1
|
Puthanmadhom Narayanan S, Wedn AM, Shah OS, Chen J, Brown DD, McAuliffe PF, Oesterreich S, Lee AV. Transcriptomic analysis identifies enrichment of cAMP/PKA/CREB signaling in invasive lobular breast cancer. Breast Cancer Res 2024; 26:149. [PMID: 39478577 PMCID: PMC11526681 DOI: 10.1186/s13058-024-01900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVE Invasive lobular breast cancer (ILC) is the most common special type of breast cancer and has unique clinicopathological and molecular hallmarks that differentiate it from the more common invasive carcinoma-no special type (NST). Despite these differences, ILC and NST are treated as a single entity and there is a lack of ILC-targeted therapies. To fill this gap, we sought to identify novel molecular alterations in ILC that could be exploited for targeted therapies. METHODS Differential gene expression and Geneset Enrichment and Variation analyses were performed on RNA-seq data from three large public breast cancer databases-the Sweden Cancerome Analysis Network-Breast (SCAN-B; luminal A ILC N = 263, luminal A NST N = 1162), The Cancer Genome Atlas (TCGA; luminal A ILC N = 157, luminal A NST N = 307) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC; luminal A ILC N = 65, luminal A NST N = 533). Pathways enriched in overlapping differentially expressed genes from these datasets were clustered using Jaccard similarity to identify pathways enriched in ILC. The cAMP/PKA/CREB signaling was studied in ILC, ILC-like and NST cell lines and patient-derived organoids (PDOs) using forskolin, an activator of the pathway. RESULTS Clinicopathological features of patients with ILC and NST in SCAN-B were similar to prior population-based studies. There was a consistent pattern of up-regulation of cAMP/PKA/CREB related signaling in ILC compared to NST in SCAN-B, TCGA and METABRIC. Treatment with forskolin resulted in a greater increase in phospho-CREB in ILC cell lines and organoids than NST. CRISPR deletion of CDH1 in NST cell lines did not alter response of cells to forskolin as measured by phospho-CREB. Forskolin treatment caused growth inhibition in ILC and NST, with ILC cell lines being more sensitive to forskolin-mediated growth inhibition. CONCLUSION In three separate datasets, cAMP/PKA/CREB signaling was identified to be higher in ILC than NST. This in silico finding was validated in cell line and organoid models. Loss of CDH1 was not sufficient to mediate this phenotype. Future studies should investigate the mechanisms for differential cAMP/PKA/CREB signaling and the potential for therapeutic targeting in patients with ILC.
Collapse
Affiliation(s)
| | - Abdalla M Wedn
- Womens Cancer Research Center at UPMC Hillman Cancer Center and Magee Women's Research Institute, Pittsburgh, PA, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Osama Shiraz Shah
- Womens Cancer Research Center at UPMC Hillman Cancer Center and Magee Women's Research Institute, Pittsburgh, PA, USA
| | - Jian Chen
- Womens Cancer Research Center at UPMC Hillman Cancer Center and Magee Women's Research Institute, Pittsburgh, PA, USA
| | - Daniel D Brown
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Priscilla F McAuliffe
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steffi Oesterreich
- Womens Cancer Research Center at UPMC Hillman Cancer Center and Magee Women's Research Institute, Pittsburgh, PA, USA.
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Adrian V Lee
- Womens Cancer Research Center at UPMC Hillman Cancer Center and Magee Women's Research Institute, Pittsburgh, PA, USA.
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
3
|
Sahin Y, Pei J, Baldwin DA, Mansoor N, Koslosky L, Abdelmessieh P, Wang YL, Nejati R, Testa JR. Acute myeloid leukemia with a novel AKAP9::PDGFRA fusion transformed from essential thrombocythemia: A case report and mini review. Leuk Res Rep 2024; 21:100465. [PMID: 38952949 PMCID: PMC11215950 DOI: 10.1016/j.lrr.2024.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy associated with various combinations of gene mutations, epigenetic abnormalities, and chromosome rearrangement-related gene fusions. Despite the significant degree of heterogeneity in its pathogenesis, many gene fusions and point mutations are recurrent in AML and have been employed in risk stratification over the last several decades. Gene fusions have long been recognized for understanding tumorigenesis and their proven roles in clinical diagnosis and targeted therapies. Advances in DNA sequencing technologies and computational biology have contributed significantly to the detection of known fusion genes as well as for the discovery of novel ones. Several recurring gene fusions in AML have been linked to prognosis, treatment response, and disease progression. In this report, we present a case with a long history of essential thrombocythemia and hallmark CALR mutation transforming to AML characterized by a previously unreported AKAP9::PDGFRA fusion gene. We propose mechanisms by which this fusion may contribute to the pathogenesis of AML and its potential as a molecular target for tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Yavuz Sahin
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jianming Pei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Don A. Baldwin
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Nashwa Mansoor
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Lori Koslosky
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Peter Abdelmessieh
- Department of Bone Marrow Transplant and Cellular Therapies, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Y. Lynn Wang
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Joseph. R. Testa
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
4
|
Li Z, Liu Q, Cai Y, Ye N, He Z, Yao Y, Ding Y, Wang P, Qi C, Zheng L, Wang L, Zhou J, Zhang QQ. EPAC inhibitor suppresses angiogenesis and tumor growth of triple-negative breast cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167114. [PMID: 38447883 DOI: 10.1016/j.bbadis.2024.167114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
AIMS Exchange protein directly activated by cAMP 1 (EPAC1), a major isoform of guanine nucleotide exchange factors, is highly expressed in vascular endothelia cells and regulates angiogenesis in the retina. High intratumor microvascular densities (MVD) resulting from angiogenesis is responsible for breast cancer development. Downregulation of EPAC1 in tumor cell reduces triple-negative breast cancer (TNBC)-induced angiogenesis. However, whether Epac1 expressed in vascular endothelial cells contributes to angiogenesis and tumor development of TNBC remains elusive. MAIN METHODS We employed NY0123, a previously identified potent EPAC inhibitor, to explore the anti-angiogenic biological role of EPAC1 in vitro and in vivo through vascular endothelial cells, rat aortic ring, Matrigel plug, and chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) assays, as well as the in vivo xenograft tumor models of TNBC in both chick embryo and mice. KEY FINDINGS Inhibiting EPAC1 in vascular endothelial cells by NY0123 significantly suppresses angiogenesis and tumor growth of TNBC. In addition, NY0123 possesses a better inhibitory efficacy than ESI-09, a reported specific EPAC inhibitor tool compound. Importantly, inhibiting EPAC1 in vascular endothelia cells regulates the typical angiogenic signaling network, which is associated with not only vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor-2 (VEGFR2) signaling, but also PI3K/AKT, MEK/ERK and Notch pathway. CONCLUSIONS Our findings support that EPAC1 may serve as an effective anti-angiogenic therapeutic target of TNBC, and EPAC inhibitor NY0123 has the therapeutic potential to be developed for the treatment of TNBC.
Collapse
Affiliation(s)
- Zishuo Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiao Liu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuhao Cai
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Zinan He
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuying Yao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Ding
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Cuiling Qi
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lingyun Zheng
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijing Wang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| | - Qian-Qian Zhang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Kwantwi LB. The dual and multifaceted role of relaxin-2 in cancer. Clin Transl Oncol 2023; 25:2763-2771. [PMID: 36947362 DOI: 10.1007/s12094-023-03146-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
The continuous increase in cancer-associated deaths despite the substantial improvement in diagnosis and treatment has sparked discussions on the need for novel biomarkers and therapeutic strategies for cancer. Although increasing evidence has demonstrated the pivotal role of relaxin-2 in multiple cancers, their role is a double-edged sword with both protumor and antitumor having been reported in various malignant tumors. Considering this dual role, it appears the biological mechanism underpinning the action of relaxin-2 in cancer is not clear and further studies to elucidate their potential as a preventive factor for cancers are of prime importance. Herein, a summarized up-to-date report on the role of relaxin-2 in human cancer including detailed clinical and experimental evidence supporting their tumor-promoting and inhibitory functions in cancer development and progression has been elucidated. Also, signaling pathways and other factors orchestrating the activities of relaxin-2 in the tumor microenvironment has been discussed. Collectively, the evidence from this review has demonstrated the need for further evaluation of the role of relaxin-2 as a diagnostic and or prognostic biomarker for cancer.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Medical Imaging Sciences, Klintaps College of Health and Allied Sciences, Accra, DTD. TDC, 30A Klagon, Com. 19, Tema, Ghana.
| |
Collapse
|
6
|
Mazevet M, Belhadef A, Ribeiro M, Dayde D, Llach A, Laudette M, Belleville T, Mateo P, Gressette M, Lefebvre F, Chen J, Bachelot-Loza C, Rucker-Martin C, Lezoualch F, Crozatier B, Benitah JP, Vozenin MC, Fischmeister R, Gomez AM, Lemaire C, Morel E. EPAC1 inhibition protects the heart from doxorubicin-induced toxicity. eLife 2023; 12:e83831. [PMID: 37551870 PMCID: PMC10484526 DOI: 10.7554/elife.83831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/03/2023] [Indexed: 08/09/2023] Open
Abstract
Anthracyclines, such as doxorubicin (Dox), are widely used chemotherapeutic agents for the treatment of solid tumors and hematologic malignancies. However, they frequently induce cardiotoxicity leading to dilated cardiomyopathy and heart failure. This study sought to investigate the role of the exchange protein directly activated by cAMP (EPAC) in Dox-induced cardiotoxicity and the potential cardioprotective effects of EPAC inhibition. We show that Dox induces DNA damage and cardiomyocyte cell death with apoptotic features. Dox also led to an increase in both cAMP concentration and EPAC1 activity. The pharmacological inhibition of EPAC1 (with CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations. When administered in vivo, Dox-treated WT mice developed a dilated cardiomyopathy which was totally prevented in EPAC1 knock-out (KO) mice. Moreover, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Thus, EPAC1 inhibition appears as a potential therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Marion Laudette
- Institut des Maladies Metaboliques et Cardiovasculaires - I2MC, INSERM, Université de ToulouseToulouseFrance
| | - Tiphaine Belleville
- Innovations Thérapeutiques en Hémostase - UMR-S 1140, INSERM, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris CitéParisFrance
| | | | | | | | - Ju Chen
- Basic Cardiac Research UCSD School of Medicine La JollaSan DiegoUnited States
| | - Christilla Bachelot-Loza
- Innovations Thérapeutiques en Hémostase - UMR-S 1140, INSERM, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Catherine Rucker-Martin
- Faculté de Médecine, Université Paris-SaclayLe Kremlin BicêtreFrance
- Inserm UMR_S 999, Hôpital Marie LannelongueLe Plessis RobinsonFrance
| | - Frank Lezoualch
- Institut des Maladies Metaboliques et Cardiovasculaires - I2MC, INSERM, Université de ToulouseToulouseFrance
| | | | | | | | | | | | - Christophe Lemaire
- Université Paris-SaclayOrsayFrance
- Université Paris-Saclay, UVSQ, InsermOrsayFrance
| | | |
Collapse
|
7
|
Luo J, Jiang L, He C, Shi M, Yang ZY, Shi M, Lu S, Li C, Zhang J, Yan M, Zhu ZG, Yan C. Exosomal hsa-let-7g-3p and hsa-miR-10395-3p derived from peritoneal lavage predict peritoneal metastasis and the efficacy of neoadjuvant intraperitoneal and systemic chemotherapy in patients with gastric cancer. Gastric Cancer 2023; 26:364-378. [PMID: 36738390 DOI: 10.1007/s10120-023-01368-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The prognosis of advanced gastric cancer (GC) invading the gastric serosa remains poor, mainly owing to high incidence of peritoneal recurrence. Patients with peritoneal metastases are often treated with neoadjuvant intraperitoneal and systemic chemotherapies (NIPS). Good responders to NIPS often undergo conversion gastrectomy. This study aims to explore biomarkers predicting the occurrence of peritoneal metastasis (PM) and evaluating the efficacy of NIPS in GC patients. METHODS We collected six peritoneal lavage (PL) samples from two patients with PM, two without PM, and two with diminished PM after NIPS via intraperitoneal access ports. We equally isolated microRNAs from exosomes derived from PL samples for deep sequencing. Two microRNAs (hsa-let-7g-3p and hsa-miR-10395-3p) were identified, and their expression levels were examined in PL samples of 99 GC patients using qRT-PCR. Moreover, we performed in vivo and in vitro functional assays to investigate effects of these microRNAs on metastasis and chemoresistance of GC cells. RESULTS Exosomal microRNA expression profiling of six PL samples indicated that the microRNA signature in exosomes of PLs from patients with diminished PM was similar to that from patients without PM. Expression levels of hsa-let-7g-3p and hsa-miR-10395-3p were associated with PM. In vivo and in vitro functional assays confirmed that hsa-let-7g-3p and hsa-miR-10395-3p are involved in GC metastasis and chemoresistance. CONCLUSION PL-derived exosomes in GC contain large amounts of microRNAs related to PM. Moreover, hsa-let-7g-3p and hsa-miR-10395-3p could be used as biomarkers predicting PM and NIPS efficacy and are involved in GC metastasis and chemoresistance.
