits receptor-mediated physiological effects by facilitating the differentiation of mesenchymal stem cells toward the osteoblast lineage. This study aimed to determine the effect of S1P on odontogenic differentiation of mouse immortalized stem cells of dental apical papilla (iSCAP) and assess the distribution of the S1P receptor 1 (S1PR1) in the apical papilla and the root canal wall of immature rat molars. Materials and methods Immunostaining for S1PR1 was conducted at the apex of the rat mandibular first molar and within the root canal wall. The iSCAP was treated with S1P and bone morphogenetic protein (BMP)-9 (for comparison), and the expression levels of the odontogenic differentiation marker were evaluated via real-time reverse-transcriptase quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Mineralization and lipid droplet formation were evaluated via Alizarin red and Oil red O staining. Results S1PR1-positive cells were expressed in areas of both apical papilla and dentin-pulp interface of root canal wall. During the odontogenic differentiation of iSCAP, S1P and BMP-9 increased the expression of the differentiation marker mRNA and secreted proteins including dentin sialophosphoprotein, dentin matrix phosphoprotein 1, and matrix extracellular phosphoglycoprotein. The S1PR1 signaling pathway is involved in the action of S1P, but not that of BMP-9. S1PR1 signaling also facilitated mineralization in iSCAP and suppressed the differentiation of these cells into adipocytes. Conclusion S1P induced odontogenic differentiation of iSCAP through S1PR1. Furthermore, S1PR1-positive cells were expressed in the apical papilla of immature rat molars and in the dentin-pulp interface where odontoblast-like cells exist.
Collapse
Affiliation(s)
- Haruna Hirose
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Seishiro Fujimasa
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Shingo Kanemaru
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Noriyoshi Matsumoto
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | | | - Etsuko Matsuzaki
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
2
|
Lambert J, Kovilakath A, Jamil M, Valentine Y, Anderson A, Montefusco D, Cowart LA. Sphingosine kinase 1 is induced by glucocorticoids in adipose derived stem cells and enhances glucocorticoid mediated signaling in adipose expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612482. [PMID: 39314417 PMCID: PMC11419133 DOI: 10.1101/2024.09.13.612482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Sphingosine kinase 1 (SphK1) plays a crucial role in regulating metabolic pathways within adipocytes and is elevated in the adipose tissue of obese mice. While previous studies have reported both pro- and inhibitory effects of SphK1 and its product, sphingosine-1-phosphate (S1P), on adipogenesis, the precise mechanisms remain unclear. This study explores the timing and downstream effects of SphK1/S1P expression and activation during in vitro adipogenesis. We demonstrate that the synthetic glucocorticoid dexamethasone robustly induces SphK1 expression, suggesting its involvement in glucocorticoid-dependent signaling during adipogenesis. Notably, the activation of C/EBPδ, a key gene in early adipogenesis and a target of glucocorticoids, is diminished in SphK1-/- adipose-derived stem cells (ADSCs). Furthermore, glucocorticoid administration promotes adipose tissue expansion via SphK1 in a depot-specific manner. Although adipose expansion still occurs in SphK1-/- mice, it is significantly reduced. These findings indicate that while SphK1 is not essential for adipogenesis, it enhances early gene activation, thereby facilitating adipose tissue expansion.
Collapse
Affiliation(s)
- Johana Lambert
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - Anna Kovilakath
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maryam Jamil
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yolander Valentine
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrea Anderson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Departments of Biochemistry and Molecular Biology Medical University of South Carolina, Charleston, SC, USA
| | - David Montefusco
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
3
|
Wille A, Weske S, von Wnuck Lipinski K, Wollnitzke P, Schröder NH, Thomas N, Nowak MK, Deister-Jonas J, Behr B, Keul P, Levkau B. Sphingosine-1-phosphate promotes osteogenesis by stimulating osteoblast growth and neovascularization in a vascular endothelial growth factor-dependent manner. J Bone Miner Res 2024; 39:357-372. [PMID: 38477738 PMCID: PMC11240155 DOI: 10.1093/jbmr/zjae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 03/14/2024]
Abstract
Sphingosine-1-phosphate (S1P) plays multiple roles in bone metabolism and regeneration. Here, we have identified a novel S1P-regulated osteoanabolic mechanism functionally connecting osteoblasts (OBs) to the highly specialized bone vasculature. We demonstrate that S1P/S1PR3 signaling in OBs stimulates vascular endothelial growth factor a (VEGFa) expression and secretion to promote bone growth in an autocrine and boost osteogenic H-type differentiation of bone marrow endothelial cells in a paracrine manner. VEGFa-neutralizing antibodies and VEGF receptor inhibition by axitinib abrogated OB growth in vitro and bone formation in male C57BL/6J in vivo following S1P stimulation and S1P lyase inhibition, respectively. Pharmacological S1PR3 inhibition and genetic S1PR3 deficiency suppressed VEGFa production, OB growth in vitro, and inhibited H-type angiogenesis and bone growth in male mice in vivo. Together with previous work on the osteoanabolic functions of S1PR2 and S1PR3, our data suggest that S1P-dependent bone regeneration employs several nonredundant positive feedback loops between OBs and the bone vasculature. The identification of this yet unappreciated aspect of osteoanabolic S1P signaling may have implications for regular bone homeostasis as well as diseases where the bone microvasculature is affected such as age-related osteopenia and posttraumatic bone regeneration.
Collapse
Affiliation(s)
- Annalena Wille
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sarah Weske
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Karin von Wnuck Lipinski
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Wollnitzke
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nathalie H Schröder
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nadine Thomas
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Melissa K Nowak
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jennifer Deister-Jonas
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Björn Behr
- Department of Plastic Surgery, University Hospital BG Bergmannsheil, 44789 Bochum, Germany
| | - Petra Keul
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Kajita K, Ishii I, Mori I, Asano M, Fuwa M, Morita H. Sphingosine 1-Phosphate Regulates Obesity and Glucose Homeostasis. Int J Mol Sci 2024; 25:932. [PMID: 38256005 PMCID: PMC10816022 DOI: 10.3390/ijms25020932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
One of the major global health and welfare issues is the treatment of obesity and associated metabolic disorders, such as type 2 diabetes mellitus and nonalcoholic fatty liver disease. Obesity, caused by the excessive accumulation of triglycerides in adipose tissues, induces adipocyte dysfunction, followed by inflammation, in adipose tissues and lipotoxicity in nonadipose tissues. Several studies have shown that obesity and glucose homeostasis are influenced by sphingolipid mediators, including ceramide and sphingosine 1-phosphate (S1P). Cellular accumulation of ceramide impairs pancreatic β-cell survival, confers insulin resistance in the liver and the skeletal muscle, and deteriorates adipose tissue inflammation via unknown molecular mechanisms. The roles of S1P are more complicated, because there are five cell-surface S1P receptors (S1PRs: S1P1-5) which have altered functions, different cellular expression patterns, and inapparent intracellular targets. Recent findings, including those by our group, support the notable concept that the pharmacological activation of S1P1 or S1P3 improves obesity and associated metabolic disorders, whereas that of S1P2 has the opposite effect. In addition, the regulation of S1P production by sphingosine kinase (SphK) is an essential factor affecting glucose homeostasis. This review summarizes the current knowledge on SphK/S1P/S1PR signaling in and against obesity, insulin resistance, and associated disorders.
