1
|
Han Z, Wen L. G-quadruplex in cancer energy metabolism: A potential therapeutic target. Biochim Biophys Acta Gen Subj 2025; 1869:130810. [PMID: 40254103 DOI: 10.1016/j.bbagen.2025.130810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
In recent years, energy metabolism in cancer has received increasing attention as an important component of tumor biology, and the functions of transcription factors, mitochondria, reactive oxygen species (ROS) and the autophagy-lysosome system in which have been elucidated. G-quadruplex (G4) is a molecular switch that regulates gene transcription or translation. As an anticancer target, the effect of G4 on cancer cell proliferation, apoptosis, cycle and autophagy has been recognized. The energy metabolism system is a unified whole composed of transcription factors, metabolic regulators, metabolites and signaling pathways that run through the entire cancer process. However, the role of G4 in this complex metabolic network has not been systematically elucidated. In this review, we analyze the close correlation between G4 and transcription factors, mitochondria, ROS and the autophagy-lysosome system and suggest that G4 can exert a marked effect on cancer energy metabolism by regulating the above mentioned key regulatory elements. The anticancer effects of some G4 ligands through regulation of energy metabolism have also been summarized, confirming the clear involvement of G4 in energy metabolism. Although much more research is needed, we propose that G4 may play a critical role in the complex energy metabolism system of cancer, which is a promising target for anticancer strategies focusing on energy metabolism.
Collapse
Affiliation(s)
- Zongqiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Lina Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
2
|
Talib WH, Baban MM, Bulbul MF, Al-Zaidaneen E, Allan A, Al-Rousan EW, Ahmad RHY, Alshaeri HK, Alasmari MM, Law D. Natural Products and Altered Metabolism in Cancer: Therapeutic Targets and Mechanisms of Action. Int J Mol Sci 2024; 25:9593. [PMID: 39273552 PMCID: PMC11394730 DOI: 10.3390/ijms25179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer is characterized by uncontrolled cell proliferation and the dysregulation of numerous biological functions, including metabolism. Because of the potential implications of targeted therapies, the metabolic alterations seen in cancer cells, such as the Warburg effect and disruptions in lipid and amino acid metabolism, have gained attention in cancer research. In this review, we delve into recent research examining the influence of natural products on altered cancer metabolism. Natural products were selected based on their ability to target cancer's altered metabolism. We identified the targets and explored the mechanisms of action of these natural products in influencing cellular energetics. Studies discussed in this review provide a solid ground for researchers to consider natural products in cancer treatment alone and in combination with conventional anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Media Mohammad Baban
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Mais Fuad Bulbul
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Esraa Al-Zaidaneen
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Aya Allan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eiman Wasef Al-Rousan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rahaf Hamed Yousef Ahmad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
3
|
Bozzuto G, Calcabrini A, Colone M, Condello M, Dupuis ML, Pellegrini E, Stringaro A. Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules 2024; 29:3784. [PMID: 39202863 PMCID: PMC11357218 DOI: 10.3390/molecules29163784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is a complex disease that affects millions of people and remains a major public health problem worldwide. Conventional cancer treatments, including surgery, chemotherapy, immunotherapy, and radiotherapy, have limited achievements and multiple drawbacks, among which are healthy tissue damage and multidrug-resistant phenotype onset. Increasing evidence shows that many plants' natural products, as well as their bioactive compounds, have promising anticancer activity and exhibit minimal toxicity compared to conventional anticancer drugs. However, their widespread use in cancer therapy is severely restricted by limitations in terms of their water solubility, absorption, lack of stability, bioavailability, and selective targeting. The use of nanoformulations for plants' natural product transportation and delivery could be helpful in overcoming these limitations, thus enhancing their therapeutic efficacy and providing the basis for improved anticancer treatment strategies. The present review is aimed at providing an update on some phytocompounds (curcumin, resveratrol, quercetin, and cannabinoids, among others) and their main nanoformulations showing antitumor activities, both in vitro and in vivo, against such different human cancer types as breast and colorectal cancer, lymphomas, malignant melanoma, glioblastoma multiforme, and osteosarcoma. The intracellular pathways underlying phytocompound anticancer activity and the main advantages of nanoformulation employment are also examined. Finally, this review critically analyzes the research gaps and limitations causing the limited success of phytocompounds' and nanoformulations' clinical translation.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Annarica Calcabrini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Condello
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| |
Collapse
|
4
|
Carrillo-Garmendia A, Madrigal-Perez LA, Regalado-Gonzalez C. The multifaceted role of quercetin derived from its mitochondrial mechanism. Mol Cell Biochem 2024; 479:1985-1997. [PMID: 37656383 DOI: 10.1007/s11010-023-04833-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Quercetin is a flavonoid with promising therapeutic applications; nonetheless, the phenotype exerted in some diseases is contradictory. For instance, anticancer properties may be explained by a cytotoxic mechanism, whereas antioxidant-related neuroprotection is a pro-survival process. According to the available literature, quercetin exerts a redox interaction with the electron transport chain (ETC) in the mitochondrion, affecting its membrane potential. It also affects ATP generation by oxidative phosphorylation, where ATP deprivation could partly explain its cytotoxic effect. Moreover, quercetin may support the generation of free radicals through redox reactions, causing a prooxidant effect. The nutrimental stress and prooxidant effect induced by quercetin might promote pro-survival properties such as antioxidant processes. Thus, in this review, we discuss the evidence supporting that quercetin redox interaction with the ETC could explain its beneficial and toxic properties.