Collapse
Affiliation(s)
- Jiaxin Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingxi Jiang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changyu He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Key Laboratory of Stomach Neoplasm, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong-Yin Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Key Laboratory of Stomach Neoplasm, Shanghai, China
| | - Min Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Key Laboratory of Stomach Neoplasm, Shanghai, China
| | - Sheng Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Key Laboratory of Stomach Neoplasm, Shanghai, China
| | - Chen Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Key Laboratory of Stomach Neoplasm, Shanghai, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Key Laboratory of Stomach Neoplasm, Shanghai, China
| | - Min Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Key Laboratory of Stomach Neoplasm, Shanghai, China
| | - Zheng-Gang Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
- Shanghai Institute of Digestive Surgery, Shanghai, China
- Shanghai Key Laboratory of Stomach Neoplasm, Shanghai, China
| | - Chao Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Institute of Digestive Surgery, Shanghai, China.
- Shanghai Key Laboratory of Stomach Neoplasm, Shanghai, China.
| |
Collapse
|
8
|
Dehghanian M, Yarahmadi G, Sandoghsaz RS, Khodadadian A, Shamsi F, Vahidi Mehrjardi MY. Evaluation of Rap1GAP and EPAC1 Gene Expression in Endometriosis Disease. Adv Biomed Res 2023; 12:101. [PMID: 37288024 PMCID: PMC10241619 DOI: 10.4103/abr.abr_86_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 06/09/2023] Open
Abstract
Background Endometriosis is a female reproductive system disease in which the endometrial tissue is found in other women's organs. Various factors are effective in the development of endometriosis, and because of the interaction of genetics and environmental factors, this disease is a multi-factorial disease. MAPK/ERK and PI3K/Akt/mTOR pathways are activated by growth factors and steroid hormones and are known as two important pathways involved in the processes of growth, proliferation, and survival of endometriosis cells. Raps, monomeric GTPase of the Ras family, are able to activate these pathways independent of Ras. The goal of our study was to evaluate the expression level of Rap1GAP and EPAC1 genes as two important RapGAPs (GTPase-activating proteins) and RapGEFs (guanine nucleotide exchange factors), respectively, in endometriosis tissues and normal endometrium tissues. Materials and Methods In this study, 15 samples of women without signs of endometriosis were taken as control samples. Fifteen ectopic and 15 eutopic samples were taken from women with endometriosis using laparoscopic surgery. The expression of EPAC1 and Rap1GAP genes was investigated by the real-time polymerase chain reaction technique, and the results were analyzed by one-way ANOVA test. Results EPAC1 upregulated significantly in ectopic tissues compared to eutopic and control tissues. Rap1GAP expression was lower in ectopic tissues compared to control and eutopic tissues. Conclusions Based on these results, it may be concluded that changes in the expression of the Rap1GAP and Epca1 genes may play a role in the pathways involved in the pathogenesis, displacement, and migration of endometriosis cells.
Collapse
Affiliation(s)
- Mehran Dehghanian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ghafour Yarahmadi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reyhaneh Sadat Sandoghsaz
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farimah Shamsi
- Department of Biostatistics and Epidemiology, Center for Healthcare Data Modeling, School of Pulic Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Yahya Vahidi Mehrjardi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
9
|
Slika H, Mansour H, Nasser SA, Shaito A, Kobeissy F, Orekhov AN, Pintus G, Eid AH. Epac as a tractable therapeutic target. Eur J Pharmacol 2023; 945:175645. [PMID: 36894048 DOI: 10.1016/j.ejphar.2023.175645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In 1957, cyclic adenosine monophosphate (cAMP) was identified as the first secondary messenger, and the first signaling cascade discovered was the cAMP-protein kinase A (PKA) pathway. Since then, cAMP has received increasing attention given its multitude of actions. Not long ago, a new cAMP effector named exchange protein directly activated by cAMP (Epac) emerged as a critical mediator of cAMP's actions. Epac mediates a plethora of pathophysiologic processes and contributes to the pathogenesis of several diseases such as cancer, cardiovascular disease, diabetes, lung fibrosis, neurological disorders, and others. These findings strongly underscore the potential of Epac as a tractable therapeutic target. In this context, Epac modulators seem to possess unique characteristics and advantages and hold the promise of providing more efficacious treatments for a wide array of diseases. This paper provides an in-depth dissection and analysis of Epac structure, distribution, subcellular compartmentalization, and signaling mechanisms. We elaborate on how these characteristics can be utilized to design specific, efficient, and safe Epac agonists and antagonists that can be incorporated into future pharmacotherapeutics. In addition, we provide a detailed portfolio for specific Epac modulators highlighting their discovery, advantages, potential concerns, and utilization in the context of clinical disease entities.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, P.O. Box 11-0236, Lebanon.
| | | | - Abdullah Shaito
- Biomedical Research Center, Qatar University, Doha, P.O. Box: 2713, Qatar.
| | - Firas Kobeissy
- Department of Neurobiology and Neuroscience, Morehouse School of Medicine, Atlanta, Georgia, USA.
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow, 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, 125315, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Osennyaya Street 4-1-207, Moscow, 121609, Russia.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2713, Qatar.
| |
Collapse
|
10
|
Krishnan A, Bhasker AI, Singh MK, Rodriguez CI, Castro-Pérez E, Altameemi S, Lares M, Khan H, Ndiaye M, Ahmad N, Schieke SM, Setaluri V. EPAC Regulates Melanoma Growth by Stimulating mTORC1 Signaling and Loss of EPAC Signaling Dependence Correlates with Melanoma Progression. Mol Cancer Res 2022; 20:1548-1560. [PMID: 35834616 PMCID: PMC9532357 DOI: 10.1158/1541-7786.mcr-22-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/02/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Exchange proteins directly activated by cAMP (EPAC) belong to a family of RAP guanine nucleotide exchange factors (RAPGEF). EPAC1/2 (RAPGEF3/4) activates RAP1 and the alternative cAMP signaling pathway. We previously showed that the differential growth response of primary and metastatic melanoma cells to cAMP is mediated by EPAC. However, the mechanisms responsible for this differential response to EPAC signaling are not understood. In this study, we show that pharmacologic inhibition or siRNA-mediated knockdown of EPAC selectively inhibits the growth and survival of primary melanoma cells by downregulation of cell-cycle proteins and inhibiting the cell-cycle progression independent of ERK1/2 phosphorylation. EPAC inhibition results in upregulation of AKT phosphorylation but a downregulation of mTORC1 activity and its downstream effectors. We also show that EPAC regulates both glycolysis and oxidative phosphorylation, and production of mitochondrial reactive oxygen species, preferentially in primary melanoma cells. Employing a series of genetically matched primary and lymph node metastatic (LNM) melanoma cells, and distant organ metastatic melanoma cells, we show that the LNM and metastatic melanoma cells become progressively less responsive and refractory to EPAC inhibition suggesting loss of dependency on EPAC signaling correlates with melanoma progression. Analysis of The Cancer Genome Atlas dataset showed that lower RAPGEF3, RAPGEF4 mRNA expression in primary tumor is a predictor of better disease-free survival of patients diagnosed with primary melanoma suggesting that EPAC signaling facilitates tumor progression and EPAC is a useful prognostic marker. These data highlight EPAC signaling as a potential target for prevention of melanoma progression. IMPLICATIONS This study establishes loss of dependency on EPAC-mTORC1 signaling as hallmark of primary melanoma evolution and targeting this escape mechanism is a promising strategy for metastatic melanoma.
