1
|
Xie G, Wu T, Ji G, Wu H, Lai Y, Wei B, Huang W. Circular RNA and intervertebral disc degeneration: unravelling mechanisms and implications. Front Mol Biosci 2023; 10:1302017. [PMID: 38192334 PMCID: PMC10773835 DOI: 10.3389/fmolb.2023.1302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Low back pain (LBP) is a major public health problem worldwide and a significant health and economic burden. Intervertebral disc degeneration (IDD) is the reason for LBP. However, we have not identified effective therapeutic strategies to address this challenge. With accumulating knowledge on the role of circular RNAs in the pathogenesis of IDD, we realised that circular RNAs (circRNAs) may have tremendous therapeutic potential and clinical application prospects in this field. This review presents an overview of the current understanding of characteristics, classification, biogenesis, and function of circRNAs and summarises the protective and detrimental circRNAs involved in the intervertebral disc that have been studied thus far. This review is aimed to help researchers better understand the regulatory role of circRNAs in the progression of IDD, reveal their clinical therapeutic potential, and provide a theoretical basis for the prevention and targeted treatment of IDD.
Collapse
Affiliation(s)
- Guohao Xie
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guangju Ji
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yue Lai
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenhua Huang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Gleneadie HJ, Fernandez-Ruiz B, Sardini A, Van de Pette M, Dimond A, Prinjha RK, McGinty J, French PMW, Bagci H, Merkenschlager M, Fisher AG. Endogenous bioluminescent reporters reveal a sustained increase in utrophin gene expression upon EZH2 and ERK1/2 inhibition. Commun Biol 2023; 6:318. [PMID: 36966198 PMCID: PMC10039851 DOI: 10.1038/s42003-023-04666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder caused by loss of function mutations in the dystrophin gene (Dmd), resulting in progressive muscle weakening. Here we modelled the longitudinal expression of endogenous Dmd, and its paralogue Utrn, in mice and in myoblasts by generating bespoke bioluminescent gene reporters. As utrophin can partially compensate for Dmd-deficiency, these reporters were used as tools to ask whether chromatin-modifying drugs can enhance Utrn expression in developing muscle. Myoblasts treated with different PRC2 inhibitors showed significant increases in Utrn transcripts and bioluminescent signals, and these responses were independently verified by conditional Ezh2 deletion. Inhibition of ERK1/2 signalling provoked an additional increase in Utrn expression that was also seen in Dmd-mutant cells, and maintained as myoblasts differentiate. These data reveal PRC2 and ERK1/2 to be negative regulators of Utrn expression and provide specialised molecular imaging tools to monitor utrophin expression as a therapeutic strategy for DMD.
Collapse
Affiliation(s)
- Hannah J Gleneadie
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Beatriz Fernandez-Ruiz
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging Facility, MRC LMS, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Mathew Van de Pette
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London, W12 0NN, UK
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Andrew Dimond
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Rab K Prinjha
- Immunology and Epigenetics Research Unit, Research, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - James McGinty
- Photonics Group, Department of Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK
| | - Paul M W French
- Photonics Group, Department of Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK
| | - Hakan Bagci
- Lymphocyte Development Group, MRC LMS, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC LMS, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC London Institute of Medical Sciences (LMS), Imperial College London, Du Cane Road, London, W12 0NN, UK.
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK.