Collapse
Affiliation(s)
| | - Luis Alberto Madrigal-Perez
- Tecnológico Nacional de México/Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez #2120, Ciudad Hidalgo, Michoacán, 61100, México.
| | - Carlos Regalado-Gonzalez
- Cerro de las Campanas, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, 76010, México.
| |
Collapse
|
5
|
Georgiou N, Kakava MG, Routsi EA, Petsas E, Stavridis N, Freris C, Zoupanou N, Moschovou K, Kiriakidi S, Mavromoustakos T. Quercetin: A Potential Polydynamic Drug. Molecules 2023; 28:8141. [PMID: 38138630 PMCID: PMC10745404 DOI: 10.3390/molecules28248141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The study of natural products as potential drug leads has gained tremendous research interest. Quercetin is one of those natural products. It belongs to the family of flavonoids and, more specifically, flavonols. This review summarizes the beneficial pharmaceutical effects of quercetin, such as its anti-cancer, anti-inflammatory, and antimicrobial properties, which are some of the quercetin effects described in this review. Nevertheless, quercetin shows poor bioavailability and low solubility. For this reason, its encapsulation in macromolecules increases its bioavailability and therefore pharmaceutical efficiency. In this review, a brief description of the different forms of encapsulation of quercetin are described, and new ones are proposed. The beneficial effects of applying new pharmaceutical forms of nanotechnology are outlined.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Margarita Georgia Kakava
- Laboratory of Organic Chemistry and Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Efthymios Alexandros Routsi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Errikos Petsas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Nikolaos Stavridis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Christoforos Freris
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Nikoletta Zoupanou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Kalliopi Moschovou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| | - Sofia Kiriakidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
- Departamento de Quimica Orgánica, Facultade de Quimica, Universidade de Vigo, 36310 Vigo, Spain
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (N.G.); (E.A.R.); (E.P.); (N.S.); (N.Z.); (K.M.); (S.K.)
| |
Collapse
|
6
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
7
|
Yu X, Sun Z, Nie S, Zhang T, Lu H. Effects of Resveratrol on Mouse B16 Melanoma Cell Proliferation through the SHCBP1-ERK1/2 Signaling Pathway. Molecules 2023; 28:7614. [PMID: 38005336 PMCID: PMC10674768 DOI: 10.3390/molecules28227614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Melanoma originates from the malignant mutational transformation of melanocytes in the basal layer of the epidermal layer of the skin. It can easily spread and metastasize in the early stage, resulting in a poor prognosis. Therefore, it is particularly important to find effective antitumor adjuvant drugs to inhibit the occurrence and development of melanoma. In this study, we found that resveratrol, a polyphenolic compound from grape plants, can significantly inhibit the proliferation, colony formation and migration of mouse melanoma B16 cells. Notably, resveratrol was also found to inhibit the expression of SHCBP1 in B16 cells. Transcriptional analysis and cellular studies showed that SHCBP1 can activate the MAPK/ERK signaling pathway to regulate cyclin expression and promote the G1/S phase transition of the cell cycle by upregulating ERK1/2 phosphorylation levels. Resveratrol further downregulates the phosphorylation level of ERK1/2 by inhibiting SHCBP1 expression, thus inhibiting tumor cell proliferation. In conclusion, resveratrol inhibits the proliferation of B16 cells by regulating the ERK1/2 signaling pathway through SHCBP1. As an upstream protein of the ERK1/2 signaling pathway, SHCBP1 may be involved in the process of resveratrol-mediated inhibition of tumor cell proliferation.
Collapse
Affiliation(s)
- Xiaoke Yu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Zhiyang Sun
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Saiya Nie
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Department of Biology, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (X.Y.); (Z.S.); (S.N.); (T.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Department of Biology, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
8
|
Salgado MTSF, Fernandes E Silva E, Nascimento MAD, Lopes AC, Paiva LSD, Votto APDS. Potential Therapeutic Targets of Quercetin in the Cutaneous Melanoma Model and Its Cellular Regulation Pathways: A Systematic Review. Nutr Cancer 2023; 75:1687-1709. [PMID: 37553896 DOI: 10.1080/01635581.2023.2241698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Melanoma is a skin cancer with a high mortality rate due to its invasive characteristics. Currently, immunotherapy and targeted therapy increase patient survival but are ineffective in the advanced stages of the tumor. Quercetin (Que) is a natural compound that has demonstrated chemopreventive effects against different types of tumors. This review provides evidence for the therapeutic potential of Que in melanoma and identifies its main targets. The Scopus, Web of Science, and PubMed databases were searched, and studies that used free or encapsulated Que in melanoma models were included, excluding associations, analogs, and extracts. As a result, 73 articles were retrieved and their data extracted. Que has multiple cellular targets in melanoma models, and the main regulated pathways are cell death, redox metabolism, metastasis, and melanization. Que was also able to regulate important targets of signaling pathways, such as PKC, RIG-I, STAT, and P53. In murine models, treatment with Que reduced tumor growth and weight, and decreased metastatic nodules and angiogenic vasculature. Several studies have incorporated Que into carriers, demonstrating improved efficacy and delivery to tumors. Thus, Que is a promising therapeutic agent for the treatment of melanoma; however, further studies are needed to evaluate its effectiveness in clinical trials.