Collapse
Affiliation(s)
- Aishwarya Krishnan
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
| | - Aishwarya I. Bhasker
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
| | - Mithalesh K. Singh
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
| | - Carlos. I. Rodriguez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
| | - Edgardo Castro-Pérez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
| | - Sarah Altameemi
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
| | - Marcos Lares
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
| | - Hamidullah Khan
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
| | - Mary Ndiaye
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705
| | - Stefan M. Schieke
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, WI, 53705
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705
| |
Collapse
|
11
|
Pan Y, Liu J, Ren J, Luo Y, Sun X. Epac: A Promising Therapeutic Target for Vascular Diseases: A Review. Front Pharmacol 2022; 13:929152. [PMID: 35910387 PMCID: PMC9330031 DOI: 10.3389/fphar.2022.929152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular diseases affect the circulatory system and comprise most human diseases. They cause severe symptoms and affect the quality of life of patients. Recently, since their identification, exchange proteins directly activated by cAMP (Epac) have attracted increasing scientific interest, because of their role in cyclic adenosine monophosphate (cAMP) signaling, a well-known signal transduction pathway. The role of Epac in cardiovascular disease and cancer is extensively studied, whereas their role in kidney disease has not been comprehensively explored yet. In this study, we aimed to review recent studies on the regulatory effects of Epac on various vascular diseases, such as cardiovascular disease, cerebrovascular disease, and cancer. Accumulating evidence has shown that both Epac1 and Epac2 play important roles in vascular diseases under both physiological and pathological conditions. Additionally, there has been an increasing focus on Epac pharmacological modulators. Therefore, we speculated that Epac could serve as a novel therapeutic target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yunfeng Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiahui Ren
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
13
|
Li M, Li F, Chen J, Su H, Chen G, Cao J, Li J, Dong L, Yu Z, Wang Y, Zhou C, Zhu Y, Wei Q, Li Q, Chai K. Mechanistic insights on cytotoxicity of KOLR, Cinnamomum pauciflorum Nees leaf derived active ingredient, by targeting signaling complexes of phosphodiesterase 3B and rap guanine nucleotide exchange factor 3. Phytother Res 2022; 36:3540-3554. [PMID: 35703011 DOI: 10.1002/ptr.7521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 12/17/2022]
Abstract
Protein signaling complexes play important roles in prevention of several cancer types and can be used for development of targeted therapy. The roles of signaling complexes of phosphodiesterase 3B (PDE3B) and Rap guanine nucleotide exchange factor 3 (RAPGEF3), which are two important enzymes of cyclic adenosine monophosphate (cAMP) metabolism, in cancer have not been fully explored. In the current study, a natural product Kaempferol-3-O-(3'',4''-di-E-p-coumaroyl)-α-L-rhamnopyranoside designated as KOLR was extracted from Cinnamomum pauciflorum Nees leaves. KOLR exhibited higher cytotoxic effects against BxCP-3 pancreatic cancer cell line. In BxPC-3 cells, the KOLR could enhance the formation of RAPGEF 3/ PDE3B protein complex to inhibit the activation of Rap-1 and PI3K-AKT pathway, thereby promoting cell apoptosis and inhibiting cell metastasis. Mutation of RAPGEF3 G557A or low expression of PDE3B inactivated the binding action of KOLR resulting in KOLR resistance. The findings of this study show that PDE3B/RAPGEF3 complex is a potential therapeutic cancer target.
Collapse
Affiliation(s)
- Mingqian Li
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fei Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Jiabin Chen
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - He Su
- The second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guang zhou, Guangdong, China
| | - Guanping Chen
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jili Cao
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiacheng Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Liyao Dong
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Zhihong Yu
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yifan Wang
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chun Zhou
- Nursing Department, People's Liberation Army Joint Logistic Support Force 903th Hospital, Hangzhou, Zhejiang, China
| | - Yongqiang Zhu
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qin Wei
- Key Laboratory of Fermentation Resources and Application in Universities of Sichuan Province, Yibin University, Yibin, Sichuan, China
| | - Qun Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Kequn Chai
- Cancer Institute of Integrated tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
The Role of Neuropeptide-Stimulated cAMP-EPACs Signalling in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010311. [PMID: 35011543 PMCID: PMC8746471 DOI: 10.3390/molecules27010311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
Neuropeptides are autocrine and paracrine signalling factors and mainly bind to G protein-coupled receptors (GPCRs) to trigger intracellular secondary messenger release including adenosine 3′, 5′-cyclic monophosphate (cAMP), thus modulating cancer progress in different kind of tumours. As one of the downstream effectors of cAMP, exchange proteins directly activated by cAMP (EPACs) play dual roles in cancer proliferation and metastasis. More evidence about the relationship between neuropeptides and EPAC pathways have been proposed for their potential role in cancer development; hence, this review focuses on the role of neuropeptide/GPCR system modulation of cAMP/EPACs pathways in cancers. The correlated downstream pathways between neuropeptides and EPACs in cancer cell proliferation, migration, and metastasis is discussed to glimmer the direction of future research.
Collapse
|
15
|
Wu S, Shen D, Zhao L. AKAP9 Upregulation Predicts Unfavorable Prognosis in Pediatric Acute Myeloid Leukemia and Promotes Stemness Properties via the Wnt/β-Catenin Pathway. Cancer Manag Res 2022; 14:157-167. [PMID: 35046723 PMCID: PMC8760470 DOI: 10.2147/cmar.s343033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Background PRKA kinase anchor protein 9 (AKAP9) is a scaffold protein involved in various cellular processes, including cell adhesion, proliferation, differentiation, and apoptosis. Although the oncogenic role of AKAP9 in solid tumors is well elucidated, the functions and mechanisms of AKAP9 in acute myeloid leukemia (AML) are still not understood. Methods We used the gene expression omnibus (GEO) database (GSE2191) to determine the mRNA expression of AKAP9 in the bone marrow of pediatric AML and healthy patients. We further used the therapeutically available research to generate effective treatments (TARGET) database to elucidate the relationship between AKAP9 expression and clinical outcomes in pediatric patients with AML. In addition, cell proliferation, cell cycle, apoptosis, RT-PCR, and Western blotting assays were applied to reveal the functions of AKAP9 and the underlying mechanisms of AKAP9 silencing in THP1 and HL60 cell lines. Results AKAP9 is overexpressed in the bone marrow of pediatric AML patients as compared with that of healthy patients. High expression of AKAP9 was found to be a predictor of poor overall survival (OS) and event-free survival (EFS). Using univariate and multivariate survival analyses, we found that high AKAP9 expression is an independent predictor of a worse OS and EFS. Functionally, AKAP9 silencing significantly inhibited AML cell proliferation, and cell cycle progression and promoted apoptosis. Moreover, AKAP9 silencing significantly downregulated the expression of stemness markers and β-catenin. Conclusion AKAP9 upregulation is a predictor of unfavorable prognosis, promotes stemness, and activates the Wnt/β-catenin pathway in AML patients. AKAP9 may act as a prognostic biomarker of AML in pediatric patients and a future therapeutic target.
Collapse
Affiliation(s)
- Shiwen Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Departments of Clinical Laboratory, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Dongqin Shen
- Department of Medical Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Li Zhao
- Department of Central Laboratory, Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
- Correspondence: Li Zhao Department of Central Laboratory, Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Lanzhou University, No. 1 Donggang West Road, Lanzhou, Gansu, 730000, People’s Republic of ChinaTel +8613919934053Fax +8609318356353 Email
| |
Collapse
|
16
|
Toussaint B, Hillaireau H, Cailleau C, Ambroise Y, Fattal E. Stability, pharmacokinetics, and biodistribution in mice of the EPAC1 inhibitor (R)-CE3F4 entrapped in liposomes and lipid nanocapsules. Int J Pharm 2021; 610:121213. [PMID: 34678397 DOI: 10.1016/j.ijpharm.2021.121213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
(R)-CE3F4, a specific inhibitor of EPAC1 (exchange protein directly activated by cAMP type 1), has been demonstrated in vitro and in vivo to reduce hypertrophic signaling contributing to heart failure or to control arrhythmia and has shown promise as a drug candidate. However, (R)-CE3F4 exhibits poor solubility in aqueous media and has shown sensitivity to enzyme hydrolysis in plasma. To overcome these issues, the drug was entrapped in liposomes and lipid nanocapsules. Both systems considerably increased the drug apparent solubility in aqueous media. Among these nanocarriers, lipid nanocapsules offered significant protection in vitro against enzymatic degradation by increasing the (R)-CE3F4 apparent half-life from around 40 min to 6 h. Pharmacokinetics and biodistribution of (R)-CE3F4 radiolabeled or not were studied in healthy C57BL/6 mice. The non-encapsulated 3H-CE3F4 showed a very rapid distribution outside the blood compartment. Similar results were observed when using nanocarriers together with a fast dissociation of 3H-CE3F4 from nanocapsules simultaneously labeled with 14C. Thus, essential preclinical information on CE3F4 fate has been obtained, as well as the impact of its formulation using lipid-based nanocarriers.
Collapse
Affiliation(s)
- Balthazar Toussaint
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France; Département de Recherche et Développement Pharmaceutique, Agence Générale des Équipements et Produits de Santé (AGEPS), Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Hervé Hillaireau
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France
| | - Catherine Cailleau
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France
| | - Yves Ambroise
- Université Paris-Saclay, CEA, Institut des Sciences du Vivant Frederic-Joliot, 91191 Gif-sur-Yvette, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
17
|
Liu X, Song L, Ma X, Liu Y, Huang H, Xu Y, Yan W. Overexpression of RAPGEF3 enhances the therapeutic effect of dezocine in treatment of neuropathic pain. Genet Mol Biol 2021; 44:e20200463. [PMID: 34807222 PMCID: PMC8607529 DOI: 10.1590/1678-4685-gmb-2020-0463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Pain is a significant problem worldwide that affects the quality of life of patients. Dezocine is a non-addictive analgesic drug with kappa-opioid antagonist activity and has been successfully used to alleviate of postoperative pain. In addition, dezocine has an analgesic effect similar to that of morphine, alleviating moderate to severe pain. Rap guanine nucleotide exchange factor 3 (RAPGEF3) is a guanine nucleotide exchange factor for GTPases Rap1 and Rap2, which could enhance the activity of Rap1 to promote cell adhesion and axon regeneration, as well as promote neurite extension by interacting with nerve growth factors. Here, we first observed that overexpression of RAPGEF3 increased cell viability, as shown by a CCK-8 assay, and recovered brain function in rats. The expression of inflammation-related factors at the mRNA level was detected using qPCR, and the concentration of these factors in a cultured cell medium and rat serum samples were decreased as shown by ELISA after RAPGEF3 overexpression. Through western blotting, we further found that pro-inflammatory proteins were decreased, and these effects might be mediated by inhibition of the Ras/p-38 MAPK signaling pathway. Taken together, we speculated that RAPGEF3overexpression enhances the therapeutic effect of dezocine on neuropathic pain by inhibiting the inflammatory response through inhibition of the Ras/p-38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xue Liu
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Li Song
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Xiaojun Ma
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Yong Liu
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Hui Huang
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Yongsheng Xu
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| | - Wei Yan
- The Affiliated Hospital of Qingdao University, Department of Anesthesiology, Qingdao, Shandong, China
| |
Collapse
|
18
|
Ren J, Wu W, Zhang K, Choi EJ, Wang P, Ivanciuc T, Peniche A, Qian Y, Garofalo RP, Zhou J, Bao X. Exchange Protein Directly Activated by cAMP 2 Enhances Respiratory Syncytial Virus-Induced Pulmonary Disease in Mice. Front Immunol 2021; 12:757758. [PMID: 34733289 PMCID: PMC8558466 DOI: 10.3389/fimmu.2021.757758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in young children. It is also a significant contributor to upper respiratory tract infections, therefore, a major cause for visits to the pediatrician. High morbidity and mortality are associated with high-risk populations including premature infants, the elderly, and the immunocompromised. However, no effective and specific treatment is available. Recently, we discovered that an exchange protein directly activated by cyclic AMP 2 (EPAC2) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, EPAC2 promotes RSV replication and pro-inflammatory cytokine/chemokine induction. However, the overall role of EPAC2 in the pulmonary responses to RSV has not been investigated. Herein, we found that EPAC2-deficient mice (KO) or mice treated with an EPAC2-specific inhibitor showed a significant decrease in body weight loss, airway hyperresponsiveness, and pulmonary inflammation, compared with wild-type (WT) or vehicle-treated mice. Overall, this study demonstrates the critical contribution of the EPAC2-mediated pathway to airway diseases in experimental RSV infection, suggesting the possibility to target EPAC2 as a promising treatment modality for RSV.
