1
|
Li G, Che X, Wang S, Liu D, Xie D, Jiang B, Zheng Z, Zheng X, Wu G. The role of cisplatin in modulating the tumor immune microenvironment and its combination therapy strategies: a new approach to enhance anti-tumor efficacy. Ann Med 2025; 57:2447403. [PMID: 39757995 PMCID: PMC11705547 DOI: 10.1080/07853890.2024.2447403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025] Open
Abstract
Cisplatin is a platinum-based drug that is frequently used to treat multiple tumors. The anti-tumor effect of cisplatin is closely related to the tumor immune microenvironment (TIME), which includes several immune cell types, such as the tumor-associated macrophages (TAMs), cytotoxic T-lymphocytes (CTLs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and natural killer (NK) cells. The interaction between these immune cells can promote tumor survival and chemoresistance, and decrease the efficacy of cisplatin monotherapy. Therefore, various combination treatment strategies have been devised to enhance patient responsiveness to cisplatin therapy. Cisplatin can augment anti-tumor immune responses in combination with immune checkpoint blockers (such as PD-1/PD-L1 or CTLA4 inhibitors), lipid metabolism disruptors (like FASN inhibitors and SCD inhibitors) and nanoparticles (NPs), resulting in better outcomes. Exploring the interaction between cisplatin and the TIME will help identify potential therapeutic targets for improving the treatment outcomes in cancer patients.
Collapse
Affiliation(s)
- Guandu Li
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shijin Wang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Deqian Xie
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Jiang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zunwen Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Sito H, Tan SC. Genetic polymorphisms as potential pharmacogenetic biomarkers for platinum-based chemotherapy in non-small cell lung cancer. Mol Biol Rep 2024; 51:102. [PMID: 38217759 DOI: 10.1007/s11033-023-08915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
Platinum-based chemotherapy (PBC) is a widely used treatment for various solid tumors, including non-small cell lung cancer (NSCLC). However, its efficacy is often compromised by the emergence of drug resistance in patients. There is growing evidence that genetic variations may influence the susceptibility of NSCLC patients to develop resistance to PBC. Here, we provide a comprehensive overview of the mechanisms underlying platinum drug resistance and highlight the important role that genetic polymorphisms play in this process. This paper discussed the genetic variants that regulate DNA repair, cellular movement, drug transport, metabolic processing, and immune response, with a focus on their effects on response to PBC. The potential applications of these genetic polymorphisms as predictive indicators in clinical practice are explored, as are the challenges associated with their implementation.
Collapse
Affiliation(s)
- Hilary Sito
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Bhattacharjee R, Dey T, Kumar L, Kar S, Sarkar R, Ghorai M, Malik S, Jha NK, Vellingiri B, Kesari KK, Pérez de la Lastra JM, Dey A. Cellular landscaping of cisplatin resistance in cervical cancer. Biomed Pharmacother 2022; 153:113345. [PMID: 35810692 DOI: 10.1016/j.biopha.2022.113345] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) caused by human papillomavirus (HPV) is one of the largest causes of malignancies in women worldwide. Cisplatin is one of the widely used drugs for the treatment of CC is rendered ineffective owing to drug resistance. This review highlights the cause of resistance and the mechanism of cisplatin resistance cells in CC to develop therapeutic ventures and strategies that could be utilized to overcome the aforementioned issue. These strategies would include the application of nanocarries, miRNA, CRIPSR/Cas system, and chemotherapeutics in synergy with cisplatin to not only overcome the issues of drug resistance but also enhance its anti-cancer efficiency. Moreover, we have also discussed the signaling network of cisplatin resistance cells in CC that would provide insights to develop therapeutic target sites and inhibitors. Furthermore, we have discussed the role of CC metabolism on cisplatin resistance cells and the physical and biological factors affecting the tumor microenvironments.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tanima Dey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Sulagna Kar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Ritayan Sarkar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland; Department of Bio-products and Bio-systems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna (Santa Cruz de Tenerife), Spain.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
4
|
Prudowsky ZD, Yustein JT. Recent Insights into Therapy Resistance in Osteosarcoma. Cancers (Basel) 2020; 13:E83. [PMID: 33396725 PMCID: PMC7795058 DOI: 10.3390/cancers13010083] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma, the most common bone malignancy of childhood, has been a challenge to treat and cure. Standard chemotherapy regimens work well for many patients, but there remain minimal options for patients with progressive or resistant disease, as clinical trials over recent decades have failed to significantly improve survival. A better understanding of therapy resistance is necessary to improve current treatments and design new strategies for future treatment options. In this review, we discuss known mechanisms and recent scientific advancements regarding osteosarcoma and its patterns of resistance against chemotherapy, radiation, and other newly-introduced therapeutics.