Collapse
Affiliation(s)
- Mariana Teixeira Santos Figueiredo Salgado
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, RS, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, RS, Brazil
| | | | - Mariana Amaral do Nascimento
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Luciana Souza de Paiva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ana Paula de Souza Votto
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, RS, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, RS, Brazil
| |
Collapse
|
9
|
Schanknecht E, Bachari A, Nassar N, Piva T, Mantri N. Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. Int J Mol Sci 2023; 24:ijms24010859. [PMID: 36614303 PMCID: PMC9820847 DOI: 10.3390/ijms24010859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.
Collapse
Affiliation(s)
- Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Terrence Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
10
|
Pharmacological Activity of Quercetin: An Updated Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3997190. [PMID: 36506811 PMCID: PMC9731755 DOI: 10.1155/2022/3997190] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
Quercetin, a natural flavonoid compound with a widespread occurrence throughout the plant kingdom, exhibits a variety of pharmacological activities. Because of the wide spectrum of health-promoting effects, quercetin has attracted much attention of dietitians and medicinal chemists. An updated review of the literature on quercetin was performed using PubMed, Embase, and Science Direct databases. This article presents an overview of recent developments in pharmacological activities of quercetin including anti-SARS-CoV-2, antioxidant, anticancer, antiaging, antiviral, and anti-inflammatory activities as well as the mechanism of actions involved. The biological activities of quercetin were evaluated both in vitro and in vivo, involving a number of cell lines and animal models, but metabolic mechanisms of quercetin in the human body are not clear. Therefore, further large sample clinical studies are needed to determine the appropriate dosage and form of quercetin for the treatment of the disease.
Collapse
|
11
|
Bakrim S, El Omari N, El Hachlafi N, Bakri Y, Lee LH, Bouyahya A. Dietary Phenolic Compounds as Anticancer Natural Drugs: Recent Update on Molecular Mechanisms and Clinical Trials. Foods 2022; 11:foods11213323. [PMID: 36359936 PMCID: PMC9657352 DOI: 10.3390/foods11213323] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Given the stochastic complexity of cancer diseases, the development of chemotherapeutic drugs is almost limited by problems of selectivity and side effects. Furthermore, an increasing number of protective approaches have been recently considered as the main way to limit these pathologies. Natural bioactive compounds, and particularly dietary phenolic compounds, showed major protective and therapeutic effects against different types of human cancers. Indeed, phenolic substances have functional groups that allow them to exert several anti-cancer mechanisms, such as the induction of apoptosis, autophagy, cell cycle arrest at different stages, and the inhibition of telomerase. In addition, in vivo studies show that these phenolic compounds also have anti-angiogenic effects via the inhibition of invasion and angiogenesis. Moreover, clinical studies have already highlighted certain phenolic compounds producing clinical effects alone, or in combination with drugs used in chemotherapy. In the present work, we present a major advance in research concerning the mechanisms of action of the different phenolic compounds that are contained in food medicinal plants, as well as evidence from the clinical trials that focus on them.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology, and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Fes 30000, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
- Correspondence: (L.-H.L.); (A.B.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (L.-H.L.); (A.B.)
| |
Collapse
|
12
|
Zhao N, Kong H, Liu H, Shi Q, Qi X, Chen Q. A network pharmacology approach to evaluate the synergistic effect of dihydromyricetin and myricitrin in vine tea on the proliferation of B16F10 cells. Front Nutr 2022; 9:993133. [PMID: 36185647 PMCID: PMC9524360 DOI: 10.3389/fnut.2022.993133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Aim of the study Although vine tea has demonstrated broad-spectrum anti-cancer properties, its main active compounds, dihydromyricetin (DMY) and myricitrin (MYT), exert weaker effects than the tea extracts. This study aimed to investigate the synergistic inhibitory effects of DMY and MYT on B16F10 cell proliferation and their synergistic inhibitory effects. Methods The effect of vine tea extracts (VTEs) and their active compounds on B16F10 cells was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, fluorescence staining, and flow cytometry. The synergistic effects were calculated by the combination index (CI), and its mechanism was discussed by network pharmacology. Results Different VTEs varied in their inhibition of B16F10 cell growth, with IC50 values ranging from 4.45 to 12.95 μg/mL, Among these, Guangzhou Qingyuan (Level 2), appeared to have the most potent inhibitory effect. The IC50 value of mix-use of DMY and MYT was 19.94∼64.4 μM, of which DMY: MYT = 8:1 had the minimum IC50 value of 19.94 μM. Combinations in the 1:1∼8:1 range had stronger effects than the isolated active compound. When they were mixed at the ratio of 1:4∼8:1, CI < 1, showing a synergistic effect. The combination of DMY and MYT also significantly inhibited the tyrosinase activity in B16F10 cells, consistent with its impact on cell proliferation. The eight potential targets were identified by network pharmacology regulating melanin metabolism, tyrosine metabolism, and melanogenesis signaling. According to the analysis of protein-protein interactions, TP53, TNF, and TYR might be critical targets for preventing and treating melanoma. Conclusion We found that DMY and MYT induced apoptosis of B16F10 cells, and their combined application had a significant synergistic effect. The present findings indicated that vine tea had a multi-pathway and multi-target impact on the prevention and treatment of melanoma.