Collapse
Affiliation(s)
- Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Wenzhe Wu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Ke Zhang
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Department of Chemistry, University of Houston Clear Lake, Clear Lake, TX, United States
| | - Eun-Jin Choi
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Pingyuan Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Alex Peniche
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Youwen Qian
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Institute of Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States.,Institute of Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
19
|
Toussaint B, Hillaireau H, Jaccoulet E, Cailleau C, Legrand P, Ambroise Y, Fattal E. Interspecies comparison of plasma metabolism and sample stabilization for quantitative bioanalyses: Application to (R)-CE3F4 in preclinical development, including metabolite identification by high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1183:122943. [PMID: 34666890 DOI: 10.1016/j.jchromb.2021.122943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023]
Abstract
The CE3F4 is an inhibitor of the type 1 exchange protein directly activated by cAMP (EPAC1), which is involved in numerous signaling pathways. The inhibition of EPAC1 shows promising results in vitro and in vivo in different cardiac pathological situations like hypertrophic signaling, contributing to heart failure, or arrhythmia. An HPLC-UV method with a simple and fast sample treatment allowed the quantification of (R)-CE3F4. Sample treatment consisted of simple protein precipitation with 50 µL of ethanol and 150 µL of acetonitrile for a 50 µL biological sample. Two wavelengths were used according to the origin of plasma (220 or 250 nm for human samples and 250 nm for murine samples). Accuracy profile was evaluated for both wavelengths, and the method was in agreement with the criteria given by the EMA in the guideline for bioanalytical method validation for human and mouse plasma samples. The run time was 12 min allowing the detection of the (R)-CE3F4 and a metabolite. This study further permitted understanding the behavior of CE3F4 in plasma by highlighting an important difference between humans and rodents on plasma metabolism and may impact future in vivo studies related to this molecule and translation of results between animal models and humans. Using paraoxon as a metabolism inhibitor was crucial for the stabilization of (R)-CE3F4 in murine samples. HPLC-UV and HPLC-MS/MS studies were conducted to confirm metabolite structure and consequently, the main metabolic pathway in murine plasma.
Collapse
Affiliation(s)
- Balthazar Toussaint
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296 Châtenay-Malabry, France; Département de Recherche et Développement Pharmaceutique, Agence Générale des Équipements et Produits de Santé (AGEPS), Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Hervé Hillaireau
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296 Châtenay-Malabry, France
| | - Emmanuel Jaccoulet
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296 Châtenay-Malabry, France; Hôpital européen Georges Pompidou (HEGP), Service Pharmacie (AP-HP), Paris, France
| | - Catherine Cailleau
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296 Châtenay-Malabry, France
| | - Pauline Legrand
- Département de Recherche et Développement Pharmaceutique, Agence Générale des Équipements et Produits de Santé (AGEPS), Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France; Université de Paris, Faculté de sciences pharmaceutiques et biologiques, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1022, Paris, France
| | - Yves Ambroise
- Université Paris-Saclay, CEA, Institut des Sciences du Vivant Frederic Joliot, 91191 Gif-sur-Yvette, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris Sud, 92296 Châtenay-Malabry, France.
| |
Collapse
|
20
|
Intuitive repositioning of an anti-depressant drug in combination with tivozanib: precision medicine for breast cancer therapy. Mol Cell Biochem 2021; 476:4177-4189. [PMID: 34324118 DOI: 10.1007/s11010-021-04230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Despite the existing therapies and lack of receptors such as HER-2, estrogen receptor and progesterone receptor, triple-negative breast cancer is one of the most aggressive subtypes of breast cancer. TNBCs are known for their highly aggressive metastatic behavior and typically migrate to brain and bone for secondary site propagation. Many diseases share similar molecular pathology exposing new avenues in molecular signaling for engendering innovative therapies. Generation of newer therapies and novel drugs are time consuming associated with very high resources. In order to provide personalized or precision medicine, drug repositioning will contribute in a cost-effective manner. In our study, we have repurposed and used a neoteric combination of two drug molecules namely, fluvoxamine and tivozanib, to target triple-negative breast cancer growth and progression. Our combination regime significantly targets two diverse but significant pathways in TNBCs. Subsequent analysis on migratory, invasive, and angiogenic properties showed the significance of our repurposed drug combination. Molecular array data resulted in identifying the specific and key players participating in cancer progression when the drug combination was used. The innovative combination of fluvoxamine and tivozanib reiterates the use of drug repositioning for precision medicine and subsequent companion diagnostic development.
Collapse
|
21
|
The Consequences of Soluble Epoxide Hydrolase Deletion on Tumorigenesis and Metastasis in a Mouse Model of Breast Cancer. Int J Mol Sci 2021; 22:ijms22137120. [PMID: 34281173 PMCID: PMC8269362 DOI: 10.3390/ijms22137120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Epoxides and diols of polyunsaturated fatty acids (PUFAs) are bioactive and can influence processes such as tumor cell proliferation and angiogenesis. Studies with inhibitors of the soluble epoxide hydrolase (sEH) in animals overexpressing cytochrome P450 enzymes or following the systemic administration of specific epoxides revealed a markedly increased incidence of tumor metastases. To determine whether PUFA epoxides increased metastases in a model of spontaneous breast cancer, sEH-/- mice were crossed onto the polyoma middle T oncogene (PyMT) background. We found that the deletion of the sEH accelerated the growth of primary tumors and increased both the tumor macrophage count and angiogenesis. There were small differences in the epoxide/diol content of tumors, particularly in epoxyoctadecamonoenic acid versus dihydroxyoctadecenoic acid, and marked changes in the expression of proteins linked with cell proliferation and metabolism. However, there was no consequence of sEH inhibition on the formation of metastases in the lymph node or lung. Taken together, our results confirm previous reports of increased tumor growth in animals lacking sEH but fail to substantiate reports of enhanced lymph node or pulmonary metastases.
Collapse
|
22
|
Broad Impact of Exchange Protein Directly Activated by cAMP 2 (EPAC2) on Respiratory Viral Infections. Viruses 2021; 13:v13061179. [PMID: 34205489 PMCID: PMC8233786 DOI: 10.3390/v13061179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The recently discovered exchange protein directly activated by cAMP (EPAC), compared with protein kinase A (PKA), is a fairly new family of cAMP effectors. Soon after the discovery, EPAC has shown its significance in many diseases including its emerging role in infectious diseases. In a recent study, we demonstrated that EPAC, but not PKA, is a promising therapeutic target to regulate respiratory syncytial virus (RSV) replication and its associated inflammation. In mammals, there are two isoforms of EPAC-EPAC1 and EPAC2. Unlike other viruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) and Ebola virus, which use EPAC1 to regulate viral replication, RSV uses EPAC2 to control its replication and associated cytokine/chemokine responses. To determine whether EPAC2 protein has a broad impact on other respiratory viral infections, we used an EPAC2-specific inhibitor, MAY0132, to examine the functions of EPAC2 in human metapneumovirus (HMPV) and adenovirus (AdV) infections. HMPV is a negative-sense single-stranded RNA virus belonging to the family Pneumoviridae, which also includes RSV, while AdV is a double-stranded DNA virus. Treatment with an EPAC1-specific inhibitor was also included to investigate the impact of EPAC1 on these two viruses. We found that the replication of HMPV, AdV, and RSV and the viral-induced immune mediators are significantly impaired by MAY0132, while an EPAC1-specific inhibitor, CE3F4, does not impact or slightly impacts, demonstrating that EPAC2 could serve as a novel common therapeutic target to control these viruses, all of which do not have effective treatment and prevention strategies.
Collapse
|
23
|
Sánchez-Collado J, López JJ, Rosado JA. The Orai1-AC8 Interplay: How Breast Cancer Cells Escape from Orai1 Channel Inactivation. Cells 2021; 10:1308. [PMID: 34070268 PMCID: PMC8225208 DOI: 10.3390/cells10061308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
The interplay between the Ca2+-sensitive adenylyl cyclase 8 (AC8) and Orai1 channels plays an important role both in the activation of the cAMP/PKA signaling and the modulation of Orai1-dependent Ca2+ signals. AC8 interacts with a N-terminal region that is exclusive to the Orai1 long variant, Orai1α. The interaction between both proteins allows the Ca2+ that enters the cell through Orai1α to activate the generation of cAMP by AC8. Subsequent PKA activation results in Orai1α inactivation by phosphorylation at serine-34, thus shaping Orai1-mediated cellular functions. In breast cancer cells, AC8 plays a relevant role supporting a variety of cancer hallmarks, including proliferation and migration. Breast cancer cells overexpress AC8, which shifts the AC8-Orai1 stoichiometry in favor of the former and leads to the impairment of PKA-dependent Orai1α inactivation. This mechanism contributes to the enhanced SOCE observed in triple-negative breast cancer cells. This review summarizes the functional interaction between AC8 and Orai1α in normal and breast cancer cells and its relevance for different cancer features.
Collapse
Affiliation(s)
| | - José J. López
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain;
| | - Juan A. Rosado
- Cellular Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain;
| |
Collapse
|
24
|
Gholizadeh N, Mohebbi AH, Mirzaii-Dizgah I, Sheykhbahaei N. α1 adrenergic receptors in serum and saliva of patients with oral squamous cell carcinoma. Clin Transl Oncol 2021; 23:1705-1710. [PMID: 33644847 DOI: 10.1007/s12094-021-02571-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Neurotransmitters released from the sympathetic nervous system attach to the adrenergic receptors on the surface of tumoral cells in response to stress, and alter the expression of genes programming cellular activity. This study aimed to assess the expression of α1 adrenergic receptors in the serum and saliva of patients with oral squamous cell carcinoma (OSCC) compared with healthy controls. MATERIALS AND METHODS In this case-control study, serum and stimulated and unstimulated saliva samples were collected from 26 OSCC patients and 26 healthy controls. ELISA kits were used for measurement of the serum and salivary levels of α1 adrenergic receptors. RESULTS The level of α1 adrenergic receptors was significantly higher in the stimulated and unstimulated saliva of OSCC patients than healthy controls (P = 0.000). However, their serum level was not significantly different between the two groups (P = 0.389). The serum level of α1 adrenergic receptors significantly increased by an increase in OSCC grade. No significant correlation was noted between the serum and salivary levels of α1 adrenergic receptors in OSCC patients. The salivary level of α1 adrenergic receptors was significantly higher in patients with tumors located in the gingiva, compared with other sites. CONCLUSION Significantly higher salivary level of α1 adrenergic receptors in OSCC patients compared with healthy controls, and no significant difference in their serum level between the two groups may indirectly indicate the over-expression of these receptors in OSCC cells, compared with normal oral mucosa. Further studies and particularly histological analyses are required to confirm this finding.