Collapse
Affiliation(s)
- Kazuo Kajita
- Department of Health and Nutrition, Faculty of Home Economics, Gifu Women’s University, 80 Taromaru, Gifu 501-2592, Japan
| | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, 3-3165 Higashitamagawagakuen, Machida 194-8543, Japan
| | - Ichiro Mori
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| | - Motochika Asano
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| | - Masayuki Fuwa
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| | - Hiroyuki Morita
- Department of General Medicine and General Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (I.M.); (M.A.); (M.F.); (H.M.)
| |
Collapse
|
5
|
Frost K, Naylor AJ, McGettrick HM. The Ying and Yang of Sphingosine-1-Phosphate Signalling within the Bone. Int J Mol Sci 2023; 24:6935. [PMID: 37108099 PMCID: PMC10139073 DOI: 10.3390/ijms24086935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Bone remodelling is a highly active and dynamic process that involves the tight regulation of osteoblasts, osteoclasts, and their progenitors to allow for a balance of bone resorption and formation to be maintained. Ageing and inflammation are risk factors for the dysregulation of bone remodelling. Once the balance between bone formation and resorption is lost, bone mass becomes compromised, resulting in disorders such as osteoporosis and Paget's disease. Key molecules in the sphingosine-1-phosphate signalling pathway have been identified for their role in regulating bone remodelling, in addition to its more recognised role in inflammatory responses. This review discusses the accumulating evidence for the different, and, in certain circumstances, opposing, roles of S1P in bone homeostasis and disease, including osteoporosis, Paget's disease, and inflammatory bone loss. Specifically, we describe the current, often conflicting, evidence surrounding S1P function in osteoblasts, osteoclasts, and their precursors in health and disease, concluding that S1P may be an effective biomarker of bone disease and also an attractive therapeutic target for disease.
Collapse
Affiliation(s)
| | - Amy J. Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
6
|
Zhang T, Li H, Sun S, Zhou W, Zhang T, Yu Y, Wang Q, Wang M. Microfibrillar-associated protein 5 suppresses adipogenesis by inhibiting essential coactivator of PPARγ. Sci Rep 2023; 13:5589. [PMID: 37020143 PMCID: PMC10076305 DOI: 10.1038/s41598-023-32868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023] Open
Abstract
Femoral head necrosis is responsible for severe pain and its incidence is increasing. Abnormal adipogenic differentiation and fat cell hypertrophy of bone marrow mesenchymal stem cells increase intramedullary cavity pressure, leading to osteonecrosis. By analyzing gene expression before and after adipogenic differentiation, we found that Microfibril-Associated Protein 5 (MFAP5) is significantly down-regulated in adipogenesis whilst the mechanism of MFAP5 in regulating the differentiation of bone marrow mesenchymal stem cells is unknown. The purpose of this study was to clarify the role of MAFP5 in adipogenesis and therefore provide a theoretical basis for future therapeutic options of osteonecrosis. By knockdown or overexpression of MFAP5 in C3H10 and 3T3-L1 cells, we found that MFAP5 was significantly down-regulated as a key regulator of adipogenic differentiation, and identified the underlying downstream molecular mechanism. MFAP5 directly bound to and inhibited the expression of Staphylococcal Nuclease And Tudor Domain Containing 1, an essential coactivator of PPARγ, exerting an important regulatory role in adipogenesis.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Haoran Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Shiwei Sun
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Wuling Zhou
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Tieqi Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Yueming Yu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| | - Minghai Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No128. Ruili Road, Minhang District, Shanghai, 200240, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Brozowski JM, Timoshchenko RG, Serafin DS, Allyn B, Koontz J, Rabjohns EM, Rampersad RR, Ren Y, Eudy AM, Harris TF, Abraham D, Mattox D, Rubin CT, Hilton MJ, Rubin J, Allbritton NL, Billard MJ, Tarrant TK. G protein-coupled receptor kinase 3 modulates mesenchymal stem cell proliferation and differentiation through sphingosine-1-phosphate receptor regulation. Stem Cell Res Ther 2022; 13:37. [PMID: 35093170 PMCID: PMC8800243 DOI: 10.1186/s13287-022-02715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bone marrow niche supports hematopoietic cell development through intimate contact with multipotent stromal mesenchymal stem cells; however, the intracellular signaling, function, and regulation of such supportive niche cells are still being defined. Our study was designed to understand how G protein receptor kinase 3 (GRK3) affects bone marrow mesenchymal stem cell function by examining primary cells from GRK3-deficient mice, which we have previously published to have a hypercellular bone marrow and leukocytosis through negative regulation of CXCL12/CXCR4 signaling. METHODS Murine GRK3-deficient bone marrow mesenchymal stromal cells were harvested and cultured to differentiate into three lineages (adipocyte, chondrocyte, and osteoblast) to confirm multipotency and compared to wild type cells. Immunoblotting, modified-TANGO experiments, and flow cytometry were used to further examine the effects of GRK3 deficiency on bone marrow mesenchymal stromal cell receptor signaling. Microcomputed tomography was used to determine trabecular and cortical bone composition of GRK3-deficient mice and standard ELISA to quantitate CXCL12 production from cellular cultures. RESULTS GRK3-deficient, bone marrow-derived mesenchymal stem cells exhibit enhanced and earlier osteogenic differentiation in vitro. The addition of a sphingosine kinase inhibitor abrogated the osteogenic proliferation and differentiation, suggesting that sphingosine-1-phosphate receptor signaling was a putative G protein-coupled receptor regulated by GRK3. Immunoblotting showed prolonged ERK1/2 signaling after stimulation with sphingosine-1-phosphate in GRK3-deficient cells, and modified-TANGO assays suggested the involvement of β-arrestin-2 in sphingosine-1-phosphate receptor internalization. CONCLUSIONS Our work suggests that GRK3 regulates sphingosine-1-phosphate receptor signaling on bone marrow mesenchymal stem cells by recruiting β-arrestin to the occupied GPCR to promote internalization, and lack of such regulation affects mesenchymal stem cell functionality.