Collapse
|
13
|
Vissenaekens H, Smagghe G, Criel H, Grootaert C, Raes K, Rajkovic A, Goeminne G, Boon N, De Schutter K, Van Camp J. Intracellular quercetin accumulation and its impact on mitochondrial dysfunction in intestinal Caco-2 cells. Food Res Int 2021. [DOI: 10.1016/j.foodres.2021.110430
expr 886078340 + 945834560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
14
|
Intracellular quercetin accumulation and its impact on mitochondrial dysfunction in intestinal Caco-2 cells. Food Res Int 2021; 145:110430. [PMID: 34112387 DOI: 10.1016/j.foodres.2021.110430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE Flavonoid bioavailability and bioactivity is associated with interindividual variability, which is partially due to differences in health status. Previously, it was demonstrated that cellular stress, especially mitochondrial stress, increases intracellular quercetin uptake and this is associated with beneficial health effects. Here, the impact of quercetin on mitochondrial dysfunction, induced by stressors targeting different sites of the electron transport chain, is investigated. The influence of the mitochondrial stress on quercetin uptake and subcellular location is studied and the accumulated quercetin metabolites in intestinal Caco-2 cells and mitochondria are characterized. PRINCIPAL RESULTS It was observed that quercetin counteracted (i) the carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP)-induced decrease in maximum oxygen consumption, (ii) the valinomycin-, oligomycin- and FCCP-induced reactive oxygen species production and (iii) the valinomycin-induced disruption of mitochondrial membrane potential. Using confocal microscopy, it was found that upon mitochondrial stress, the intracellular quercetin accumulation increased and was partially located in the mitochondria. Finally, it was demonstrated that quercetin was present as O-methyl, O-methylglucuronide and O-methylsulfate conjugates in the cell lysate and mitochondria-enriched fraction. MAJOR CONCLUSIONS This study shows that quercetin can partially restore, especially FCCP-induced, mitochondrial dysfunction and this protective effect was linked with an intracellular quercetin accumulation in the mitochondria of intestinal cells.
Collapse
|
15
|
Vásquez-Reyes S, Velázquez-Villegas LA, Vargas-Castillo A, Noriega LG, Torres N, Tovar AR. Dietary bioactive compounds as modulators of mitochondrial function. J Nutr Biochem 2021; 96:108768. [PMID: 34000412 DOI: 10.1016/j.jnutbio.2021.108768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 01/11/2023]
Abstract
The increase in incidence and prevalence of metabolic diseases, such as diabetes, obesity, and metabolic syndrome, is a health problem worldwide. Nutritional strategies that can impact on mitochondrial activity represent a novel and effective option to modulate energy expenditure and energetic metabolism in cells and tissues and could be used as adjuvant treatments for metabolic-associated disorders. Dietary bioactive compounds also known as "food bioactives" have proven to exert multiple health benefits and counteract metabolic alterations. In the last years, it has been consistently reported that the modulation of mitochondrial function represents one of the mechanisms behind the bioactive compounds-dependent health improvements. In this review, we focus on gathering, summarizing, and discussing the evidence that supports the effect of dietary bioactive compounds on mitochondrial activity and the relation of these effects in the pathological context. Despite the evidence presented here on in vivo and in vitro effects, more studies are needed to determine their effectiveness in humans.
Collapse
Affiliation(s)
- Sarai Vásquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Ariana Vargas-Castillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico.