| |
Collapse
|
3
|
Zhang L, Zhang W, Wu X, Cui H, Yan P, Yang C, Zhao X, Xiao J, Xiao C, Tang M, Wang Y, Chen L, Liu Y, Zou Y, Zhang L, Yang Y, Yao Y, Li J, Liu Z, Yang C, Zhang B, Jiang X. A sex- and site-specific relationship between body mass index and osteoarthritis: evidence from observational and genetic analyses. Osteoarthritis Cartilage 2023; 31:819-828. [PMID: 36889626 DOI: 10.1016/j.joca.2023.02.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE We primarily aimed to investigate whether there are phenotypic and genetic links underlying body mass index (BMI) and overall osteoarthritis (OA). We then intended to explore whether the relationships differ across sexes and sites. METHOD We first evaluated the phenotypic association between BMI and overall OA using data from the UK Biobank. We then investigated the genetic relationship leveraging summary statistics of the hitherto largest genome-wide association studies performed for BMI and overall OA. Finally, we repeated all analyses in a sex- (female, male) and site- (knee, hip, spine) specific manner. RESULTS Observational analysis suggested an increased hazard of diagnosed OA per 5 kg/m2 increment in BMI (hazard ratio = 1.38, 95% confidence interval (CI) = 1.37-1.39). A positive overall genetic correlation was observed for BMI and OA (rg = 0.43, P = 4.72 × 10-133), corroborated by 11 significant local signals. Cross-trait meta-analysis identified 34 pleiotropic loci shared between BMI and OA, of which seven were novel. Transcriptome-wide association study revealed 29 shared gene-tissue pairs, targeting nervous, digestive, and exo/endocrine systems. Mendelian randomization demonstrated a robust BMI-OA causal relationship (odds ratio = 1.47, 95% CI = 1.42-1.52). A similar pattern of effects was observed in sex- and site-specific analyses, with BMI affecting OA comparably in both sexes and most strongly in the knee. CONCLUSION Our work demonstrates an intrinsic relationship underlying BMI and overall OA, reflected by a pronounced phenotypic association, significant biological pleiotropy, and a putative causal link. Stratified analysis further reveals that the effects are distinct across sites and comparable across sexes.
Collapse
Affiliation(s)
- L Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - W Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - X Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - H Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - P Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - C Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - X Zhao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - J Xiao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - C Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - M Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - L Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - L Zhang
- Department of Iatrical Polymer Material and Artificial Apparatus, School of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Y Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Yao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - J Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Z Liu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - C Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - B Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - X Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Modaresi SMS, Wei W, Emily M, DaSilva NA, Slitt AL. Per- and polyfluoroalkyl substances (PFAS) augment adipogenesis and shift the proteome in murine 3T3-L1 adipocytes. Toxicology 2022; 465:153044. [PMID: 34800597 PMCID: PMC8756374 DOI: 10.1016/j.tox.2021.153044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 01/17/2023]
Abstract
The Per- and polyfluoroalkyl substances (PFAS) are a wide group of fluorinated compounds, which the health effects of many of them have not been investigated. Perfluorinated sulfonates, such as perfluorooctane sulfonate (PFOS) and perfluorinated carboxylates, such as perfluorooctanoic acid (PFOA) are members of this broad group of PFAS, and previous studies have shown a correlation between the body accumulation of PFOS and PFOA and increased adipogenesis. PFOA and PFOS have been withdrawn from the market and use is limited because of their persistence, toxicity, and bioaccumulative properties. Instead, short chain PFAS have been created to replace PFOA and PFOS, but the health effects of other short chain PFAS are largely unknown. Therefore, herein we aimed to comprehensively determined the potential adipogenesis of ten different PFAS (PFBS, PFHxS, PFOS, PFBA, PFHxA, PFHA, PFOA, PFNA, PFDA, and HFPO-DA) and investigated the differences in protein expression of 3T3-L1 cells upon exposure to each PFAS. 3T3-L1 cells were differentiated with or without each PFAS for 4-days, and cellular lipid was quantified using Nile Red staining. Analysis of the adipocyte proteome was performed to identify the pathways related to adipogenesis and quantify proteins significantly affected by each PFAS. The results showed that in general, every PFAS investigated in our study has the potential to induce the 3T3-L1 differentiation to adipocytes in the presence of rosiglitazone, with the concentrations that range between 0.25 and 25 μM. Proteomics analysis revealed specific markers regarding to adipogenesis upregulated upon exposure to each of the ten PFAS.