Collapse
Affiliation(s)
- Jaime M Brozowski
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA
| | - Roman G Timoshchenko
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - D Stephen Serafin
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Brittney Allyn
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA
| | - Jessica Koontz
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Emily M Rabjohns
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA
| | - Rishi R Rampersad
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA
| | - Yinshi Ren
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC, USA
| | - Amanda M Eudy
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA
| | - Taylor F Harris
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Abraham
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel Mattox
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering at Stony, Brook University, Stony Brook, NY, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancy L Allbritton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew J Billard
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Teresa K Tarrant
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, USA.
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, 200 Trent Dr., DUMC 3874, Durham, NC, USA.
- School of Medicine, Duke University, 152 Edwin L. Jones Building, 207 Research Drive, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Wei X, Liu Q, Guo S, Wu Y. Role of Wnt5a in periodontal tissue development, maintenance, and periodontitis: Implications for periodontal regeneration (Review). Mol Med Rep 2021; 23:167. [PMID: 33398377 PMCID: PMC7821221 DOI: 10.3892/mmr.2020.11806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
The periodontium is a highly dynamic microenvironment constantly adapting to changing external conditions. In the processes of periodontal tissue formation and remodeling, certain molecules may serve an essential role in maintaining periodontal homeostasis. Wnt family member 5a (Wnt5a), as a member of the Wnt family, has been identified to have extensive biological roles in development and disease, predominantly through the non‑canonical Wnt signaling pathway or through interplay with the canonical Wnt signaling pathway. An increasing number of studies has also demonstrated that it serves crucial roles in periodontal tissues. Wnt5a participates in the development of periodontal tissues, maintains a non‑mineralized state of periodontal ligament, and regulates bone homeostasis. In addition, Wnt5a is involved in the pathogenesis of periodontitis. Recently, it has been shown to serve a positive role in the regeneration of integrated periodontal complex. The present review article focuses on recent research studies of Wnt5a and its functions in development, maintenance, and pathological disorders of periodontal tissues, as well as its potential effect on periodontal regeneration.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
9
|
Matsuzaki E, Minakami M, Matsumoto N, Anan H. Dental regenerative therapy targeting sphingosine-1-phosphate (S1P) signaling pathway in endodontics. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:127-134. [PMID: 33088365 PMCID: PMC7567953 DOI: 10.1016/j.jdsr.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
The establishment of regenerative therapy in endodontics targeting the dentin-pulp complex, cementum, periodontal ligament tissue, and alveolar bone will provide valuable information to preserve teeth. It is well known that the application of stem cells such as induced pluripotent stem cells, embryonic stem cells, and somatic stem cells is effective in regenerative medicine. There are many somatic stem cells in teeth and periodontal tissues including dental pulp stem cells (DPSCs), stem cells from the apical papilla, and periodontal ligament stem cells. Particularly, several studies have reported the regeneration of clinical pulp tissue and alveolar bone by DPSCs transplantation. However, further scientific issues for practical implementation remain to be addressed. Sphingosine-1-phosphate (S1P) acts as a bioactive signaling molecule that has multiple biological functions including cellular differentiation, and has been shown to be responsible for bone resorption and formation. Here we discuss a strategy for bone regeneration and a possibility for regenerative endodontics targeting S1P signaling pathway as one of approaches for induction of regeneration by improving the regenerative capacity of endogenous cells. SCIENTIFIC FIELD OF DENTAL SCIENCE Endodontology.
Collapse
Affiliation(s)
- Etsuko Matsuzaki
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Masahiko Minakami
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Noriyoshi Matsumoto
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Hisashi Anan
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| |
Collapse
|
10
|
Bone regenerative potential of the selective sphingosine 1-phosphate receptor modulator siponimod: In vitro characterisation using osteoblast and endothelial cells. Eur J Pharmacol 2020; 882:173262. [PMID: 32534075 DOI: 10.1016/j.ejphar.2020.173262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
The repair of critical bone defects remains a significant therapeutic challenge. While the implantation of drug-eluting scaffolds is an option, a drug with the optimal pharmacological properties has not yet been identified. Agents acting at sphingosine 1-phosphate (S1P) receptors have been considered, but those investigated so far do not discriminate between the five known S1P receptors. This work was undertaken to investigate the potential of the specific S1P1/5 modulator siponimod as a bone regenerative agent, by testing in vitro its effect on cell types critical to the bone regeneration process. hFOB osteoblasts and HUVEC endothelial cells were treated with siponimod and other S1P receptor modulators and investigated for changes in intracellular cyclic AMP content, viability, proliferation, differentiation, attachment and cellular motility. Siponimod showed no effect on the viability and proliferation of osteoblasts and endothelial cells, but increased osteoblast differentiation (as shown by increased alkaline phosphatase activity). Furthermore, siponimod significantly increased endothelial cell motility in scratch and transwell migration assays. These effects on osteoblast differentiation and endothelial cell migration suggest that siponimod may be a potential agent for the stimulation of localised differentiation of osteoblasts in critical bone defects.
Collapse
|
11
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019:100995. [PMID: 31445071 DOI: 10.1016/j.plipres.2019.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
12
|
Fang Z, Pyne S, Pyne NJ. WITHDRAWN: Ceramide and Sphingosine 1-Phosphate in adipose dysfunction. Prog Lipid Res 2019:100991. [PMID: 31442525 DOI: 10.1016/j.plipres.2019.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Zijian Fang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
13
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019; 75:100988. [PMID: 31132366 DOI: 10.1016/j.plipres.2019.100988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules, and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
14
|
Lu X, Chen Y, Wang H, Bai Y, Zhao J, Zhang X, Liang L, Chen Y, Ye C, Li Y, Zhang Y, Li Y, Ma T. Integrated Lipidomics and Transcriptomics Characterization upon Aging-Related Changes of Lipid Species and Pathways in Human Bone Marrow Mesenchymal Stem Cells. J Proteome Res 2019; 18:2065-2077. [PMID: 30827117 DOI: 10.1021/acs.jproteome.8b00936] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aberrant differentiations of bone mesenchymal stem cells (BMSCs) have proved to be associated with the occurrence of senile osteoporosis. However, mechanisms of this phenomenon relative to abnormal lipid metabolism remain unclear. This study was conducted to characterize the lipidomics alterations during BMSC passaging, aiming at uncovering the aging-related lipid metabolism that may play an important role in aberrant differentiations of BMSCs. Principal component analysis presented the sequential lipidomics alterations during BMSC passaging. The majority of glycerophospholipids, including phosphatidylcholines, phosphatidylethanolamines, phosphatidylglycerols, as well as sphingolipids, revealed significant elevations, whereas the others, including phosphatidic acids, phosphatidylinositols, and phosphatidylserines, presented decreases in aged cells. Double-bond equivalent versus carbon number plots demonstrated that the changing trends and significances of lipids during passaging were associated with the chain length and the degree of unsaturation. In the correlation networks, the scattering patterns of lipid categories suggested the category-related metabolic independence and potential conversion among phosphatidic acids, phosphatidylinositols, and phosphatidylserines. The lipid-enzyme integrated pathway analysis indicated the activated metabolic conversion from phosphatidic acids to CDP-diacylglycerol to phosphatidylinositols and from sphingosine to ceramides to sphingomyelins with BMSC passaging. The conversions among lipid species described the lipidomics responses that potentially induced the aberrant differentiations during BMSC aging.