Collapse
Affiliation(s)
- Narges Gholizadeh
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Science, Tehran, Iran
| | - Amir-Hossein Mohebbi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Iraj Mirzaii-Dizgah
- Department of Physiology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Nafiseh Sheykhbahaei
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
25
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Mishra VS, Kumar N, Raza M, Sehrawat S. Amalgamation of PI3K and EZH2 blockade synergistically regulates invasion and angiogenesis: combination therapy for glioblastoma multiforme. Oncotarget 2020; 11:4754-4769. [PMID: 33473259 PMCID: PMC7771717 DOI: 10.18632/oncotarget.27842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme is known as the primary malignant and most devastating form of tumor in central nervous system of adult population. Amongst all CNS cancers, Glioblastoma multiforme GBM is a rare grade IV astrocytoma and it has the worst prognosis initiated by metastasis to supra-tentorial region of the brain. Current options for the treatment include surgery, radiation therapy and chemotherapy. Substantial information of its pathology and molecular signaling exposed new avenues for generating innovative therapies. In our study, we have undertaken a novel combination approach for GBM treatment. PI3K signaling participates in cancer progression and plays a significant role in metastasis. Here, we are targeting PI3K signaling pathways in glioblastoma along with EZH2, a known transcriptional regulator. We found that targeting transcriptional regulator EZH2 and PI3K affect cellular migration and morphological changes. These changes in signatory activities of cancerous cells led to inhibit its progression in vitro. With further analysis we confirmed the angiogenic inhibition and reduction in stem-ness potential of GBM. Later, cytokine proteome array analysis revealed several participants of metastasis and tumor induced angiogenesis using combination regime. This study provides a significant reduction in GBM progression investigated using Glioblastoma Multiforme U-87 cells with effective combination of pharmacological inhibitors PI-103 and EPZ-6438. This strategy will be further used to combat GBM more innovatively along with the existing therapies.
Collapse
Affiliation(s)
- Vishnu S Mishra
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India.,These authors contributed equally to this work
| | - Naveen Kumar
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India.,These authors contributed equally to this work
| | - Masoom Raza
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India
| | - Seema Sehrawat
- Precision NeuroOncology & NeuroVascular Disease Modeling Group, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NCR 201314, India
| |
Collapse
|
27
|
Identifying miRNA modules associated with progression of keloids through weighted gene co-expression network analysis and experimental validation in vitro. Burns 2020; 47:1359-1372. [PMID: 33323304 DOI: 10.1016/j.burns.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 02/04/2023]
Abstract
Keloid is a type of skin fibroproliferative disease, characterized by excessive deposition of collagen in the extracellular matrix, myofibroblast activation and invasive growth to the surrounding normal skin tissue. However, the specific pathogenesis of keloids is not yet fully understood and existing treatment strategies are unsatisfied. It is therefore urgent to explore new biomarkers associated with its progression for keloids. In this study, the microarray dataset GSE113620 was downloaded from the Gene Expression Omnibus (GEO) database to screen out the differential expression of miRNAs (DEMs). The DEMs with large variance were applied to construct a weighted gene co-expression network to identify miRNA modules that are closely relevant to keloid progression. It is worth noting that miR-424-3p in the blue module (r = 0.98, p = 1e-18) is considered to be the ultimate target most relevant to keloid progression through co-expressed network analysis. Subsequently, the results of molecular biology experiments determine that miR-424-3p targeting Smad7 significantly enhanced the ability of cell proliferation, migration and collagen secretion after transfection with miR-424-3p mimic, while the apoptosis rate was significantly reduced. On the contrary, the miR-424-3p inhibitor performs the exact opposite function.
Collapse
|
28
|
Luo H, Ma C. Identification of prognostic genes in uveal melanoma microenvironment. PLoS One 2020; 15:e0242263. [PMID: 33196683 PMCID: PMC7668584 DOI: 10.1371/journal.pone.0242263] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022] Open
Abstract
Background Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Many previous studies have demonstrated that the infiltrating of immune and stromal cells in the tumor microenvironment contributes significantly to prognosis. Methods Dataset TCGA-UVM, download from TCGA portal, was taken as the training cohort, and GSE22138, obtained from GEO database, was set as the validation cohort. ESTIMATE algorithm was applied to find intersection differentially expressed genes (DEGs) among tumor microenvironment. Kaplan-Meier analysis and univariate Cox regression model were performed on intersection DEGs to initial screen for potential prognostic genes. Then these genes entered into the validation cohort for validation using the same methods as that in the training cohort. Moreover, we conducted correlation analyses between the genes obtained in the validation cohort and the status of chromosome 3, chromosome 8q, and tumor metastasis to get prognosis genes. At last, the immune infiltration analysis was performed between the prognostic genes and 6 main kinds of tumor-infiltrating immune cells (TICs) for understanding the role of the genes in the tumor microenvironment. Results 959 intersection DEGs were found in the UM microenvironment. Kaplan-Meier and Cox analysis was then performed in the training and validation cohorts on these DEGs, and 52 genes were identified with potential prognostic value. After comparing the 52 genes to chromosome 3, chromosome 8q, and metastasis, we obtained 21 genes as the prognostic genes. The immune infiltration analysis showed that Neutrophil had the potential prognostic ability, and almost every prognostic gene we had identified was correlated with abundances of Neutrophil and CD8+ T Cell. Conclusions Identifying 21 prognosis genes (SERPINB9, EDNRB, RAPGEF3, HFE, RNF43, ZNF415, IL12RB2, MTUS1, NEDD9, ZNF667, AZGP1, WARS, GEM, RAB31, CALHM2, CA12, MYEOV, CELF2, SLCO5A1, ISM1, and PAPSS2) could accurately identify patients' prognosis and had close interactions with Neutrophil in the tumor environment, which may provide UM patients with personalized prognosis prediction and new treatment insights.
Collapse
Affiliation(s)
- Huan Luo
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Klinik für Augenheilkunde, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chao Ma
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- BCRT—Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
29
|
Byun JA, VanSchouwen B, Akimoto M, Melacini G. Allosteric inhibition explained through conformational ensembles sampling distinct "mixed" states. Comput Struct Biotechnol J 2020; 18:3803-3818. [PMID: 33335680 PMCID: PMC7720024 DOI: 10.1016/j.csbj.2020.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/29/2022] Open
Abstract
Allosteric modulation provides an effective avenue for selective and potent enzyme inhibition. Here, we summarize and critically discuss recent advances on the mechanisms of allosteric partial agonists for three representative signalling enzymes activated by cyclic nucleotides: the cAMP-dependent protein kinase (PKA), the cGMP-dependent protein kinase (PKG), and the exchange protein activated by cAMP (EPAC). The comparative analysis of partial agonism in PKA, PKG and EPAC reveals a common emerging theme, i.e. the sampling of distinct “mixed” conformational states, either within a single domain or between distinct domains. Here, we show how such “mixed” states play a crucial role in explaining the observed functional response, i.e. partial agonism and allosteric pluripotency, as well as in maximizing inhibition while minimizing potency losses. In addition, by combining Nuclear Magnetic Resonance (NMR), Molecular Dynamics (MD) simulations and Ensemble Allosteric Modeling (EAM), we also show how to map the free-energy landscape of conformational ensembles containing “mixed” states. By discussing selected case studies, we illustrate how MD simulations and EAM complement NMR to quantitatively relate protein dynamics to function. The resulting NMR- and MD-based EAMs are anticipated to inform not only the design of new generations of highly selective allosteric inhibitors, but also the choice of multidrug combinations.
Collapse
Affiliation(s)
- Jung Ah Byun
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements. Pharmaceutics 2020; 12:pharmaceutics12100929. [PMID: 33003468 PMCID: PMC7599839 DOI: 10.3390/pharmaceutics12100929] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive types of breast cancer. Owing to the absenteeism of hormonal receptors expressed at the cancerous breast cells, hormonal therapies and other medications targeting human epidermal growth factor receptor 2 (HER2) are ineffective in TNBC patients, making traditional chemotherapeutic agents the only current appropriate regimen. Patients' predisposition to relapse and metastasis, chemotherapeutics' cytotoxicity and resistance and poor prognosis of TNBC necessitates researchers to investigate different novel-targeted therapeutics. The role of small interfering RNA (siRNA) in silencing the genes/proteins that are aberrantly overexpressed in carcinoma cells showed great potential as part of TNBC therapeutic regimen. However, targeting specificity, siRNA stability, and delivery efficiency cause challenges in the progression of this application clinically. Nanotechnology was highlighted as a promising approach for encapsulating and transporting siRNA with high efficiency-low toxicity profile. Advances in preclinical and clinical studies utilizing engineered siRNA-loaded nanotherapeutics for treatment of TNBC were discussed. Specific and selective targeting of diverse signaling molecules/pathways at the level of tumor proliferation and cell cycle, tumor invasion and metastasis, angiogenesis and tumor microenvironment, and chemotherapeutics' resistance demonstrated greater activity via integration of siRNA-complexed nanoparticles.
Collapse
|
31
|
Wehbe N, Slika H, Mesmar J, Nasser SA, Pintus G, Baydoun S, Badran A, Kobeissy F, Eid AH, Baydoun E. The Role of Epac in Cancer Progression. Int J Mol Sci 2020; 21:ijms21186489. [PMID: 32899451 PMCID: PMC7555121 DOI: 10.3390/ijms21186489] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer continues to be a prime contributor to global mortality. Despite tremendous research efforts and major advances in cancer therapy, much remains to be learned about the underlying molecular mechanisms of this debilitating disease. A better understanding of the key signaling events driving the malignant phenotype of cancer cells may help identify new pharmaco-targets. Cyclic adenosine 3',5'-monophosphate (cAMP) modulates a plethora of biological processes, including those that are characteristic of malignant cells. Over the years, most cAMP-mediated actions were attributed to the activity of its effector protein kinase A (PKA). However, studies have revealed an important role for the exchange protein activated by cAMP (Epac) as another effector mediating the actions of cAMP. In cancer, Epac appears to have a dual role in regulating cellular processes that are essential for carcinogenesis. In addition, the development of Epac modulators offered new routes to further explore the role of this cAMP effector and its downstream pathways in cancer. In this review, the potentials of Epac as an attractive target in the fight against cancer are depicted. Additionally, the role of Epac in cancer progression, namely its effect on cancer cell proliferation, migration/metastasis, and apoptosis, with the possible interaction of reactive oxygen species (ROS) in these phenomena, is discussed with emphasis on the underlying mechanisms and pathways.
Collapse
Affiliation(s)
- Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Hasan Slika
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
| | - Suzanne A. Nasser
- Department of Pharmacology, Beirut Arab University, P.O. Box 11-5020 Beirut, Lebanon;
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sharjah, P.O. Box 27272 Sharjah, UAE;
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Serine Baydoun
- Department of Radiology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
| | - Adnan Badran
- Department of Basic Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon;
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| | - Elias Baydoun
- Department of Biology, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon; (N.W.); (J.M.)