Collapse
Affiliation(s)
| | - Wei Wei
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Marques Emily
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Nicholas A DaSilva
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
5
|
Li Y, Zhang Y, Hu Q, Egranov SD, Xing Z, Zhang Z, Liang K, Ye Y, Pan Y, Chatterjee SS, Mistretta B, Nguyen TK, Hawke DH, Gunaratne PH, Hung MC, Han L, Yang L, Lin C. Functional significance of gain-of-function H19 lncRNA in skeletal muscle differentiation and anti-obesity effects. Genome Med 2021; 13:137. [PMID: 34454586 PMCID: PMC8403366 DOI: 10.1186/s13073-021-00937-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Exercise training is well established as the most effective way to enhance muscle performance and muscle building. The composition of skeletal muscle fiber type affects systemic energy expenditures, and perturbations in metabolic homeostasis contribute to the onset of obesity and other metabolic dysfunctions. Long noncoding RNAs (lncRNAs) have been demonstrated to play critical roles in diverse cellular processes and diseases, including human cancers; however, the functional importance of lncRNAs in muscle performance, energy balance, and obesity remains elusive. We previously reported that the lncRNA H19 regulates the poly-ubiquitination and protein stability of dystrophin (DMD) in muscular dystrophy. METHODS Here, we identified mouse/human H19-interacting proteins using mouse/human skeletal muscle tissues and liquid chromatography-mass spectrometry (LC-MS). Human induced pluripotent stem-derived skeletal muscle cells (iPSC-SkMC) from a healthy donor and Becker Muscular Dystrophy (BMD) patients were utilized to study DMD post-translational modifications and associated proteins. We identified a gain-of-function (GOF) mutant of H19 and characterized the effects on myoblast differentiation and fusion to myotubes using iPSCs. We then conjugated H19 RNA gain-of-function oligonucleotides (Rgof) with the skeletal muscle enrichment peptide agrin (referred to as AGR-H19-Rgof) and evaluated AGR-H19-Rgof's effects on skeletal muscle performance using wild-type (WT) C57BL/6 J mice and its anti-obesity effects using high-fat diet (HFD)- and leptin deficiency-induced obese mouse models. RESULTS We demonstrated that both human and mouse H19 associated with DMD and that the H19 GOF exhibited enhanced interaction with DMD compared to WT H19. DMD was found to associate with serine/threonine-protein kinase MRCK alpha (MRCKα) and α-synuclein (SNCA) in iPSC-SkMC derived from BMD patients. Inhibition of MRCKα and SNCA-mediated phosphorylation of DMD antagonized the interaction between H19 and DMD. These signaling events led to improved skeletal muscle cell differentiation and myotube fusion. The administration of AGR-H19-Rgof improved the muscle mass, muscle performance, and base metabolic rate of WT mice. Furthermore, mice treated with AGR-H19-Rgof exhibited resistance to HFD- or leptin deficiency-induced obesity. CONCLUSIONS Our study suggested the functional importance of the H19 GOF mutant in enhancing muscle performance and anti-obesity effects.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhen Xing
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Current address: Sanofi U.S., Boston, MA, 02139, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
| | - Yinghong Pan
- Department of Biochemistry and Biology, University of Houston, Houston, TX, 77204, USA
- Current address: UPMC Genome Center, Pittsburgh, PA, 15232, USA
| | - Sujash S Chatterjee
- Department of Biochemistry and Biology, University of Houston, Houston, TX, 77204, USA
| | - Brandon Mistretta
- Department of Biochemistry and Biology, University of Houston, Houston, TX, 77204, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Preethi H Gunaratne
- Department of Biochemistry and Biology, University of Houston, Houston, TX, 77204, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Abstract
Lipid droplets (LDs) are fat storage organelles integral to energy homeostasis and a wide range of cellular processes. LDs physically and functionally interact with many partner organelles, including the ER, mitochondria, lysosomes, and peroxisomes. Recent findings suggest that the dynamics of LD inter-organelle contacts is in part controlled by LD intracellular motility. LDs can be transported directly by motor proteins along either actin filaments or microtubules, via Kinesin-1, Cytoplasmic Dynein, and type V Myosins. LDs can also be propelled indirectly, by hitchhiking on other organelles, cytoplasmic flows, and potentially actin polymerization. Although the anchors that attach motors to LDs remain elusive, other regulators of LD motility have been identified, ranging from modification of the tracks to motor co-factors to members of the perilipin family of LD proteins. Manipulating these regulatory pathways provides a tool to probe whether altered motility affects organelle contacts and has revealed that LD motility can promote interactions with numerous partners, with profound consequences for metabolism. LD motility can cause dramatic redistribution of LDs between a clustered and a dispersed state, resulting in altered organelle contacts and LD turnover. We propose that LD motility can thus promote switches in the metabolic state of a cell. Finally, LD motility is also important for LD allocation during cell division. In a number of animal embryos, uneven allocation results in a large difference in LD content in distinct daughter cells, suggesting cell-type specific LD needs.
Collapse
Affiliation(s)
- Marcus D Kilwein
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA
| | - M A Welte
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA
| |
Collapse
|