Collapse
Affiliation(s)
- Xin Lu
- School of Electronic and Information Engineering , Harbin Institute of Technology at Shenzhen , Shenzhen , Guangdong 518055 , China
| | - Yue Chen
- School of Life Science and Technology , Harbin Institute of Technology , Harbin , Heilongjiang 150080 , China
| | - Huiyu Wang
- School of Pharmacy , Qiqihar Medical University , Qiqihar , Heilongjiang 161000 , China
| | - Yunfan Bai
- School of Life Science and Technology , Harbin Institute of Technology , Harbin , Heilongjiang 150080 , China
| | - Jianxiang Zhao
- School of Life Science and Technology , Harbin Institute of Technology , Harbin , Heilongjiang 150080 , China
| | - Xiaohan Zhang
- School of Life Science and Technology , Harbin Institute of Technology , Harbin , Heilongjiang 150080 , China
| | - Li Liang
- School of Electronic and Information Engineering , Harbin Institute of Technology at Shenzhen , Shenzhen , Guangdong 518055 , China
| | - Yang Chen
- School of Electronic and Information Engineering , Harbin Institute of Technology at Shenzhen , Shenzhen , Guangdong 518055 , China
| | - Chenfei Ye
- School of Electronic and Information Engineering , Harbin Institute of Technology at Shenzhen , Shenzhen , Guangdong 518055 , China
| | - Yiqun Li
- School of Life Science and Technology , Harbin Institute of Technology , Harbin , Heilongjiang 150080 , China
| | - Yi Zhang
- Tian Qing Stem Cell Co. Ltd. , Harbin , Heilongjiang 150080 , China
| | - Yu Li
- School of Life Science and Technology , Harbin Institute of Technology , Harbin , Heilongjiang 150080 , China
| | - Ting Ma
- School of Electronic and Information Engineering , Harbin Institute of Technology at Shenzhen , Shenzhen , Guangdong 518055 , China.,Advanced Innovation Center for Human Brain Protection , Capital Medical University , Beijing , China.,National Clinical Research Center for Geriatric Disorders , Xuanwu Hospital Capital Medical University , Beijing , China.,Peng Cheng Laboratory, Shenzhen , Guangdong , China
| |
Collapse
|
15
|
Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res 2019; 74:145-159. [PMID: 30951736 DOI: 10.1016/j.plipres.2019.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
The increased adipose tissue mass of obese individuals enhances the risk of metabolic syndrome, type 2 diabetes and cardiovascular diseases. During pathological expansion of adipose tissue, multiple molecular controls of lipid storage, adipocyte turn-over and endocrine secretion are perturbed and abnormal lipid metabolism results in a distinct lipid profile. There is a role for ceramides and sphingosine 1-phosphate (S1P) in inducing adipose dysfunction. For instance, the alteration of ceramide biosynthesis, through the de-regulation of key enzymes, results in aberrant formation of ceramides (e.g. C16:0 and C18:0) which block insulin signaling and promote adipose inflammation. Furthermore, S1P can induce defective adipose tissue phenotypes by promoting chronic inflammation and inhibiting adipogenesis. These abnormal changes are discussed in the context of possible therapeutic approaches to re-establish normal adipose function and to, thereby, increase insulin sensitivity in type 2 diabetes. Such novel approaches include blockade of ceramide biosynthesis using inhibitors of sphingomyelinase or dihydroceramide desaturase and by antagonism of S1P receptors, such as S1P2.
Collapse
|
16
|
Cao Y, Xiao L, Cao Y, Nanda A, Xu C, Ye Q. 3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation. Biochem Biophys Res Commun 2019; 512:889-895. [PMID: 30929923 DOI: 10.1016/j.bbrc.2019.03.132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/22/2022]
Abstract
Traditional treatments for bone repair with allografts and autografts are limited by the source of bone substitutes. Bone tissue engineering via a cell-based bone tissue scaffold is a new strategy for treatment against large bone defects with many advantages, such as the accessibility of biomaterials, good biocompatibility and osteoconductivity; however, the inflammatory immune response is still an issue that impacts osteogenesis. Sphingosine 1-phosphate (S1P) is a cell-derived sphingolipid that can mediate cell proliferation, immunoregulation and bone regeneration. We hypothesised that coating S1P on a β-Tricalcium phosphate (β-TCP) scaffold could regulate the immune response and increase osteogenesis. We tested the immunoregulation capability on macrophages and the osteogenic capability on rat bone marrow stromal cells of the coated scaffolds, which showed good biocompatibility. Additionally, the coated scaffolds exhibited dose-dependent inhibition of inflammatory-related gene expression. A high concentration of S1P (0.5 μM) upregulated osteogenic-related gene expression of OPN, OCN and RUNX2, which also significantly increased the alkaline phosphatase activity, as compared with the control group. In conclusion, S1P coated β-TCP scaffold could inhibit inflammation and promote bone regeneration.
Collapse
Affiliation(s)
- Yuxue Cao
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Lan Xiao
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, 4006, Australia
| | - Yanfan Cao
- WMU-UQ Group for Regenerative Medicine, School of Stomatology, Wenzhou Medical University, China
| | - Ashwin Nanda
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia; WMU-UQ Group for Regenerative Medicine, School of Stomatology, Wenzhou Medical University, China.
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia; WMU-UQ Group for Regenerative Medicine, School of Stomatology, Wenzhou Medical University, China.
| |
Collapse
|
17
|
Lambert JM, Anderson AK, Cowart LA. Sphingolipids in adipose tissue: What's tipping the scale? Adv Biol Regul 2018; 70:19-30. [PMID: 30473005 PMCID: PMC11129658 DOI: 10.1016/j.jbior.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 01/06/2023]
Abstract
Adipose tissue lies at the heart of obesity, mediating its many effects upon the rest of the body, with its unique capacity to expand and regenerate, throughout the lifespan of the organism. Adipose is appreciated as an endocrine organ, with its myriad adipokines that elicit both physiological and pathological outcomes. Sphingolipids, bioactive signaling molecules, affect many aspects of obesity and the metabolic syndrome. While sphingolipids are appreciated in the context of these diseases in other tissues, there are many discoveries yet to be uncovered in the adipose tissue. This review focuses on the effects of sphingolipids on various aspects of adipose function and dysfunction. The processes of adipogenesis, metabolism and thermogenesis, in addition to inflammation and insulin resistance are intimately linked to sphingolipids as discussed below.