Collapse
Affiliation(s)
- Zachary D. Prudowsky
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Houston, TX 77030, USA;
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Liu Y, Chen Y, Lin L, Li H. Gambogic Acid as a Candidate for Cancer Therapy: A Review. Int J Nanomedicine 2020; 15:10385-10399. [PMID: 33376327 PMCID: PMC7764553 DOI: 10.2147/ijn.s277645] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gambogic acid (GA), a kind of dry resin secreted by the Garcinia hanburyi tree, is a natural active ingredient with various biological activities, such as anti-cancer, anti-inflammatory, antioxidant, anti-bacterial effects, etc. An increasing amount of evidence indicates that GA has obvious anti-cancer effects via various molecular mechanisms, including the induction of apoptosis, autophagy, cell cycle arrest and the inhibition of invasion, metastasis, angiogenesis. In order to improve the efficacy in cancer treatment, nanometer drug delivery systems have been employed to load GA and form micelles, nanoparticles, nanofibers, and so on. In this review, we aim to offer a summary of chemical structure and properties, anti-cancer activities, drug delivery systems and combination therapy of GA, which might provide a reference to promote the development and clinical application of GA.
Collapse
Affiliation(s)
- Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yingchong Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, People’s Republic of China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. Biomaterials 2020; 265:120456. [PMID: 33099066 DOI: 10.1016/j.biomaterials.2020.120456] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/01/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
External stimuli-responsive nanomedicine with desirable repetitive on-demand drug release character is postulated to greatly accommodate patients' flexible medication regime. To this object, light-activatable liposomes (Pt/Ce6-LP) integrated with both a Ce6 photodynamic component and a tetravalent platinum prodrug (Pt(IV)) chemotherapeutic component are engineered. This multifunctional system was rationally designed using unsaturated phospholipid to achieve repetitive on-demand drug release under discontinuous light irradiation, thus performing chemo-photodynamic therapy effect and immunopotentiation in hypoxic tumor. Furthermore, glutathione (GSH) consumption during transformation from Pt(IV) prodrug to Pt(II) can avoid depletion of reactive oxygen species (ROS) in photodynamic therapy (PDT). Note this positive feedback loop appears to remodel the redox balance of H2O2 and GSH in tumors, alleviating the hypoxic tumor microenvironment. The alleviated hypoxia is found to be critical to the enhancement of PDT efficacy, reversal of cisplatin resistance in tumors, and polarization of tumor-associated macrophages (TAMs) to the immunocompetent M1-phynotype. Pt/Ce6-LP with light radiation demonstrates significant antitumor effect and persistent post-medication inhibition in patient-derived tumor xenograft model of hepatocellular carcinoma.