| |
Collapse
|
16
|
Quercetin induces apoptosis and enhances gemcitabine therapeutic efficacy against gemcitabine-resistant cancer cells. Anticancer Drugs 2021; 31:684-692. [PMID: 32282368 DOI: 10.1097/cad.0000000000000933] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quercetin, an abundant flavonoid found in various fruits and vegetables, displays multiple biological activities, including anticancer effects. Therefore, quercetin is receiving increasing attention as a potential adjuvant anticancer treatment. Gemcitabine (GEM) resistance is a major issue for clinicians and patients with advanced cancers, making it crucial to determine ways to bolster its effects. In this study, we explored the anticancer effects and mechanistic actions of quercetin in GEM-resistant cancer cells. Pancreatic cancer (BxPC-3, PANC-1) and hepatocellular carcinoma (HepG2, Huh-7) cell lines were studied. Proliferation assays showed that quercetin had cytotoxic effects on GEM-resistant cell lines (HepG2 and PANC-1), and flow cytometric analysis indicated a significant pro-apoptotic effect on these cell lines. GEM treatment, in combination with quercetin, resulted in increased anticancer effects compared with GEM alone. Quercetin led to S phase arrest in GEM-resistant cell lines, and western blot analysis revealed tumour protein p53 upregulation and cyclin D1 downregulation. This study provides mechanistic insight into the anticancer effects of quercetin and suggests that quercetin adjuvant treatment may benefit patients who are resistant to GEM therapy.
Collapse
|
17
|
Coricovac D, Dehelean CA, Pinzaru I, Mioc A, Aburel OM, Macasoi I, Draghici GA, Petean C, Soica C, Boruga M, Vlaicu B, Muntean MD. Assessment of Betulinic Acid Cytotoxicity and Mitochondrial Metabolism Impairment in a Human Melanoma Cell Line. Int J Mol Sci 2021; 22:ijms22094870. [PMID: 34064489 PMCID: PMC8125295 DOI: 10.3390/ijms22094870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022] Open
Abstract
Melanoma represents one of the most aggressive and drug resistant skin cancers with poor prognosis in its advanced stages. Despite the increasing number of targeted therapies, novel approaches are needed to counteract both therapeutic resistance and the side effects of classic therapy. Betulinic acid (BA) is a bioactive phytocompound that has been reported to induce apoptosis in several types of cancers including melanomas; however, its effects on mitochondrial bioenergetics are less investigated. The present study performed in A375 human melanoma cells was aimed to characterize the effects of BA on mitochondrial bioenergetics and cellular behavior. BA demonstrated a dose-dependent inhibitory effect in both mitochondrial respiration and glycolysis in A375 melanoma cells and at sub-toxic concentrations (10 μM) induced mitochondrial dysfunction by eliciting a decrease in the mitochondrial membrane potential and changes in mitochondria morphology and localization. In addition, BA triggered a dose-dependent cytotoxic effect characterized by apoptotic features: morphological alterations (nuclear fragmentation, apoptotic bodies) and the upregulation of pro-apoptotic markers mRNA expression (Bax, Bad and Bak). BA represents a viable therapeutic option via a complex modulatory effect on mitochondrial metabolism that might be useful in advanced melanoma or as reliable strategy to counteract resistance to standard therapy.
Collapse
Affiliation(s)
- Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
- Correspondence: (I.P.); (A.M.); Tel.: +40-256-494-604
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
- Correspondence: (I.P.); (A.M.); Tel.: +40-256-494-604
| | - Oana-Maria Aburel
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
- Center for Translational Research and Systems Medicine, Faculty of Medicine,” Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. no. 2, RO-300041 Timișoara, Romania
| | - Ioana Macasoi
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - George Andrei Draghici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Crina Petean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (D.C.); (C.A.D.); (I.M.); (G.A.D.); (C.P.); (C.S.)
- Research Center for Pharmaco-toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Madalina Boruga
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
| | - Brigitha Vlaicu
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
| | - Mirela Danina Muntean
- Faculty of Medicine “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (O.-M.A.); (M.B.); (B.V.); (M.D.M.)
- Center for Translational Research and Systems Medicine, Faculty of Medicine,” Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq. no. 2, RO-300041 Timișoara, Romania
| |
Collapse
|
18
|