- Correspondence: (A.H.E.); (E.B.); Tel.: +961-1-350-000 (ext. 4891) (A.H.E. & E.B.)
| |
Collapse
|
32
|
Lv W, Liu S, Zhang Q, Yi Z, Bao X, Feng Y, Ren Y. Downregulation of Epac Reduces Fibrosis and Induces Apoptosis Through Akt Signaling in Human Keloid Fibroblasts. J Surg Res 2020; 257:306-316. [PMID: 32890866 DOI: 10.1016/j.jss.2019.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND A keloid is a type of pathological scar often caused by abnormal tissue repair after a skin injury and is more common in genetically susceptible individuals. cAMP is a universal second messenger and regulates critical physiological processes, including calcium homeostasis, secretion, cell fate, and gene transcription, by affecting the expression of the exchange protein directly activated by cAMP (Epac). Epac has two isoforms, Epac1 (cAMP-GEF-1) and Epac2 (cAMP-GEF-II), which show varying expression levels depending on the tissue and cell type. The expression of Epac1 in keloids has not yet been investigated. MATERIALS AND METHODS Keloid tissue and normal dermal skin tissue were analyzed by hematoxylin and eosin staining and immunofluorescence. Primary human keloid fibroblasts (HKFs) and human normal dermal fibroblasts were studied using immunofluorescence, wound healing tests, reverse transcription polymerase chain reaction, and western blot analysis with different concentrations of the Epac1 inhibitor ESI-09. RESULTS Downregulation of Epac was performed using ESI-09, a specific Epac inhibitor. The proliferation and migration capacities of HKFs and human normal dermal fibroblasts showed an ESI-09 concentration-dependent decrease. Furthermore, the apoptosis rates were significantly different between fibroblasts treated with ESI-09 and control fibroblasts. In addition, the phosphorylation level of Akt was significantly decreased, indicating that ESI-09 reduces fibrosis and induces apoptosis through Akt signaling in HKFs. CONCLUSIONS Our results illustrate the role of Epac1 in regulating fibroblast function during keloid pathogenesis and indicate that Epac1 may be a potential therapeutic target in keloid treatment.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Cosmetic Surgery, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China
| | - Shengxuan Liu
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China
| | - Zhen Yi
- Department of Plastic and Cosmetic Surgery, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Youping Feng
- Department of Plastic and Cosmetic Surgery, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China.
| | - Yuping Ren
- Department of Plastic and Cosmetic Surgery, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
33
|
Formoso K, Lezoualc'h F, Mialet-Perez J. Role of EPAC1 Signalosomes in Cell Fate: Friends or Foes? Cells 2020; 9:E1954. [PMID: 32854274 PMCID: PMC7563956 DOI: 10.3390/cells9091954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 02/06/2023] Open
Abstract
The compartmentation of signaling processes is accomplished by the assembly of protein complexes called signalosomes. These signaling platforms colocalize enzymes, substrates, and anchoring proteins into specific subcellular compartments. Exchange protein directly activated by cAMP 1 (EPAC1) is an effector of the second messenger, 3',5'-cyclic adenosine monophosphate (cAMP) that is associated with multiple roles in several pathologies including cardiac diseases. Both EPAC1 intracellular localization and molecular partners are key players in the regulation of cell fate, which may have important therapeutic potential. In this review, we summarize the recent findings on EPAC1 structure, regulation, and pharmacology. We describe the importance of EPAC1 subcellular distribution in its biological action, paying special attention to its nuclear localization and mechanism of action leading to cardiomyocyte hypertrophy. In addition, we discuss the role of mitochondrial EPAC1 in the regulation of cell death. Depending on the cell type and stress condition, we present evidence that supports either a protective or detrimental role of EPAC1 activation.
Collapse
Affiliation(s)
- Karina Formoso
- INSERM UMR-1048, Institute of Metabolic and Cardiovascular Diseases, and Université de Toulouse III-Paul Sabatier, 31432 Toulouse, France
| | - Frank Lezoualc'h
- INSERM UMR-1048, Institute of Metabolic and Cardiovascular Diseases, and Université de Toulouse III-Paul Sabatier, 31432 Toulouse, France
| | - Jeanne Mialet-Perez
- INSERM UMR-1048, Institute of Metabolic and Cardiovascular Diseases, and Université de Toulouse III-Paul Sabatier, 31432 Toulouse, France
| |
Collapse
|
34
|
Shao H, Mohamed H, Boulton S, Huang J, Wang P, Chen H, Zhou J, Luchowska-Stańska U, Jentsch NG, Armstrong AL, Magolan J, Yarwood S, Melacini G. Mechanism of Action of an EPAC1-Selective Competitive Partial Agonist. J Med Chem 2020; 63:4762-4775. [PMID: 32297742 DOI: 10.1021/acs.jmedchem.9b02151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The exchange protein activated by cAMP (EPAC) is a promising drug target for a wide disease range, from neurodegeneration and infections to cancer and cardiovascular conditions. A novel partial agonist of the EPAC isoform 1 (EPAC1), I942, was recently discovered, but its mechanism of action remains poorly understood. Here, we utilize NMR spectroscopy to map the I942-EPAC1 interactions at atomic resolution and propose a mechanism for I942 partial agonism. We found that I942 interacts with the phosphate binding cassette (PBC) and base binding region (BBR) of EPAC1, similar to cyclic adenosine monophosphate (cAMP). These results not only reveal the molecular basis for the I942 vs cAMP mimicry and competition, but also suggest that the partial agonism of I942 arises from its ability to stabilize an inhibition-incompetent activation intermediate distinct from both active and inactive EPAC1 states. The mechanism of action of I942 may facilitate drug design for EPAC-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Urszula Luchowska-Stańska
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | | | | | | | - Stephen Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | | |
Collapse
|
35
|
Zhang Z, Li J, He T, Ding J. Bioinformatics Identified 17 Immune Genes as Prognostic Biomarkers for Breast Cancer: Application Study Based on Artificial Intelligence Algorithms. Front Oncol 2020; 10:330. [PMID: 32296631 PMCID: PMC7137378 DOI: 10.3389/fonc.2020.00330] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
An increasing body of evidence supports the association of immune genes with tumorigenesis and prognosis of breast cancer (BC). This research aims at exploring potential regulatory mechanisms and identifying immunogenic prognostic markers for BC, which were used to construct a prognostic signature for disease-free survival (DFS) of BC based on artificial intelligence algorithms. Differentially expressed immune genes were identified between normal tissues and tumor tissues. Univariate Cox regression identified potential prognostic immune genes. Thirty-four transcription factors and 34 immune genes were used to develop an immune regulatory network. The artificial intelligence survival prediction system was developed based on three artificial intelligence algorithms. Multivariate Cox analyses determined 17 immune genes (ADAMTS8, IFNG, XG, APOA5, SIAH2, C2CD2, STAR, CAMP, CDH19, NTSR1, PCDHA1, AMELX, FREM1, CLEC10A, CD1B, CD6, and LTA) as prognostic biomarkers for BC. A prognostic nomogram was constructed on these prognostic genes. Concordance indexes were 0.782, 0.734, and 0.735 for 1-, 3-, and 5- year DFS. The DFS in high-risk group was significantly worse than that in low-risk group. Artificial intelligence survival prediction system provided three individual mortality risk predictive curves based on three artificial intelligence algorithms. In conclusion, comprehensive bioinformatics identified 17 immune genes as potential prognostic biomarkers, which might be potential candidates of immunotherapy targets in BC patients. The current study depicted regulatory network between transcription factors and immune genes, which was helpful to deepen the understanding of immune regulatory mechanisms for BC cancer. Two artificial intelligence survival predictive systems are available at https://zhangzhiqiao7.shinyapps.io/Smart_Cancer_Survival_Predictive_System_16_BC_C1005/ and https://zhangzhiqiao8.shinyapps.io/Gene_Survival_Subgroup_Analysis_16_BC_C1005/. These novel artificial intelligence survival predictive systems will be helpful to improve individualized treatment decision-making.
Collapse
Affiliation(s)
- Zhiqiao Zhang
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, China
| | - Jing Li
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, China
| | - Tingshan He
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, China
| | - Jianqiang Ding
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde, China
| |
Collapse
|
36
|
Beri P, Popravko A, Yeoman B, Kumar A, Chen K, Hodzic E, Chiang A, Banisadr A, Placone JK, Carter H, Fraley SI, Katira P, Engler AJ. Cell Adhesiveness Serves as a Biophysical Marker for Metastatic Potential. Cancer Res 2019; 80:901-911. [PMID: 31857292 DOI: 10.1158/0008-5472.can-19-1794] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Tumors are heterogeneous and composed of cells with different dissemination abilities. Despite significant effort, there is no universal biological marker that serves as a metric for metastatic potential of solid tumors. Common to disseminating cells from such tumors, however, is the need to modulate their adhesion as they detach from the tumor and migrate through stroma to intravasate. Adhesion strength is heterogeneous even among cancer cells within a given population, and using a parallel plate flow chamber, we separated and sorted these populations into weakly and strongly adherent groups; when cultured under stromal conditions, this adhesion phenotype was stable over multiple days, sorting cycles, and common across all epithelial tumor lines investigated. Weakly adherent cells displayed increased migration in both two-dimensional and three-dimensional migration assays; this was maintained for several days in culture. Subpopulations did not show differences in expression of proteins involved in the focal adhesion complex but did exhibit intrinsic focal adhesion assembly as well as contractile differences that resulted from differential expression of genes involved in microtubules, cytoskeleton linkages, and motor activity. In human breast tumors, expression of genes associated with the weakly adherent population resulted in worse progression-free and disease-free intervals. These data suggest that adhesion strength could potentially serve as a stable marker for migration and metastatic potential within a given tumor population and that the fraction of weakly adherent cells present within a tumor could act as a physical marker for metastatic potential. SIGNIFICANCE: Cancer cells exhibit heterogeneity in adhesivity, which can be used to predict metastatic potential.
Collapse
Affiliation(s)
- Pranjali Beri
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Anna Popravko
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, California
- Department of Mechanical Engineering, San Diego State University, San Diego, California
| | - Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Kevin Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Enio Hodzic
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Alyssa Chiang
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Afsheen Banisadr
- Biomedical Sciences Program, University of California, San Diego, La Jolla, California
| | - Jesse K Placone
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Hannah Carter
- Moores Cancer Center, University of California, San Diego, La Jolla, California
- Department of Medicine/Division of Medical Genetics, University of California, San Diego, La Jolla, California
| | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, California
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, California
- Computational Sciences Research Center, San Diego State University, San Diego, California
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, California.