Collapse
|
7
|
Khatoon E, Banik K, Harsha C, Sailo BL, Thakur KK, Khwairakpam AD, Vikkurthi R, Devi TB, Gupta SC, Kunnumakkara AB. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin Cancer Biol 2020; 80:306-339. [DOI: 10.1016/j.semcancer.2020.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
|
8
|
Niveditha D, Mukherjee S, Majumder S, Chowdhury R, Chowdhury S. A global transcriptomic pipeline decoding core network of genes involved in stages leading to acquisition of drug-resistance to cisplatin in osteosarcoma cells. Bioinformatics 2020; 35:1701-1711. [PMID: 30307528 DOI: 10.1093/bioinformatics/bty868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/20/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022] Open
Abstract
MOTIVATION Traditional cancer therapy is focused on eradicating fast proliferating population of tumor cells. However, existing evidences suggest survival of sub-population of cancer cells that can resist chemotherapy by entering a 'persister' state of minimal growth. These cells eventually survive to produce cells resistant to drugs. The identifying of appropriate targets that can eliminate the drug-tolerant 'persisters' remains a challenge. Hence, a deeper understanding of the distinctive genetic signatures that lead to resistance is of utmost importance to design an appropriate therapy. RESULTS In this study, deep-sequencing of mRNA was performed in osteosarcoma (OS) cells, exposed to the widely used drug, cisplatin which is an integral part of current treatment regime for OS. Transcriptomic analysis was performed in (i) untreated OS; (ii) persister sub-population of cells post-drug shock; (iii) cells which evade growth bottleneck and (iv) drug-resistant cells obtained after several rounds of drug shock and revival. The transcriptomic signatures and pathways regulated in each group were compared; the transcriptomic pipeline to the acquisition of resistance was analyzed and the core network of genes altered during the process was delineated. Additionally, our transcriptomic data were compared with OS patient data obtained from Gene Ontology Omnibus. We observed a sub-set of genes to be commonly expressed in both data sets with a high correlation (0.81) in expression pattern. To the best of our knowledge, this study is uniquely designed to understand the series of genetic changes leading to the emergence of drug-resistant cells, and implications from this study have a potential therapeutic impact. AVAILABILITY AND IMPLEMENTATION All raw data can be accessed from GEO database (https://www.ncbi.nlm.nih.gov/geo/) under the GEO accession number GSE86053. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Divya Niveditha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Sudeshna Mukherjee
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| |
Collapse
|
9
|
Jiang L, Xia Y, Zhong T, Zhang H, Jin Q, Li F, Shi S. HIF2A overexpression reduces cisplatin sensitivity in cervical cancer by inducing excessive autophagy. Transl Cancer Res 2020; 9:75-84. [PMID: 35117160 PMCID: PMC8797276 DOI: 10.21037/tcr.2019.11.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/18/2019] [Indexed: 11/06/2022]
Abstract
Background Hypoxia-induced autophagy is a crucial factor that induces chemotherapy resistance in tumor cells. As a key regulator facilitating the adaptation of solid tumors to hypoxia, the role of hypoxia-inducible factors (HIFs) in regulating hypoxia-induced chemotherapy resistance and autophagy has been extensively studied. However, the majority of studies have mainly focused on HIF-1. Direct evidence concerning the role of HIF2A in cisplatin resistance is sparse, and its underlying mechanism is not yet known. Methods Animal models were constructed by subcutaneously injecting cervical cancer cells stably overexpressing HIF2A (LV-HIF2A) with or without intraperitoneal injection of cisplatin. Tumor size and weight were evaluated to determine tumor growth. Apoptosis was detected by TUNEL assay and protein expression by western blotting. Results Nude mice injected with cells overexpressing HIF2A showed larger and heavier tumors than those in mice injected with negative control lentivirus (LV-NC)-infected cells, with or without cisplatin. Fewer apoptotic cells were noted in tumor tissues from the LV-HIF2A group than from the LV-NC group, with or without cisplatin. Additionally, expression of the anti-apoptotic protein, B-cell lymphoma 2 (BCL2), and autophagy-related proteins, beclin 1 and autophagy related 5 (ATG5), were found to be higher in the LV-HIF2A group than in the LV-NC group, regardless of cisplatin treatment. Moreover, expression of the pro-apoptotic protein, BCL2-associated X (BAX), was lower in tumor tissues from the LV-HIF2A group than from the LV-NC group. Effect of HIF2A overexpression on cisplatin sensitivity was found to be alleviated in vivo by the autophagy inhibitor, 3-methyladenine (3-MA). Conclusions HIF2A overexpression promoted tumor growth and autophagy but suppressed apoptosis in vivo, with or without cisplatin. The HIF2A overexpression-affected cisplatin sensitivity was alleviated by 3-MA. Therefore, we suggest that HIF2A overexpression reduces cisplatin sensitivity in cervical cancer by inducing excessive autophagy.