Plant-Derived Anticancer Compounds as New Perspectives in Drug Discovery and Alternative Therapy. Molecules 2021; 26:molecules26041109. [PMID: 33669817 PMCID: PMC7922180 DOI: 10.3390/molecules26041109] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Despite the recent advances in the field of chemically synthetized pharmaceutical agents, nature remains the main supplier of bioactive molecules. The research of natural products is a valuable approach for the discovery and development of novel biologically active compounds possessing unique structures and mechanisms of action. Although their use belongs to the traditional treatment regimes, plant-derived compounds still cover a large portion of the current-day pharmaceutical agents. Their medical importance is well recognized in the field of oncology, especially as an alternative to the limitations of conventional chemotherapy (severe side effects and inefficacy due to the occurrence of multi-drug resistance). This review offers a comprehensive perspective of the first blockbuster chemotherapeutic agents of natural origin’s (e.g. taxol, vincristine, doxorubicin) mechanism of action using 3D representation. In addition is portrayed the step-by-step evolution from preclinical to clinical evaluation of the most recently studied natural compounds with potent antitumor activity (e.g. resveratrol, curcumin, betulinic acid, etc.) in terms of anticancer mechanisms of action and the possible indications as chemotherapeutic or chemopreventive agents and sensitizers. Finally, this review describes several efficient platforms for the encapsulation and targeted delivery of natural compounds in cancer treatment
Collapse
|
19
|
Koltai T. Targeting the pH Paradigm at the Bedside: A Practical Approach. Int J Mol Sci 2020; 21:E9221. [PMID: 33287221 PMCID: PMC7730959 DOI: 10.3390/ijms21239221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
The inversion of the pH gradient in malignant tumors, known as the pH paradigm, is increasingly becoming accepted by the scientific community as a hallmark of cancer. Accumulated evidence shows that this is not simply a metabolic consequence of a dysregulated behavior, but rather an essential process in the physiopathology of accelerated proliferation and invasion. From the over-simplification of increased lactate production as the cause of the paradigm, as initially proposed, basic science researchers have arrived at highly complex and far-reaching knowledge, that substantially modified that initial belief. These new developments show that the paradigm entails a different regulation of membrane transporters, electrolyte exchangers, cellular and membrane enzymes, water trafficking, specialized membrane structures, transcription factors, and metabolic changes that go far beyond fermentative glycolysis. This complex world of dysregulations is still shuttered behind the walls of experimental laboratories and has not yet reached bedside medicine. However, there are many known pharmaceuticals and nutraceuticals that are capable of targeting the pH paradigm. Most of these products are well known, have low toxicity, and are also inexpensive. They need to be repurposed, and this would entail shorter clinical studies and enormous cost savings if we compare them with the time and expense required for the development of a new molecule. Will targeting the pH paradigm solve the "cancer problem"? Absolutely not. However, reversing the pH inversion would strongly enhance standard treatments, rendering them more efficient, and in some cases permitting lower doses of toxic drugs. This article's goal is to describe how to reverse the pH gradient inversion with existing drugs and nutraceuticals that can easily be used in bedside medicine, without adding toxicity to established treatments. It also aims at increasing awareness among practicing physicians that targeting the pH paradigm would be able to improve the results of standard therapies. Some clinical cases will be presented as well, showing how the pH gradient inversion can be treated at the bedside in a simple manner with repurposed drugs.
Collapse
Affiliation(s)
- Tomas Koltai
- Centro de Diagnostico y Tratamiento de la Obra Social del Personal de la Alimentacion, Talar de Pacheco, Buenos Aires 1617, Argentina
| |
Collapse
|
20
|
Soll F, Ternent C, Berry IM, Kumari D, Moore TC. Quercetin Inhibits Proliferation and Induces Apoptosis of B16 Melanoma Cells In Vitro. Assay Drug Dev Technol 2020; 18:261-268. [PMID: 32799543 DOI: 10.1089/adt.2020.993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Malignant melanoma is an aggressive cancer with a poor prognosis despite numerous advances in therapeutic strategies. Quercetin is a plant-derived flavonoid suggested to have potent anticancer properties. Quercetin has no demonstrable toxicity in humans, further supporting the possibility of using quercetin therapeutically. We chose to investigate quercetin efficacy against B16 murine melanoma cells and identify the mechanisms of anticancer activity. Treatment of B16 melanoma cells with 50 μg/mL quercetin resulted in a 75% reduction in viability from 6 through 48 h post-treatment. The reduction in cancer cell viability was comparable to or greater than what was observed with etoposide, an established chemotherapeutic. Specifically, we found Quercetin reduced the proliferation of B16 melanoma cells at 48 h as much or more than etoposide. Although quercetin reduced the proportion of cells in the S and G2/M stages of the cell cycle, this could largely be explained by an increase in the subG1 population in quercetin-treated cells (suggesting apoptosis). Quercetin-induced apoptosis was confirmed by flow cytometry analysis of Annexin V+ cells. Collectively, our findings demonstrate quercetin reduces proliferation and induces apoptosis of B16 melanoma cells in vitro.