- Biomedical Sciences Program, University of California, San Diego, La Jolla, California
- Sanford Consortium for Regenerative Medicine, La Jolla, California
| |
Collapse
|
37
|
The Role of the Popeye Domain Containing Gene Family in Organ Homeostasis. Cells 2019; 8:cells8121594. [PMID: 31817925 PMCID: PMC6952887 DOI: 10.3390/cells8121594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 01/01/2023] Open
Abstract
The Popeye domain containing (POPDC) gene family consists of POPDC1 (also known as BVES), POPDC2 and POPDC3 and encodes a novel class of cyclic adenosine monophosphate (cAMP) effector proteins. Despite first reports of their isolation and initial characterization at the protein level dating back 20 years, only recently major advances in defining their biological functions and disease association have been made. Loss-of-function experiments in mice and zebrafish established an important role in skeletal muscle regeneration, heart rhythm control and stress signaling. Patients suffering from muscular dystrophy and atrioventricular block were found to carry missense and nonsense mutations in either of the three POPDC genes, which suggests an important function in the control of striated muscle homeostasis. However, POPDC genes are also expressed in a number of epithelial cells and function as tumor suppressor genes involved in the control of epithelial structure, tight junction formation and signaling. Suppression of POPDC genes enhances tumor cell proliferation, migration, invasion and metastasis in a variety of human cancers, thus promoting a malignant phenotype. Moreover, downregulation of POPDC1 and POPDC3 expression in different cancer types has been associated with poor prognosis. However, high POPDC3 expression has also been correlated to poor clinical prognosis in head and neck squamous cell carcinoma, suggesting that POPDC3 potentially plays different roles in the progression of different types of cancer. Interestingly, a gain of POPDC1 function in tumor cells inhibits cell proliferation, migration and invasion thereby reducing malignancy. Furthermore, POPDC proteins have been implicated in the control of cell cycle genes and epidermal growth factor and Wnt signaling. Work in tumor cell lines suggest that cyclic nucleotide binding may also be important in epithelial cells. Thus, POPDC proteins have a prominent role in tissue homeostasis and cellular signaling in both epithelia and striated muscle.
Collapse
|
38
|
An EPAC1/PDE1C-Signaling Axis Regulates Formation of Leading-Edge Protrusion in Polarized Human Arterial Vascular Smooth Muscle Cells. Cells 2019; 8:cells8121473. [PMID: 31757003 PMCID: PMC6953054 DOI: 10.3390/cells8121473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pharmacological activation of protein kinase A (PKA) reduces migration of arterial smooth muscle cells (ASMCs), including those isolated from human arteries (HASMCs). However, when individual migration-associated cellular events, including the polarization of cells in the direction of movement or rearrangements of the actin cytoskeleton, are studied in isolation, these individual events can be either promoted or inhibited in response to PKA activation. While pharmacological inhibition or deficiency of exchange protein activated by cAMP-1 (EPAC1) reduces the overall migration of ASMCs, the impact of EPAC1 inhibition or deficiency, or of its activation, on individual migration-related events has not been investigated. Herein, we report that EPAC1 facilitates the formation of leading-edge protrusions (LEPs) in HASMCs, a critical early event in the cell polarization that underpins their migration. Thus, RNAi-mediated silencing, or the selective pharmacological inhibition, of EPAC1 decreased the formation of LEPs by these cells. Furthermore, we show that the ability of EPAC1 to promote LEP formation by migrating HASMCs is regulated by a phosphodiesterase 1C (PDE1C)-regulated "pool" of intracellular HASMC cAMP but not by those regulated by the more abundant PDE3 or PDE4 activities. Overall, our data are consistent with a role for EPAC1 in regulating the formation of LEPs by polarized HASMCs and show that PDE1C-mediated cAMP hydrolysis controls this localized event.
Collapse
|
39
|
Ahmed A, Boulton S, Shao H, Akimoto M, Natarajan A, Cheng X, Melacini G. Recent Advances in EPAC-Targeted Therapies: A Biophysical Perspective. Cells 2019; 8:E1462. [PMID: 31752286 PMCID: PMC6912387 DOI: 10.3390/cells8111462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
The universal second messenger cAMP regulates diverse intracellular processes by interacting with ubiquitously expressed proteins, such as Protein Kinase A (PKA) and the Exchange Protein directly Activated by cAMP (EPAC). EPAC is implicated in multiple pathologies, thus several EPAC-specific inhibitors have been identified in recent years. However, the mechanisms and molecular interactions underlying the EPAC inhibition elicited by such compounds are still poorly understood. Additionally, being hydrophobic low molecular weight species, EPAC-specific inhibitors are prone to forming colloidal aggregates, which result in non-specific aggregation-based inhibition (ABI) in aqueous systems. Here, we review from a biophysical perspective the molecular basis of the specific and non-specific interactions of two EPAC antagonists-CE3F4R, a non-competitive inhibitor, and ESI-09, a competitive inhibitor of EPAC. Additionally, we discuss the value of common ABI attenuators (e.g., TX and HSA) to reduce false positives at the expense of introducing false negatives when screening aggregation-prone compounds. We hope this review provides the EPAC community effective criteria to evaluate similar compounds, aiding in the optimization of existing drug leads, and informing the development of the next generation of EPAC-specific inhibitors.
Collapse
Affiliation(s)
- Alveena Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
| | - Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
| | - Hongzhao Shao
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Texas Therapeutics Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.A.); (S.B.)
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (H.S.); (M.A.)
| |
Collapse
|
40
|
Kumar N, Prasad P, Jash E, Jayasundar S, Singh I, Alam N, Murmu N, Somashekhar SP, Goldman A, Sehrawat S. cAMP regulated EPAC1 supports microvascular density, angiogenic and metastatic properties in a model of triple negative breast cancer. Carcinogenesis 2019; 39:1245-1253. [PMID: 29982410 DOI: 10.1093/carcin/bgy090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/04/2018] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is a leading cause of cancer-related mortality in women. Triple-negative breast cancer (TNBC; HER2-, ER-/PR-) is an aggressive subtype prone to drug resistance and metastasis, which is characterized by high intratumor microvascular density (iMVD) resulting from angiogenesis. However, the mechanisms contributing to the aggressive phenotypes of TNBC remain elusive. We recently reported that down-regulation of exchange factor directly activated by cyclic AMP (cAMP), also known as EPAC1, leads to a reduction in metastatic properties including proliferation and cell migration in TNBC cell lines. Here, we report that EPAC1 supports TNBC-induced angiogenesis, tumor cell migration and invasiveness as well as pro-metastatic phenotypes in endothelial cells induced through the tumor secretome. Using an approach that integrates proteomics with bioinformatics and gene ontologies, we elucidate that EPAC1 supports a tumor-secreted network of angiogenic, cell adhesion and cell migratory pathways. Using confocal microscopy, we show that signaling molecules involved in focal adhesion, including Paxillin and MENA, are down-regulated in the absence of EPAC1, and electric cell substrate impedance sensing technique confirmed a role for EPAC1 on TNBC-induced endothelial cell permeability. Finally, to provide a translational bridge, we studied iMVD and therapy response using a primary human tumor explant assay, CANscriptTM, which suggests a link between therapy-modulated neovascularization and drug sensitivity. These data provide mechanistic insight into the role of EPAC1 in regulating the tumor microenvironment, iMVD and cancer cell-induced angiogenesis, a dynamic mechanism under drug pressure that may associate to treatment failure.
Collapse
Affiliation(s)
- Naveen Kumar
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh, India
| | - Peeyush Prasad
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh, India
| | - Eshna Jash
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh, India
| | - Smruthi Jayasundar
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh, India
| | - Itender Singh
- Department of Neurology, Washington University School of Medicine, Hope Center Program on Protein Aggregation and Neurodegeneration, Charles F. and Joanne Knight Alzheimer's Disease Research Center, St. Louis, MI, USA
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | | | - Aaron Goldman
- Integrative Immuno-Ocology Center, Mitra Biotech, Woburn, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Seema Sehrawat
- Brain Metastasis and NeuroVascular Disease Modeling Lab, Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh, India.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
41
|
Huang Z, Lin B, Pan H, Du J, He R, Zhang S, Ouyang P. Gene expression profile analysis of ENO1 knockdown in gastric cancer cell line MGC-803. Oncol Lett 2019; 17:3881-3889. [PMID: 30930989 PMCID: PMC6425391 DOI: 10.3892/ol.2019.10053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/25/2019] [Indexed: 01/03/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-associated mortality. In a previous study, we identified that α-enolase (ENO1) promoted cell migration in GC, but the underlying molecular mechanisms remain to be fully elucidated. In the present study, small interfering RNAs were identified to interfere with ENO1 expression. The cDNA expression profiling was performed using an Affymetrix mRNA array platform to identify genes that may be associated with ENO1 in human GC cell line MGC-803. The differentially expressed genes (DEGs) were identified using the reverse transcription-quantitative polymerase chain reaction, followed by a series of bioinformatic analyses. As a result, there were 448 DEGs, among which 183 (40.85%) were downregulated. The most significant functional terms for the DEGs were the nuclear lumen for cell components (P=2.83×10−4), transcription for biological processes (P=3.7×10−7) and transcription factor activity for molecular functions (P=1.16×104). In total, six significant pathways were enriched, including the most common cancer-associated forkhead box O signaling pathway (P=0.0077), microRNAs in cancer (P=0.0183) and the cAMP signaling pathway (P=0.0415). Furthermore, a network analysis identified three hub genes (HUWE1, PPP1CB and HSPA4), which were all involved in tumor metastasis. Taken together, the DEGs, significant pathways and hub genes identified in the present study shed some light on the molecular mechanisms of ENO1 involved in the pathogenesis of GC.
Collapse
Affiliation(s)
- Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bode Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Haiyan Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jinlin Du
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Rongwei He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Shizhuo Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ping Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
42
|
Santin JR, da Silva GF, Pastor MVD, Broering MF, Nunes R, Braga RC, de Sousa ITS, Stiz DS, da Silva KABS, Stoeberl LC, Corrêa R, Filho VC, Dos Santos CEM, Quintão NLM. Biological and Toxicological Evaluation of N-(4methyl-phenyl)-4-methylphthalimide on Bone Cancer in Mice. Anticancer Agents Med Chem 2019; 19:667-676. [PMID: 30734686 DOI: 10.2174/1871520619666190207130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND It was recently demonstrated that the phthalimide N-(4-methyl-phenyl)-4- methylphthalimide (MPMPH-1) has important effects against acute and chronic pain in mice, with a mechanism of action correlated to adenylyl cyclase inhibition. Furthermore, it was also demonstrated that phthalimide derivatives presented antiproliferative and anti-tumor effects. Considering the literature data, the present study evaluated the effects of MPMPH-1 on breast cancer bone metastasis and correlated painful symptom, and provided additional toxicological information about the compound and its possible metabolites. METHODS In silico toxicological analysis was supported by in vitro and in vivo experiments to demonstrate the anti-tumor and anti-hypersensitivity effects of the compound. RESULTS The data obtained with the in silico toxicological analysis demonstrated that MPMPH-1 has mutagenic potential, with a low to moderate level of confidence. The mutagenicity potential was in vivo confirmed by micronucleus assay. MPMPH-1 treatments in the breast cancer bone metastasis model were able to prevent the osteoclastic resorption of bone matrix. Regarding cartilage, degradation was considerably reduced within the zoledronic acid group, while in MPMPH-1, chondrocyte multiplication was observed in random areas, suggesting bone regeneration. Additionally, the repeated treatment of mice with MPMPH-1 (10 mg/kg, i.p.), once a day for up to 36 days, significantly reduces the hypersensitivity in animals with breast cancer bone metastasis. CONCLUSION Together, the data herein obtained show that MPMPH-1 is relatively safe, and significantly control the cancer growth, allied to the reduction in bone reabsorption and stimulation of bone and cartilage regeneration. MPMPH-1 effects may be linked, at least in part, to the ability of the compound to interfere with adenylylcyclase pathway activation.