Collapse
Affiliation(s)
- Lixia Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yu Xia
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Tianyu Zhong
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Huijuan Zhang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Qing Jin
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Feng Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Shaohua Shi
- Department of Information Technology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
10
|
Chen SH, Chang JY. New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment. Int J Mol Sci 2019; 20:ijms20174136. [PMID: 31450627 PMCID: PMC6747329 DOI: 10.3390/ijms20174136] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Although cisplatin has been a pivotal chemotherapy drug in treating patients with various types of cancer for decades, drug resistance has been a major clinical impediment. In general, cisplatin exerts cytotoxic effects in tumor cells mainly through the generation of DNA-platinum adducts and subsequent DNA damage response. Accordingly, considerable effort has been devoted to clarify the resistance mechanisms inside tumor cells, such as decreased drug accumulation, enhanced detoxification activity, promotion of DNA repair capacity, and inactivated cell death signaling. However, recent advances in high-throughput techniques, cell culture platforms, animal models, and analytic methods have also demonstrated that the tumor microenvironment plays a key role in the development of cisplatin resistance. Recent clinical successes in combination treatments with cisplatin and novel agents targeting components in the tumor microenvironment, such as angiogenesis and immune cells, have also supported the therapeutic value of these components in cisplatin resistance. In this review, we summarize resistance mechanisms with respect to a single tumor cell and crucial components in the tumor microenvironment, particularly focusing on favorable results from clinical studies. By compiling emerging evidence from preclinical and clinical studies, this review may provide insights into the development of a novel approach to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
11
|
Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. Cell Death Dis 2018; 9:1128. [PMID: 30425242 PMCID: PMC6233226 DOI: 10.1038/s41419-018-1176-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/11/2018] [Accepted: 10/18/2018] [Indexed: 01/28/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most hypoxic tumors of the central nervous system. Although temozolomide (TMZ) is an effective clinical agent in the GBM therapy, the hypoxic microenvironment remains a major barrier in glioma chemotherapy resistance, and the underlying mechanisms are poorly understood. Here, we find hypoxia can induce the protective response to mitochondrion via HIF-1α-mediated miR-26a upregulation which is associated with TMZ resistance in vitro and in vivo. Further, we demonstrated that HIF-1α/miR-26a axis strengthened the acquisition of TMZ resistance through prevention of Bax and Bad in mitochondria dysfunction in GBM. In addition, miR-26a expression levels negatively correlate with Bax, Bad levels, and GBM progression; but highly correlate with HIF-1α levels in clinical cancer tissues. These findings provide a new link in the mechanistic understanding of TMZ resistance under glioma hypoxia microenvironment, and consequently HIF-1α/miR-26a/Bax/Bad signaling pathway as a promising adjuvant therapy for GBM with TMZ.
Collapse
|
12
|
Kong S, Ruan J, Zhang K, Hu B, Cheng Y, Zhang Y, Yang S, Li K. Kill two birds with one stone: making multi-transgenic pre-diabetes mouse models through insulin resistance and pancreatic apoptosis pathogenesis. PeerJ 2018; 6:e4542. [PMID: 29682407 PMCID: PMC5909684 DOI: 10.7717/peerj.4542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes is characterized by insulin resistance accompanied by defective insulin secretion. Transgenic mouse models play an important role in medical research. However, single transgenic mouse models may not mimic the complex phenotypes of most cases of type 2 diabetes. METHODS Focusing on genes related to pancreatic islet damage, peripheral insulin resistance and related environmental inducing factors, we generated single-transgenic (C/EBP homology protein, CHOP) mice (CHOP mice), dual-transgenic (human islet amyloid polypeptide, hIAPP; CHOP) mice (hIAPP-CHOP mice) and triple-transgenic (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1; hIAPP; CHOP) mice (11β-HSD1-hIAPP- CHOP mice). The latter two types of transgenic (Tg) animals were induced with high-fat high-sucrose diets (HFHSD). We analyzed the diabetes-related symptoms and histology features of the transgenic animals. RESULTS Comparing symptoms on the spot-checked points, we determined that the triple-transgene mice were more suitable for systematic study. The results of intraperitoneal glucose tolerance tests (IPGTT) of triple-transgene animals began to change 60 days after induction (p < 0.001). After 190 days of induction, the body weights (p < 0.01) and plasma glucose of the animals in Tg were higher than those of the animals in Negative Control (Nc). After sacrificed, large amounts of lipid were found deposited in adipose (p < 0.01) and ectopically deposited in the non-adipose tissues (p < 0.05 or 0.01) of the animals in the Tg HFHSD group. The weights of kidneys and hearts of Tg animals were significantly increased (p < 0.01). Serum C peptide (C-P) was decreased due to Tg effects, and insulin levels were increased due to the effects of the HFHSD in the Tg HFHSD group, indicating that damaged insulin secretion and insulin resistance hyperinsulinemia existed simultaneously in these animals. The serum corticosterone of Tg was slightly higher than those of Nc due to the effects of the 11βHSD-1 transgene and obesity. In Tg HFHSD, hepatic adipose deposition was more severe and the pancreatic islet area was enlarged under compensation, accompanying apoptosis. In the transgenic control diet (Tg ControlD) group, hepatic adipose deposition was also severe, pancreatic islets were damaged, and their areas were decreased (p < 0.05), and apoptosis of pancreatic cells occurred. Taken together, these data show the transgenes led to early-stage pathological changes characteristic of type 2 diabetes in the triple-transgene HFHSD group. The disease of triple-transgenic mice was more severe than that of dual or single-transgenic mice. CONCLUSION The use of multi-transgenes involved in insulin resistance and pancreatic apoptosis is a better way to generate polygene-related early-stage diabetes models.