Collapse
Affiliation(s)
- Johana M Lambert
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Andrea K Anderson
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, VA, USA.
| |
Collapse
|
18
|
Ahn EH, Yang H, Hsieh CY, Sun W, Chang CC, Schroeder JJ. Evaluation of chemotherapeutic and cancer-protective properties of sphingosine and C2-ceramide in a human breast stem cell derived carcinogenesis model. Int J Oncol 2018; 54:655-664. [PMID: 30483770 PMCID: PMC6317677 DOI: 10.3892/ijo.2018.4641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
The overall goal of the present study was to evaluate the chemotherapeutic and cancer-protective properties of D-erythro-sphingosine (sphingosine) and C2-ceramide using a human breast epithelial cell (HBEC) culture system, which represents multiple-stages of breast carcinogenesis. The HBEC model includes Type I HBECs (normal stem), Type II HBECs (normal differentiated) and transformed cells (immortal/non-tumorigenic cells and tumorigenic cells, which are transformed from the same parental normal stem cells). The results of the present study indicate that sphingosine preferentially inhibits proliferation and causes death of normal stem cells (Type I), tumorigenic cells, and MCF7 breast cancer cells, but not normal differentiated cells (Type II). In contrast to the selective anti-proliferative effects of sphingosine, C2-ceramide inhibits proliferation of normal differentiated cells as well as normal stem cells, tumorigenic cells, and MCF7 cancer cells with similar potency. Both sphingosine and C2-ceramide induce apoptosis in tumorigenic cells. Among the sphingosine stereoisomers (D-erythro, D-threo, L-erythro, and L-threo) and sphinganine that were tested, L-erythro-sphingosine most potently inhibits proliferation of tumorigenic cells. The inhibition of breast tumorigenic/cancer cell proliferation by sphingosine was accompanied by inhibition of telomerase activity. Sphingosine at non-cytotoxic concentrations, but not C2-ceramide, induces differentiation of normal stem cells (Type I), thereby reducing the number of stem cells that are more susceptible to neoplastic transformation. To the best of our knowledge, the present study demonstrates one of the first results that sphingosine can be a potential chemotherapeutic and cancer-protective agent, whereas C2-ceramide is not an ideal chemotherapeutic and cancer-protective agent due to its anti-proliferative effects on Type II HBECs and its inability to induce the differentiation of Type I to Type II HBECs.
Collapse
Affiliation(s)
- Eun Hyun Ahn
- Department of Pathology and 2Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hong Yang
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Ching-Yi Hsieh
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Sun
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Chia-Cheng Chang
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph J Schroeder
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Sun S, Zhou L, Yu Y, Zhang T, Wang M. Knocking down clock control gene CRY1 decreases adipogenesis via canonical Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2018; 506:746-753. [DOI: 10.1016/j.bbrc.2018.10.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
|
20
|
Ng ML, Yarla NS, Menschikowski M, Sukocheva OA. Regulatory role of sphingosine kinase and sphingosine-1-phosphate receptor signaling in progenitor/stem cells. World J Stem Cells 2018; 10:119-133. [PMID: 30310531 PMCID: PMC6177561 DOI: 10.4252/wjsc.v10.i9.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 02/06/2023] Open
Abstract
Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in normal and disease-affected tissues. Particularly, sphingosine kinase 1 (SphK1) and its product sphingosine-1-phosphate (S1P) operate as mediators and facilitators of proliferation-linked signaling. Unlimited proliferation (self-renewal) within the regulated environment is a hallmark of progenitor/stem cells that was recently associated with the S1P signaling network in vasculature, nervous, muscular, and immune systems. S1P was shown to regulate progenitor-related characteristics in normal and cancer stem cells (CSCs) via G-protein coupled receptors S1Pn (n = 1 to 5). The SphK/S1P axis is crucially involved in the regulation of embryonic development of vasculature and the nervous system, hematopoietic stem cell migration, regeneration of skeletal muscle, and development of multiple sclerosis. The ratio of the S1P receptor expression, localization, and specific S1P receptor-activated downstream effectors influenced the rate of self-renewal and should be further explored as regeneration-related targets. Considering malignant transformation, it is essential to control the level of self-renewal capacity. Proliferation of the progenitor cell should be synchronized with differentiation to provide healthy lifelong function of blood, immune systems, and replacement of damaged or dead cells. The differentiation-related role of SphK/S1P remains poorly assessed. A few pioneering investigations explored pharmacological tools that target sphingolipid signaling and can potentially confine and direct self-renewal towards normal differentiation. Further investigation is required to test the role of the SphK/S1P axis in regulation of self-renewal and differentiation.
Collapse
Affiliation(s)
- Mei Li Ng
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney NSW 2050, Australia
| | - Nagendra S Yarla
- Department of Biochemistry and Bioinformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Andhra Pradesh, India
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden D-01307, Germany
| | - Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park SA 5042, Australia.
| |
Collapse
|
21
|
Weske S, Vaidya M, Reese A, von Wnuck Lipinski K, Keul P, Bayer JK, Fischer JW, Flögel U, Nelsen J, Epple M, Scatena M, Schwedhelm E, Dörr M, Völzke H, Moritz E, Hannemann A, Rauch BH, Gräler MH, Heusch G, Levkau B. Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss. Nat Med 2018; 24:667-678. [PMID: 29662200 DOI: 10.1038/s41591-018-0005-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/13/2018] [Indexed: 11/09/2022]
Abstract
Sphingosine-1-phosphate (S1P) signaling influences bone metabolism, but its therapeutic potential in bone disorders has remained unexplored. We show that raising S1P levels in adult mice through conditionally deleting or pharmacologically inhibiting S1P lyase, the sole enzyme responsible for irreversibly degrading S1P, markedly increased bone formation, mass and strength and substantially decreased white adipose tissue. S1P signaling through S1P2 potently stimulated osteoblastogenesis at the expense of adipogenesis by inversely regulating osterix and PPAR-γ, and it simultaneously inhibited osteoclastogenesis by inducing osteoprotegerin through newly discovered p38-GSK3β-β-catenin and WNT5A-LRP5 pathways. Accordingly, S1P2-deficient mice were osteopenic and obese. In ovariectomy-induced osteopenia, S1P lyase inhibition was as effective as intermittent parathyroid hormone (iPTH) treatment in increasing bone mass and was superior to iPTH in enhancing bone strength. Furthermore, lyase inhibition in mice successfully corrected severe genetic osteoporosis caused by osteoprotegerin deficiency. Human data from 4,091 participants of the SHIP-Trend population-based study revealed a positive association between serum levels of S1P and bone formation markers, but not resorption markers. Furthermore, serum S1P levels were positively associated with serum calcium , negatively with PTH , and curvilinearly with body mass index. Bone stiffness, as determined through quantitative ultrasound, was inversely related to levels of both S1P and the bone formation marker PINP, suggesting that S1P stimulates osteoanabolic activity to counteract decreasing bone quality. S1P-based drugs should be considered as a promising therapeutic avenue for the treatment of osteoporotic diseases.