Collapse
Affiliation(s)
- José R Santin
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Gislaine F da Silva
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Maria V D Pastor
- Biomedicine Course, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Milena F Broering
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Roberta Nunes
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | | | | | - Dorimar S Stiz
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Kathryn A B S da Silva
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Luis C Stoeberl
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Rogério Corrêa
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | - Valdir C Filho
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| | | | - Nara L M Quintão
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí/SC, CEP 88302-901, Brazil
| |
Collapse
|
43
|
Casarini L, Santi D, Brigante G, Simoni M. Two Hormones for One Receptor: Evolution, Biochemistry, Actions, and Pathophysiology of LH and hCG. Endocr Rev 2018; 39:549-592. [PMID: 29905829 DOI: 10.1210/er.2018-00065] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023]
Abstract
LH and chorionic gonadotropin (CG) are glycoproteins fundamental to sexual development and reproduction. Because they act on the same receptor (LHCGR), the general consensus has been that LH and human CG (hCG) are equivalent. However, separate evolution of LHβ and hCGβ subunits occurred in primates, resulting in two molecules sharing ~85% identity and regulating different physiological events. Pituitary, pulsatile LH production results in an ~90-minute half-life molecule targeting the gonads to regulate gametogenesis and androgen synthesis. Trophoblast hCG, the "pregnancy hormone," exists in several isoforms and glycosylation variants with long half-lives (hours) and angiogenic potential and acts on luteinized ovarian cells as progestational. The different molecular features of LH and hCG lead to hormone-specific LHCGR binding and intracellular signaling cascades. In ovarian cells, LH action is preferentially exerted through kinases, phosphorylated extracellular-regulated kinase 1/2 (pERK1/2) and phosphorylated AKT (also known as protein kinase B), resulting in irreplaceable proliferative/antiapoptotic signals and partial agonism on progesterone production in vitro. In contrast, hCG displays notable cAMP/protein kinase A (PKA)-mediated steroidogenic and proapoptotic potential, which is masked by estrogen action in vivo. In vitro data have been confirmed by a large data set from assisted reproduction, because the steroidogenic potential of hCG positively affects the number of retrieved oocytes, and LH affects the pregnancy rate (per oocyte number). Leydig cell in vitro exposure to hCG results in qualitatively similar cAMP/PKA and pERK1/2 activation compared with LH and testosterone. The supposed equivalence of LH and hCG has been disproved by such data, highlighting their sex-specific functions and thus deeming it an oversight caused by incomplete understanding of clinical data.
Collapse
Affiliation(s)
- Livio Casarini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Giulia Brigante
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| |
Collapse
|
44
|
Boulton S, Selvaratnam R, Blondeau JP, Lezoualc'h F, Melacini G. Mechanism of Selective Enzyme Inhibition through Uncompetitive Regulation of an Allosteric Agonist. J Am Chem Soc 2018; 140:9624-9637. [PMID: 30016089 DOI: 10.1021/jacs.8b05044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Classical uncompetitive inhibitors are potent pharmacological modulators of enzyme function. Since they selectively target enzyme-substrate complexes (E:S), their inhibitory potency is amplified by increasing substrate concentrations. Recently, an unconventional uncompetitive inhibitor, called CE3F4R, was discovered for the exchange protein activated by cAMP isoform 1 (EPAC1). Unlike conventional uncompetitive inhibitors, CE3F4R is uncompetitive with respect to an allosteric effector, cAMP, as opposed to the substrate (i.e., CE3F4R targets the E:cAMP rather than the E:S complex). However, the mechanism of CE3F4R as an uncompetitive inhibitor is currently unknown. Here, we elucidate the mechanism of CE3F4R's action using NMR spectroscopy. Due to limited solubility and line broadening, which pose major challenges for traditional structural determination approaches, we resorted to a combination of protein- and ligand-based NMR experiments to comparatively analyze EPAC mutations, inhibitor analogs, and cyclic nucleotide derivatives that trap EPAC at different stages of activation. We discovered that CE3F4R binds within the EPAC cAMP-binding domain (CBD) at a subdomain interface distinct from the cAMP binding site, acting as a wedge that stabilizes a cAMP-bound mixed-intermediate. The mixed-intermediate includes attributes of both the apo/inactive and cAMP-bound/active states. In particular, the intermediate targeted by CE3F4R traps a CBD's hinge helix in its inactive conformation, locking EPAC into a closed domain topology that restricts substrate access to the catalytic domain. The proposed mechanism of action also explains the isoform selectivity of CE3F4R in terms of a single EPAC1 versus EPAC2 amino acid difference that destabilizes the active conformation of the hinge helix.
Collapse
Affiliation(s)
| | | | - Jean-Paul Blondeau
- Université Paris-Sud , Faculté de Pharmacie , 92296 Cedex Châtenay-Malabry , France
| | - Frank Lezoualc'h
- Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse III Paul Sabatier , 31432 Cedex 04 Toulouse , France
| | | |
Collapse
|
45
|
Yadav N, Kumar N, Prasad P, Shirbhate S, Sehrawat S, Lochab B. Stable Dispersions of Covalently Tethered Polymer Improved Graphene Oxide Nanoconjugates as an Effective Vector for siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14577-14593. [PMID: 29634909 DOI: 10.1021/acsami.8b03477] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Conjugates of poly(amidoamine) (PAMAM) with modified graphene oxide (GO) are attractive nonviral vectors for gene-based cancer therapeutics. GO protects siRNA from enzymatic cleavage and showed reasonable transfection efficiency along with simultaneous benefits of low cost and large scale production. PAMAM is highly effective in siRNA delivery but suffers from high toxicity with poor in vivo efficacy. Co-reaction of GO and PAMAM led to aggregation and more importantly, have detrimental effect on stability of dispersion at physiological pH preventing their exploration at clinical level. In the current work, we have designed, synthesized, characterized and explored a new type of hybrid vector (GPD), using GO synthesized via improved method which was covalently tethered with poly(ethylene glycol) (PEG) and PAMAM. The existence of covalent linkage, relative structural changes and properties of GPD is well supported by Fourier transform infrared (FTIR), UV-visible (UV-vis), Raman, X-ray photoelectron (XPS), elemental analysis, powder X-ray diffraction (XRD), thermogravimetry analysis (TGA), dynamic light scattering (DLS), and zeta potential. Scanning electron microscopy (SEM), and transmission electron microscopy (TEM) of GPD showed longitudinally aligned columnar self-assembled ∼10 nm thick polymeric nanoarchitectures onto the GO surface accounting to an average size reduction to ∼20 nm. GPD revealed an outstanding stability in both phosphate buffer saline (PBS) and serum containing cell medium. The binding efficiency of EPAC1 siRNA to GPD was supported by gel retardation assay, DLS, zeta potential and photoluminescence (PL) studies. A lower cytotoxicity with enhanced cellular uptake and homogeneous intracellular distribution of GPD/siRNA complex is confirmed by imaging studies. GPD exhibited a higher transfection efficiency with remarkable inhibition of cell migration and lower invasion than PAMAM and Lipofectamine 2000 suggesting its role in prevention of breast cancer progression and metastasis. A significant reduction in the expression of the specific protein against which siRNA was delivered is revealed by Western blot assay. Furthermore, a pH-triggered release of siRNA from the GPD/siRNA complex was studied to provide a mechanistic insight toward unloading of siRNA from the vector. Current strategy is a way forward for designing effective therapeutic vectors for gene-based antitumor therapy.
Collapse
Affiliation(s)
| | | | | | | | - Seema Sehrawat
- Department of Medicine , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | | |
Collapse
|
46
|
Robichaux WG, Cheng X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol Rev 2018; 98:919-1053. [PMID: 29537337 PMCID: PMC6050347 DOI: 10.1152/physrev.00025.2017] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
This review focuses on one family of the known cAMP receptors, the exchange proteins directly activated by cAMP (EPACs), also known as the cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs). Although EPAC proteins are fairly new additions to the growing list of cAMP effectors, and relatively "young" in the cAMP discovery timeline, the significance of an EPAC presence in different cell systems is extraordinary. The study of EPACs has considerably expanded the diversity and adaptive nature of cAMP signaling associated with numerous physiological and pathophysiological responses. This review comprehensively covers EPAC protein functions at the molecular, cellular, physiological, and pathophysiological levels; and in turn, the applications of employing EPAC-based biosensors as detection tools for dissecting cAMP signaling and the implications for targeting EPAC proteins for therapeutic development are also discussed.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center , Houston, Texas
| |
Collapse
|
47
|
Insights into exchange factor directly activated by cAMP (EPAC) as potential target for cancer treatment. Mol Cell Biochem 2018; 447:77-92. [PMID: 29417338 DOI: 10.1007/s11010-018-3294-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/19/2018] [Indexed: 01/02/2023]
Abstract
Cancer remains a global health problem and approximately 1.7 million new cancer cases are diagnosed every year worldwide. Although diverse molecules are currently being explored as targets for cancer therapy the tumor treatment and therapy is highly tricky. Secondary messengers are important for hormone-mediated signaling pathway. Cyclic AMP (cAMP), a secondary messenger responsible for various physiological processes regulates cell metabolism by activating Protein kinase A (PKA) and by targeting exchange protein directly activated by cAMP (EPAC). EPAC is present in two isoforms EPAC1 and EPAC2, which exhibit different tissue distribution and is involved in GDP/GTP exchange along with activating Rap1- and Rap2-mediated signaling pathways. EPAC is also known for its dual role in cancer as pro- and anti-proliferative in addition to metastasis. Results after perturbing EPAC activity suggests its involvement in cancer cell migration, proliferation, and cytoskeleton remodeling which makes it a potential therapeutic target for cancer treatments.
Collapse
|
48
|
Sonawane YA, Zhu Y, Garrison JC, Ezell EL, Zahid M, Cheng X, Natarajan A. Structure-Activity Relationship Studies with Tetrahydroquinoline Analogs as EPAC Inhibitors. ACS Med Chem Lett 2017; 8:1183-1187. [PMID: 29375750 PMCID: PMC5774307 DOI: 10.1021/acsmedchemlett.7b00358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022] Open
Abstract
![]()
EPAC proteins are
therapeutic targets for the potential treatment
of cardiac hypertrophy and cancer metastasis. Several laboratories
use a tetrahydroquinoline analog, CE3F4, to dissect the role of EPAC1
in various disease states. Here, we report SAR studies with tetrahydroquinoline
analogs that explore various functional groups. The most potent EPAC
inhibitor 12a exists as a mixture of inseparable E (major) and Z (minor) rotamers. The rotation
about the N-formyl group indeed impacts the activity
against EPAC.
Collapse
Affiliation(s)
| | - Yingmin Zhu
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030, United States
| | | | | | | | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas 77030, United States
| | | |
Collapse
|
49
|
Simões F, Ousingsawat J, Wanitchakool P, Fonseca A, Cabrita I, Benedetto R, Schreiber R, Kunzelmann K. CFTR supports cell death through ROS-dependent activation of TMEM16F (anoctamin 6). Pflugers Arch 2017; 470:305-314. [DOI: 10.1007/s00424-017-2065-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/25/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
|