Collapse
Affiliation(s)
- Siyuan Kong
- State Key Laboratory of Animal Nutrition & Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, Beijing, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Jinxue Ruan
- State Key Laboratory of Animal Nutrition & Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, Beijing, China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Nutrition & Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, Beijing, China
| | - Bingjun Hu
- State Key Laboratory of Animal Nutrition & Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, Beijing, China
| | - Yuzhu Cheng
- State Key Laboratory of Animal Nutrition & Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, Beijing, China
| | - Yubo Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition & Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, Beijing, China
| | - Kui Li
- State Key Laboratory of Animal Nutrition & Key Laboratory of Farm Animal Genetic Resource and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, Beijing, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Fujii E, Inada Y, Kakoki M, Nishimura N, Endo S, Fujiwara S, Wada N, Kawano Y, Okuno Y, Sugimoto T, Hata H. Bufalin induces DNA damage response under hypoxic condition in myeloma cells. Oncol Lett 2018; 15:6443-6449. [PMID: 29616114 PMCID: PMC5876453 DOI: 10.3892/ol.2018.8091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Hypoxia serves a crucial role in the development of drug resistance in various cancer cells. Therefore, many attempts targeting hypoxia are underway to overcome the drug resistance mediated by hypoxia. This strategy is useful for multiple myeloma (MM) cells, as MM cells reside within the bone marrow, where oxygen concentrations are relatively low. A natural compound library was screened to identify compounds exerting cytotoxicity in MM cells under hypoxic conditions. Bufalin exhibited marked cytotoxicity to MM cells under normoxic and hypoxic conditions. No significant toxicity was observed in lymphocytes obtained from healthy donors. Under normoxic conditions, bufalin induced a DNA double strand break (DSB) response, ROS induction and apoptosis within 24 with a rapid response compared with melphalan. Interestingly, the bufalin-induced DSB response was not impaired by low oxygen concentrations while the DSB response by melphalan was reduced. Furthermore, treatment with bufalin abolished HIF-1α expression under hypoxia, suggesting that bufalin exerts cytotoxicity under hypoxia by regulating HIF-1α. These results indicate that bufalin induces apoptosis in MM cells through DSB under hypoxic conditions by inhibiting HIF-1α, suggesting that bufalin could be useful for eradication of drug-resistant MM cells in the hypoxic microenvironment.