Collapse
Affiliation(s)
- Farrah Soll
- Department of Chemistry, College of Saint Mary, Omaha, Nebraska, USA
| | - Christina Ternent
- Department of Chemistry, College of Saint Mary, Omaha, Nebraska, USA
| | | | - Dunesh Kumari
- Department of Chemistry, College of Saint Mary, Omaha, Nebraska, USA
| | - Tyler C Moore
- Department of Biology, College of Science and Technology, Bellevue University, Bellevue, Nebraska, USA
| |
Collapse
|
21
|
Thyagarajan A, Forino AS, Konger RL, Sahu RP. Dietary Polyphenols in Cancer Chemoprevention: Implications in Pancreatic Cancer. Antioxidants (Basel) 2020; 9:651. [PMID: 32717779 PMCID: PMC7464582 DOI: 10.3390/antiox9080651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Naturally occurring dietary agents present in a wide variety of plant products, are rich sources of phytochemicals possessing medicinal properties, and thus, have been used in folk medicine for ages to treat various ailments. The beneficial effects of such dietary components are frequently attributed to their anti-inflammatory and antioxidant properties, particularly in regards to their antineoplastic activities. As many tumor types exhibit greater oxidative stress levels that are implicated in favoring autonomous cell growth activation, most chemotherapeutic agents can also enhance tumoral oxidative stress levels in part via generating reactive oxygen species (ROS). While ROS-mediated imbalance of the cellular redox potential can provide novel drug targets, as a consequence, this ROS-mediated excessive damage to cellular functions, including oncogenic mutagenesis, has also been implicated in inducing chemoresistance. This remains one of the major challenges in the treatment and management of human malignancies. Antioxidant-enriched natural compounds offer one of the promising approaches in mitigating some of the underlying mechanisms involved in tumorigenesis and metastasis, and therefore, have been extensively explored in cancer chemoprevention. Among various groups of dietary phytochemicals, polyphenols have been extensively explored for their underlying chemopreventive mechanisms in other cancer models. Thus, the current review highlights the significance and mechanisms of some of the highly studied polyphenolic compounds, with greater emphasis on pancreatic cancer chemoprevention.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of medicine Wright State University, Dayton, OH 45435, USA
| | - Andrew S. Forino
- Department of Anatomy and Physiology, Boonshoft School of medicine Wright State University, Dayton, OH 45435, USA;
| | - Raymond L. Konger
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Ravi P. Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of medicine Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
22
|
Peng D, Chen L, Sun Y, Sun L, Yin Q, Deng S, Niu L, Lou F, Wang Z, Xu Z, Wang C, Fan L, Wang H, Wang H. Melanoma suppression by quercein is correlated with RIG-I and type I interferon signaling. Biomed Pharmacother 2020; 125:109984. [PMID: 32066042 DOI: 10.1016/j.biopha.2020.109984] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 12/22/2022] Open
Abstract
Melanoma is a life-threatening cancer with limited treatments. Retinoic acid-inducible gene I (RIG-I) is a cytosolic pattern recognition receptor (PRR) crucial to RNA virus sensing, interferon production, and tumor suppression. Quercetin, a natural flavonoid, has particularly therapeutic interests to prevent and treat cancer, for its pharmacological effects against oxidant, inflammation, and angiogenesis. Quercetin was investigated for its anti-melanoma activity and potential mechanisms in this study. We found that quercetin inhibited mouse melanoma growth in vivo, and suppressed proliferation and promoted apoptosis of both B16 and A375 cells in vitro. Quercetin upregulated IFN-α and IFN-β expression through activating RIG-I promoter in B16 cells. The induction of IFN-α and IFN-β, which could be severely impaired by silencing RIG-I induced interferon stimulated genes (ISGs). Moreover, RIG-I likely amplifies antitumor effects by activating signal transduction and activator of transcription 1 (STAT1) in the IFN-JAK-STAT pathway in an autocrine and paracrine manner. Our study provided novel insights regarding biological and anti-proliferative activities of quercetin against melanoma, and we identified RIG-I as a potential target in anti-tumor therapies.
Collapse
Affiliation(s)
- Danhong Peng
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Linjiao Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yang Sun
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Libo Sun
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Qianqian Yin
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Siyu Deng
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Liman Niu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Fangzhou Lou
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Zhikai Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Zhenyao Xu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Conghui Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Li Fan
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Hong Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Honglin Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Immunology and Microbiology, Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China.
| |
Collapse
|
23
|
Lee S, Lee H, Kim KT. Optimization of experimental conditions and measurement of oxygen consumption rate (OCR) in zebrafish embryos exposed to organophosphate flame retardants (OPFRs). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109377. [PMID: 31254858 DOI: 10.1016/j.ecoenv.2019.109377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 05/18/2023]
Abstract
The measurement of oxygen consumption rate (OCR) provides a comprehensive understanding of mitochondrial metabolism. However, no study has been conducted to investigate the mitochondrial dysfunction caused by organophosphate flame retardants (OPFRs). The objectives of this study were to optimize the experimental conditions to measure OCR in zebrafish embryos using the Seahorse XFe 24 Extracellular Flux Analyzer, and to investigate the changes of OCR in zebrafish embryos exposed to OPFRs. We first optimized the experimental conditions such as the number of embryos, concentrations of inhibitors, and time points. We determined the factors, i.e., three embryos, 12.5 μM of oligomycin, 8 μM of carbonyl cyanaide 4-(trifluoromethoxy) phenylhydrazone (FCCP), and 24 hpf (hours post-fertilization) time point, for obtaining the typical pattern of OCR in dechorinated zebrafish embryos. After confirming the determinants upon exposure of triclosan, the inhibition of OCR was measured in zebrafish embryos exposed to two major OPFRs, triphenyl phosphate (TPHP) and tris (1,3-dichloro-2-propyl) phosphate (TDCIPP). We found that significant inhibition of OCR was observed in basal respiration for TPHP, and in basal and maximal respiration for TDCIPP exposure, respectively. We suggest the optimum conditions of the Seahorse XFe 24 analyzer to better evaluate OCR in zebrafish embryos, and demonstrate the potential of TPHP and TDCIPP to cause the disruption of energy metabolism associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sunjin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Hyojin Lee