Collapse
Affiliation(s)
- Sarah Weske
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mithila Vaidya
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alina Reese
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karin von Wnuck Lipinski
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Petra Keul
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julia K Bayer
- Institute of Pharmacology and Clinical Pharmacology, University of Düsseldorf, Düsseldorf, Germany
| | - Jens W Fischer
- Institute of Pharmacology and Clinical Pharmacology, University of Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Institute of Molecular Cardiology, University of Düsseldorf, Düsseldorf, Germany
| | - Jens Nelsen
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Marta Scatena
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Hamburg, Hamburg, Germany
| | - Marcus Dörr
- DZHK, partner site Greifswald, Greifswald, Germany.,Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Eileen Moritz
- DZHK, partner site Greifswald, Greifswald, Germany.,Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Bernhard H Rauch
- DZHK, partner site Greifswald, Greifswald, Germany.,Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Markus H Gräler
- Institute of Pharmacology, Department of General Pharmacology, University Medicine Greifswald, Greifswald, Germany.,Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, and Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bodo Levkau
- Institute for Pathophysiology, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
22
|
Vézina A, Charfi C, Zgheib A, Annabi B. Cerebrovascular Angiogenic Reprogramming upon LRP1 Repression: Impact on Sphingosine-1-Phosphate-Mediated Signaling in Brain Endothelial Cell Chemotactism. Mol Neurobiol 2018; 55:3551-3563. [PMID: 28516428 DOI: 10.1007/s12035-017-0614-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/11/2017] [Indexed: 12/28/2022]
Abstract
Switches in sphingolipid metabolism have recently been associated with oncogenic transformation, and a role for the low-density lipoprotein receptor-related protein 1 (LRP1) in sphingosine-1-phosphate (S1P) proangiogenic signaling inferred. S1P signaling crosstalk with LRP1 in brain microvascular endothelial cells (HBMEC) is however unclear. Transient in vitro siLRP1 gene silencing was compared to stable shLRP1 knockdown. We observed decreased expression of CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor for which multiple binding sites are found within the promoter sequences of all five S1P receptor members, upon stable but not transient LRP1 repression. Chemotactic migration of brain EC isolated from Lrp1(EC)-/- mice and of stable shLRP1 HBMEC became unresponsive to S1P, partly due to altered ERK and p38 MAPK pathways, whereas chemotactism remained unaltered following transient in vitro siLRP1 repression. Diminished S1P1, S1P3, and S1P5 expression were observed in stable shLRP1 HBMEC and in brain EC isolated from Lrp1(EC)-/- mice. Overexpression of LRP1 cluster IV rescued S1P-mediated cell migration through increased S1P3 transcription in shLRP1 HBMEC. Our study highlights an adaptive signaling crosstalk between LRP1 and specific S1P receptors which may regulate the angiogenic response of brain EC and be targeted at the blood-brain barrier in future therapeutic strategies.
Collapse
Affiliation(s)
- Amélie Vézina
- From the Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | - Cyndia Charfi
- From the Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | - Alain Zgheib
- From the Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | - Borhane Annabi
- From the Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada.
| |
Collapse
|
23
|
T Cell Factor 7 (TCF7)/TCF1 Feedback Controls Osteocalcin Signaling in Brown Adipocytes Independent of the Wnt/β-Catenin Pathway. Mol Cell Biol 2018; 38:MCB.00562-17. [PMID: 29358218 DOI: 10.1128/mcb.00562-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Osteocalcin has recently been shown to regulate energy homeostasis through multiple pathways. Adipose tissue is a main organ of energy metabolism, and administration of recombinant osteocalcin in mice promoted energy consumption, thus counteracting obesity and glucose intolerance. The regulation of osteocalcin in islet β cells has been well documented; however, it is unknown whether osteocalcin can also act on adipocytes and, if it does, how it functions. Here, we provide evidence to demonstrate a specific role for osteocalcin in brown adipocyte thermogenesis. Importantly, expression of the Gprc6a gene encoding a G protein-coupled receptor as an osteocalcin receptor was activated by brown fat-like differentiation. Moreover, Gprc6a expression could be further potentiated by osteocalcin. Meanwhile, overexpression and knockdown experiments validated the crucial role of Gprc6a in osteocalcin-mediated activation of thermogenic genes. For the first time, we identified Tcf7 and Wnt3a as putative targets for osteocalcin signaling. T cell factor 7 (TCF7) belongs to the TCF/LEF1 family of DNA binding factors crucial for the canonical WNT/β-catenin pathway; however, TCF7 modulates Gprc6a and Ucp1 promoter activation independent of β-catenin. Further studies revealed that the thermogenesis coactivator PRDM16 and the histone demethylase LSD1 might be required for TCF7 activity. Hence, our study described a TCF7-dependent feedback control of the osteocalcin-GPRC6A axis in brown adipocyte physiologies.
Collapse
|
24
|
Sukocheva OA. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming. Int J Mol Sci 2018; 19:420. [PMID: 29385066 PMCID: PMC5855642 DOI: 10.3390/ijms19020420] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023] Open
Abstract
Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| |
Collapse
|
25
|
Sphingosine 1-phosphate (S1P) signalling: Role in bone biology and potential therapeutic target for bone repair. Pharmacol Res 2017; 125:232-245. [PMID: 28855094 DOI: 10.1016/j.phrs.2017.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
Abstract
The lipid mediator sphingosine 1-phosphate (S1P) affects cellular functions in most systems. Interest in its therapeutic potential has increased following the discovery of its G protein-coupled receptors and the recent availability of agents that can be safely administered in humans. Although the role of S1P in bone biology has been the focus of much less research than its role in the nervous, cardiovascular and immune systems, it is becoming clear that this lipid influences many of the functions, pathways and cell types that play a key role in bone maintenance and repair. Indeed, S1P is implicated in many osteogenesis-related processes including stem cell recruitment and subsequent differentiation, differentiation and survival of osteoblasts, and coupling of the latter cell type with osteoclasts. In addition, S1P's role in promoting angiogenesis is well-established. The pleiotropic effects of S1P on bone and blood vessels have significant potential therapeutic implications, as current therapeutic approaches for critical bone defects show significant limitations. Because of the complex effects of S1P on bone, the pharmacology of S1P-like agents and their physico-chemical properties, it is likely that therapeutic delivery of S1P agents will offer significant advantages compared to larger molecular weight factors. Hence, it is important to explore novel methods of utilizing S1P agents therapeutically, and improve our understanding of how S1P and its receptors modulate bone physiology and repair.