Collapse
Affiliation(s)
- Eri Fujii
- Graduate School of Health Sciences, Course of Medical Laboratory Sciences, Kumamoto University, Kumamoto 862-0976, Japan.,Department of Clinical Laboratory, Osaka University Hospital, Suita, Osaka 565-0871, Japan
| | - Yuki Inada
- Graduate School of Health Sciences, Course of Medical Laboratory Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Misaki Kakoki
- Graduate School of Health Sciences, Course of Medical Laboratory Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Nao Nishimura
- Department of Hematology, Faculty of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shinya Endo
- Department of Hematology, Faculty of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shiho Fujiwara
- Department of Hematology, Faculty of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoko Wada
- Department of Hematology, Faculty of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yawara Kawano
- Department of Hematology, Faculty of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yutaka Okuno
- Department of Hematology, Faculty of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Toshiya Sugimoto
- Graduate School of Health Sciences, Course of Medical Laboratory Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Hiroyuki Hata
- Department of Hematology, Faculty of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.,Division of Informative Clinical Sciences, Faculty of Medical Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
14
|
Ballerini P, Dovizio M, Bruno A, Tacconelli S, Patrignani P. P2Y 12 Receptors in Tumorigenesis and Metastasis. Front Pharmacol 2018; 9:66. [PMID: 29456511 PMCID: PMC5801576 DOI: 10.3389/fphar.2018.00066] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets, beyond their role in hemostasis and thrombosis, may sustain tumorigenesis and metastasis. These effects may occur via direct interaction of platelets with cancer and stromal cells and by the release of several platelet products. Platelets and tumor cells release several bioactive molecules among which a great amount of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). ADP is also formed extracellularly from ATP breakdown by the ecto-nucleoside-triphosphate-diphosphohydrolases. Under ATP and ADP stimulation the purinergic P2Y1 receptor (R) initiates platelet activation followed by the ADP-P2Y12R-mediated amplification. P2Y12R stimulation amplifies also platelet response to several platelet agonists and to flow conditions, acting as a key positive feed-forward signal in intensifying platelet responses. P2Y12R represents a potential target for an anticancer therapy due to its involvement in platelet-cancer cell crosstalk. Thus, P2Y12R antagonists, including clopidogrel, ticagrelor, and prasugrel, might represent potential anti-cancer agents, in addition to their role as effective antithrombotic drugs. However, further studies, in experimental animals and patients, are required before the recommendation of the use of P2Y12R antagonists in cancer prevention and progression can be made.
Collapse
Affiliation(s)
- Patrizia Ballerini
- Department of Psychological, Health and Territorial Sciences, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Melania Dovizio
- Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Science, Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Annalisa Bruno
- Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Science, Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Stefania Tacconelli
- Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Science, Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Paola Patrignani
- Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Science, Center for Aging and Translational Medicine, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
15
|
Zheng D, Wu W, Dong N, Jiang X, Xu J, Zhan X, Zhang Z, Hu Z. Mxd1 mediates hypoxia-induced cisplatin resistance in osteosarcoma cells by repression of the PTEN tumor suppressor gene. Mol Carcinog 2017; 56:2234-2244. [PMID: 28543796 DOI: 10.1002/mc.22676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 12/18/2022]
Abstract
Hypoxia-induced chemoresistance remains a major obstacle to treating osteosarcoma effectively. Mxd1, a member of the Myc/Max/Mxd family, was shown to be involved in the development of drug resistance under hypoxia. However, the effect of Mxd1 on hypoxia-induced cisplatin (CDDP) resistance and its mechanism in osteosarcoma have not been fully elucidated. In this study, we demonstrated that HIF-1α-induced Mxd1 contributed to CDDP resistance in hypoxic U-2OS and MG-63 cells. The knockdown of Mxd1 expression elevated PTEN expression at both protein and RNA levels in these hypoxic cells. Using Luciferase reporter and ChIP assays, we confirmed that Mxd1 directly bound to the E-box sites within the PTEN promoter region. We further demonstrated that PTEN knockdown decreased CDDP sensitivity in Mxd1 siRNA-transfected U-2OS and MG-63 cells under hypoxia. Our results also showed that Mxd1 deficiency in hypoxic U-2OS and MG-63 cells lead to inactivation of PI3K/AKT signaling, which is the downstream of PTEN. Furthermore, blockade of PI3K/AKT signal re-sensitized hypoxic U-2OS and MG-63 cells to CDDP. Taken together, these findings suggest that HIF-1α-induced Mxd1 up-regulation suppresses the expression of PTEN under hypoxia, which leads to the activation of PI3K/AKT antiapoptotic and survival pathway. As a result CDDP resistance in osteosarcoma cells is induced.
Collapse
Affiliation(s)
- Datong Zheng
- Clinical Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Weiling Wu
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Na Dong
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Children's Health Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xiuqin Jiang
- Clinical Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jinjin Xu
- Clinical Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xi Zhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhengdong Zhang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Zhenzhen Hu
- Clinical Molecular Diagnostic Laboratory, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|