- Department of Environmental Energy Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea; Department of Environmental Energy Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
24
|
Reyes-Farias M, Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int J Mol Sci 2019; 20:E3177. [PMID: 31261749 PMCID: PMC6651418 DOI: 10.3390/ijms20133177] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer is a problem with worldwide importance and is the second leading cause of death globally. Cancer cells reprogram their metabolism to support their uncontrolled expansion by increasing biomass (anabolic metabolism-glycolysis) at the expense of their energy (bioenergetics- mitochondrial function) requirements. In this aspect, metabolic reprogramming stands out as a key biological process in understanding the conversion of a normal cell into a neoplastic precursor. Quercetin is the major representative of the flavonoid subclass of flavonols. Quercetin is ubiquitously present in fruits and vegetables, being one of the most common dietary flavonols in the western diet. The anti-cancer effects of quercetin include its ability to promote the loss of cell viability, apoptosis and autophagy through the modulation of PI3K/Akt/mTOR, Wnt/-catenin, and MAPK/ERK1/2 pathways. In this review, we discuss the role of quercetin in cancer metabolism, addressing specifically its ability to target molecular pathways involved in glucose metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Marjorie Reyes-Farias
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, 08916 Barcelona, Spain
| | - Catalina Carrasco-Pozo
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
25
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
26
|
Petrus AT, Lighezan DL, Danila MD, Duicu OM, Sturza A, Muntean DM, Ionita I. Assessment of platelet respiration as emerging biomarker of disease. Physiol Res 2019; 68:347-363. [PMID: 30904011 DOI: 10.33549/physiolres.934032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction is currently acknowledged as a central pathomechanism of most common diseases of the 21(st) century. Recently, the assessment of the bioenergetic profile of human peripheral blood cells has emerged as a novel research field with potential applications in the development of disease biomarkers. In particular, platelets have been successfully used for the ex vivo analysis of mitochondrial respiratory function in several acute and chronic pathologies. An increasing number of studies support the idea that evaluation of the bioenergetic function in circulating platelets may represent the peripheral signature of mitochondrial dysfunction in metabolically active tissues (brain, heart, liver, skeletal muscle). Accordingly, impairment of mitochondrial respiration in peripheral platelets might have potential clinical applicability as a diagnostic and prognostic tool as well as a biomarker in treatment monitoring. The aim of this minireview is to summarize current information in the field of platelet mitochondrial dysfunction in both acute and chronic diseases.
Collapse
Affiliation(s)
- A T Petrus
- Department of Anatomy, Physiology and Pathophysiology, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania and Department of Functional Sciences - Pathophysiology, "Victor Babes" University of Medicine and Pharmacy of Timisoara, Timisoara, Romania.
| | | | | | | | | | | | | |
Collapse
|
27
|
Jia L, Huang S, Yin X, Zan Y, Guo Y, Han L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci 2018; 208:123-130. [PMID: 30025823 DOI: 10.1016/j.lfs.2018.07.027] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/03/2018] [Accepted: 07/15/2018] [Indexed: 02/07/2023]
Abstract
Tumor metastasis is the primary factor causing death of cancer patients and it is a study emphasis in cancer treatment to suppress tumor metastasis by inhibiting glycolysis, which is the main way of energy supply for cell mobility in tumor. In the present study, we aimed to explore the effect of quercetin, a bioactive flavonoid, on tumor metastasis and cell glycolysis and its related functionary mechanism in breast cancer progression. Firstly, trans-well invasion assay and wound healing assay indicated that quercetin effectively suppressed cell mobility. The corresponding western blot revealed that quercetin treatment down-regulated the expression of cell migration marker proteins, such as matrix metalloproteinase 2 (MMP-2), MMP-9 and vascular endothelial growth factor (VEGF). The further experiments exhibited that quercetin successfully blocked cell glycolysis by inhibiting the level of glucose uptake and the production of lactic acid, and also decreased the level of glycolysis-related proteins Pyruvate kinase M2 (PKM2), Glucose transporter1(GLUT1) and Lactate dehydrogenase A (LDHA). The above results revealed that quercetin might inhibit glycolysis to limit the migration of tumor cells by reducing the acidity of the tumor microenvironment. Moreover, our further investigation showed that quercetin induced obvious autophagy via inactivating the Akt-mTOR pathway. At the same time, the application of autophagy inhibitor 3-MA and Akt-mTOR pathway inducer IGF-1 further demonstrated that quercetin exerted inhibiting effect on cell mobility and glycolysis through Akt-mTOR pathway mediated autophagy induction. At last, the in vivo experiments also showed that quercetin treatment could suppress tumor growth and metastasis, inhibit glycolysis and induce autophagy through the inhibition of p-AKT/AKT. Taken together, we firstly revealed that quercetin suppressed the progression of breast cancer by inhibiting cell mobility and glycolysis through Akt-mTOR pathway mediated autophagy induction and may provide a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Lijun Jia
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China.
| | - Shan Huang
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China
| | - Xiaoran Yin
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China
| | - Ying Zan
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China
| | - Ya Guo
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China
| | - Lili Han
- Department of oncology, the Second Affiliated Hospital, Xi'an Jiao Tong University,Shaanxi 646000, China
| |
Collapse
|