Collapse
|
26
|
Pleiotropic effects of sphingosine-1-phosphate signaling to control human chorionic mesenchymal stem cell physiology. Cell Death Dis 2017; 8:e2930. [PMID: 28703804 PMCID: PMC5550859 DOI: 10.1038/cddis.2017.312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/24/2017] [Accepted: 06/05/2017] [Indexed: 12/26/2022]
Abstract
Chorionic stem cells represent a promising opportunity for regenerative medicine. A deeper understanding of the stimuli that regulate their physiology, could lead to innovative clinical approaches. We revealed the presence of multiple sphingosine-1-phosphate (S1P) receptor isoforms in chorion-derived mesenchymal stem cells (CMSCs). Their activation simultaneously propagated from the plasma membrane through Gi and other heterotrimeric G proteins and further diverged toward extracellular-signal-regulated kinase 1/2 (ERK1/2), p38 and protein kinase D 1. At a functional level, S1P signaling inhibited CMSC migration, while promoting proliferation. Instead, a reduction of cell density was obtained when S1P was combined to treatments that increased cAMP intracellular concentration. Such surprising reduction of cell viability was relatively specific as it was not observed with stromal stem cells from bone marrow. Neither it was observed by activating analogous G proteins with bradykinin nor by inducing cell death via a cAMP-independent pathway. S1P could thus reveal novel keys to improve CMSC differentiation programs acting on cAMP concentration. Furthermore, S1P receptor agonists/antagonists could become instrumental in favoring CMSC engraftment by controlling cell motility.
Collapse
|
27
|
Minashima T, Quirno M, Lee YJ, Kirsch T. The role of the progressive ankylosis protein (ANK) in adipogenic/osteogenic fate decision of precursor cells. Bone 2017; 98:38-46. [PMID: 28286238 PMCID: PMC5396059 DOI: 10.1016/j.bone.2017.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/14/2023]
Abstract
The progressive ankylosis protein (ANK) is a transmembrane protein that transports intracellular pyrophosphate (PPi) to the extracellular milieu. In this study we show increased fatty degeneration of the bone marrow of adult ank/ank mice, which lack a functional ANK protein. In addition, isolated bone marrow stromal cells (BMSCs) isolated from ank/ank mice showed a decreased proliferation rate and osteogenic differentiation potential, and an increased adipogenic differentiation potential compared to BMSCs isolated from wild type (WT) littermates. Wnt signaling pathway PCR array analysis revealed that Wnt ligands, Wnt receptors and Wnt signaling proteins that stimulate osteoblast differentiation were expressed at markedly lower levels in ank/ank BMSCs than in WT BMSCs. Lack of ANK function also resulted in impaired bone fracture healing, as indicated by a smaller callus formed and delayed bone formation in the callus site. Whereas 5weeks after fracture, the fractured bone in WT mice was further remodeled and restored to original shape, the fractured bone in ank/ank mice was not fully restored and remodeled to original shape. In conclusion, our study provides evidence that ANK plays a critical role in the adipogenic/osteogenic fate decision of adult mesenchymal precursor cells. ANK functions in precursor cells are required for osteogenic differentiation of these cells during adult bone homeostasis and repair, whereas lack of ANK functions favors adipogenic differentiation.
Collapse
Affiliation(s)
- Takeshi Minashima
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, NY, New York, United States
| | - Martin Quirno
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, NY, New York, United States
| | - You Jin Lee
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, NY, New York, United States
| | - Thorsten Kirsch
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, New York University School of Medicine, NY, New York, United States.
| |
Collapse
|
28
|
Higashi K, Matsuzaki E, Hashimoto Y, Takahashi-Yanaga F, Takano A, Anan H, Hirata M, Nishimura F. Sphingosine-1-phosphate/S1PR2-mediated signaling triggers Smad1/5/8 phosphorylation and thereby induces Runx2 expression in osteoblasts. Bone 2016; 93:1-11. [PMID: 27612439 DOI: 10.1016/j.bone.2016.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a signaling sphingolipid that also plays crucial roles in bone regeneration. Recently, we reported that the S1P receptors S1PR1 and S1PR2 were mainly expressed in osteoblast-like cells, and that the S1P/S1PR1 signaling pathway up-regulated osteoprotegerin and osteoblast differentiation. However, the involvement of S1P/S1PR2 signaling in osteoblast differentiation is not well understood. Here we investigate the role of S1P/S1PR2-mediated signaling in osteoblast differentiation and clarify the underlying signaling mechanisms. We found that an S1P/S1PR2/Gi-independent signaling pathway activated RhoA activity, leading to phosphorylation of Smad1/5/8 in mouse osteoblast-like MC3T3-E1 cells and primary osteoblasts. Furthermore, this signaling pathway promoted nuclear translocation of Smad4, and increased the amount of Smad6/7 protein in the nucleus. S1P also up-regulated runt-related transcription factor 2 (Runx2) expression through S1PR2/RhoA/ROCK/Smad1/5/8 signaling. Moreover, we found that S1P partially triggered S1PR2/RhoA/ROCK pathway leading to bone formation in vivo. These findings suggest that S1P induces RhoA activity, leading to the phosphorylation of Smad1/5/8, thereby promoting Runx2 expression and differentiation in osteoblasts. Our findings describe novel molecular mechanisms in S1P/S1PR2-mediated osteoblast differentiation that could aid future studies of bone regeneration.
Collapse
Affiliation(s)
- Katsumasa Higashi
- Periodontal Section, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Etsuko Matsuzaki
- Periodontal Section, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan; Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan.
| | - Yoko Hashimoto
- Periodontal Section, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aiko Takano
- Periodontal Section, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hisashi Anan
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | - Fusanori Nishimura
- Periodontal Section, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Hashimoto Y, Kobayashi M, Matsuzaki E, Higashi K, Takahashi-Yanaga F, Takano A, Hirata M, Nishimura F. Sphingosine-1-phosphate-enhanced Wnt5a promotes osteogenic differentiation in C3H10T1/2 cells. Cell Biol Int 2016; 40:1129-36. [DOI: 10.1002/cbin.10652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/31/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Yoko Hashimoto
- Periodontal Section, Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Mari Kobayashi
- Periodontal Section, Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Etsuko Matsuzaki
- Periodontal Section, Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
- Section of Operative Dentistry and Endodontology; Department of Odontology; Fukuoka Dental College; Fukuoka Japan
| | - Katsumasa Higashi
- Periodontal Section, Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Fumi Takahashi-Yanaga
- Department of Clinical Pharmacology; Graduate School of Medical Sciences; Kyushu University; Fukuoka Japan
| | - Aiko Takano
- Periodontal Section, Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| | - Fusanori Nishimura
- Periodontal Section, Division of Oral Rehabilitation; Faculty of Dental Science; Kyushu University; Fukuoka Japan
| |
Collapse
|
30
|
Huang C, Ling R, Li FJ, Li EC, Huang QK, Liu BG, Ding Y, You SW. FTY720 enhances osteogenic differentiation of bone marrow mesenchymal stem cells in ovariectomized rats. Mol Med Rep 2016; 14:927-35. [PMID: 27220612 DOI: 10.3892/mmr.2016.5342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 05/10/2016] [Indexed: 11/06/2022] Open
Abstract
Sphingosine-1-phosphate and its structural analog FTY720 (fingolimod) are important in the inhibition of osteoclast differentiation and bone resorption, however, it remains unknown whether they enhance osteogenic differentiation of the bone marrow mesenchymal stem cells (BM‑MSCs). The present study investigated the effect of FTY720 on the osteogenic differentiation of BM‑MSCs from the femurs of the ovariectomized (OVX) rats. Three different concentrations (1, 10 and 100 nM) of FTY720 were demonstrated to markedly upregulate mRNA expression levels of Runt‑related transcription factor 2 (Runx2) and Sp7 transcription factor (Sp7) at 2 weeks, and alkaline phosphatase (ALP) at 3 weeks. The osteocalcin (OCN) expression was similar at weeks 2 and 3. The protein expression levels of Runx2, Sp7, OCN and ALP induced by three different concentrations of FTY720 were higher than those in the control groups at 3 weeks in the OVX and sham groups. The findings of the current study suggested a beneficial effect of FTY720 on bone formation in OVX rats, and provided a potential therapeutic method of FTY720 to prevent alveolar bone resorption in patients with post‑menopausal osteoporosis.
Collapse
Affiliation(s)
- Chuang Huang
- Department of Orthodontics, State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Rui Ling
- Department of General Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fei-Jiang Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Er-Cui Li
- Department of Gastroenterology and Endocrinology, Shaanxi Provincial Armed Police Corps Hospital, Xi'an, Shaanxi 710032, P.R. China
| | - Qi-Ke Huang
- Department of General Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Bao-Gang Liu
- Out‑Patient Department, General Hospital of The Second Artillery, Beijing 100820, P.R. China
| | - Yin Ding
- Department of Orthodontics, State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Si-Wei You
- Department of Ophthalmology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
31
|
Kitada Y, Kajita K, Taguchi K, Mori I, Yamauchi M, Ikeda T, Kawashima M, Asano M, Kajita T, Ishizuka T, Banno Y, Kojima I, Chun J, Kamata S, Ishii I, Morita H. Blockade of Sphingosine 1-Phosphate Receptor 2 Signaling Attenuates High-Fat Diet-Induced Adipocyte Hypertrophy and Systemic Glucose Intolerance in Mice. Endocrinology 2016; 157:1839-51. [PMID: 26943364 PMCID: PMC4870879 DOI: 10.1210/en.2015-1768] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sphingosine 1-phosphate (S1P) is known to regulate insulin resistance in hepatocytes, skeletal muscle cells, and pancreatic β-cells. Among its 5 cognate receptors (S1pr1-S1pr5), S1P seems to counteract insulin signaling and confer insulin resistance via S1pr2 in these cells. S1P may also regulate insulin resistance in adipocytes, but the S1pr subtype(s) involved remains unknown. Here, we investigated systemic glucose/insulin tolerance and phenotypes of epididymal adipocytes in high-fat diet (HFD)-fed wild-type and S1pr2-deficient (S1pr2(-/-)) mice. Adult S1pr2(-/-) mice displayed smaller body/epididymal fat tissue weights, but the differences became negligible after 4 weeks with HFD. However, HFD-fed S1pr2(-/-) mice displayed better scores in glucose/insulin tolerance tests and had smaller epididymal adipocytes that expressed higher levels of proliferating cell nuclear antigen than wild-type mice. Next, proliferation/differentiation of 3T3-L1 and 3T3-F442A preadipocytes were examined in the presence of various S1pr antagonists: JTE-013 (S1pr2 antagonist), VPC-23019 (S1pr1/S1pr3 antagonist), and CYM-50358 (S1pr4 antagonist). S1P or JTE-013 treatment of 3T3-L1 preadipocytes potently activated their proliferation and Erk phosphorylation, whereas VPC-23019 inhibited both of these processes, and CYM-50358 had no effects. In contrast, S1P or JTE-013 treatment inhibited adipogenic differentiation of 3T3-F442A preadipocytes, whereas VPC-23019 activated it. The small interfering RNA knockdown of S1pr2 promoted proliferation and inhibited differentiation of 3T3-F442A preadipocytes, whereas that of S1pr1 acted oppositely. Moreover, oral JTE-013 administration improved glucose tolerance/insulin sensitivity in ob/ob mice. Taken together, S1pr2 blockade induced proliferation but suppressed differentiation of (pre)adipocytes both in vivo and in vitro, highlighting a novel therapeutic approach for obesity/type 2 diabetes.
Collapse
Affiliation(s)
- Yoshihiko Kitada
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Kazuo Kajita
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Koichiro Taguchi
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Ichiro Mori
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Masahiro Yamauchi
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Takahide Ikeda
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Mikako Kawashima
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Motochika Asano
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Toshiko Kajita
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Tatsuo Ishizuka
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Yoshiko Banno
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Itaru Kojima
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Jerold Chun
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Shotaro Kamata
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Isao Ishii
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| | - Hiroyuki Morita
- Department of General Internal Medicine (Y.K., K.K., K.T., I.M., M.Y., T.Ik., M.K., M.A., T.K., H.M.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of General Internal Medicine and Rheumatology (T.Is.), Gifu Municipal Hospital, Gifu 500-8513, Japan; Department of Dermatology (Y.B.), Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Laboratory of Cell Physiology (I.K.), Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan; Molecular and Cellular Neuroscience Department (J.C.), Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037; and Department of Biochemistry (S.K., I.I.), Keio University Graduate School of Pharmaceutical Sciences, Tokyo 105-8512, Japan
| |
Collapse
|