1
|
Peng J, Ma P, Wu X, Yang T, Hu Y, Xu Y, Li S, Zhang H, Liu H. A case-control study and systematic review of the association between glutathione S-transferase genes and chronic kidney disease. Heliyon 2023; 9:e21183. [PMID: 37920524 PMCID: PMC10618768 DOI: 10.1016/j.heliyon.2023.e21183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 09/10/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Background GSTM1 deletion was reported to be associated with CKD progression in cohort studies. However, the results of case‒control studies were conflicting. The association between GST genes and CKD progression needs to be studied in China. Therefore, we conducted this case‒control study and systematic review for Southwest China to outline the association between GST genes and CKD. Methods CKD patients and healthy controls were enrolled from June 1, 2022 to 1 August 2022. Reported case‒control studies were identified by searching databases until 1 September 2022 for meta-analysis. Results Significant associations were found between deletions of GSTM1 and GSTT1 and CKD risk (all P < 0.01) but not in GSTP1 rs1695 (all P > 0.05) in Southwest China. Then, we conducted a meta-analysis on 30 studies and found positive associations between deletions of GSTM1 and GSTT1 and CKD risk (all P < 0.01) but failed to find associations in GSTP1 rs1695 (all P > 0.05). Stratification analysis for ethnicity only showed a significant association in Southern Asia (P < 0.05) but not in Eastern Asia or other populations. This was different from our case‒control results. The current evidence was influenced by study quality and PCR method but not by control selection. Given the different stages of CKD patients, a subanalysis of disease stages was performed, and the results remained positive. Interestingly, we found no significant associations between DM-CKD and GST genes, which should be interpreted with caution. Conclusion We found that GSTM1 and GSTT1 null genotypes were risk factors for CKD in China. The results of the meta-analysis were somewhat different from our results. We considered that antioxidant therapy might be useful for the treatment of these patients.
Collapse
Affiliation(s)
- Jie Peng
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
| | - Pei Ma
- Department of Forensic Medicine, Zhongnan Hospital, Wuhan University, 168# Donghu Road, Wuhan, Hubei Province, 430071, PR China
- Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, 168# Donghu Road, Wuhan, Hubei Province, 430071, PR China
| | - Xueqin Wu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
| | - Tianrong Yang
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
| | - Yuting Hu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
| | - Ying Xu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
| | - Shuang Li
- Department of Clinical Laboratory, The Third People's Hospital of Chengdu, 82# Qinglong Street, Chengdu, Sichuan Province, 610014, PR China
| | - Hang Zhang
- Department of Clinical Laboratory, The Third People's Hospital of Chengdu, 82# Qinglong Street, Chengdu, Sichuan Province, 610014, PR China
| | - Hongzhou Liu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, Sichuan Province, 610500, PR China
- Department of Clinical Laboratory, The Third People's Hospital of Chengdu, 82# Qinglong Street, Chengdu, Sichuan Province, 610014, PR China
| |
Collapse
|
2
|
Levy R, Le TH. Role of GSTM1 in Hypertension, CKD, and Related Diseases across the Life Span. KIDNEY360 2022; 3:2153-2163. [PMID: 36591365 PMCID: PMC9802555 DOI: 10.34067/kid.0004552022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022]
Abstract
Over 20 years after the introduction of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, CKD remains a major public health burden with limited therapeutic options to halt or slow kidney disease progression at all ages. The consensus is that oxidative stress contributes to CKD development and progression. Yet, to date, there is no clear evidence that broad use of antioxidant therapy provides a beneficial effect in CKD. Understanding the specific pathophysiologic mechanisms in those who are genetically most susceptible to oxidative stress is a crucial step to inform therapy in an individualized medicine approach, considering differing exposures and risks across the life span. Glutathione-S-transferase μ 1 (GSTM1) is a phase 2 enzyme involved in inactivation of reactive oxygen species and metabolism of xenobiotics. In particular, those with the highly prevalent GSTM1 null genotype (GSTM1[0/0]) may be more susceptible to kidney disease progression, due to impaired capacity to handle the increased oxidative stress burden in disease states, and might specifically benefit from therapy that targets the redox imbalance mediated by loss of the GSTM1 enzyme. In this review, we will discuss the studies implicating the role of GSTM1 deficiency in kidney and related diseases from experimental rodent models to humans, from the prenatal period through senescence, and the potential underlying mechanism.
Collapse
Affiliation(s)
- Rebecca Levy
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Thu H. Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
3
|
Nakanishi G, Pita-Oliveira M, Bertagnolli LS, Torres-Loureiro S, Scudeler MM, Cirino HS, Chaves ML, Miwa B, Rodrigues-Soares F. Worldwide Systematic Review of GSTM1 and GSTT1 Null Genotypes by Continent, Ethnicity, and Therapeutic Area. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:528-541. [PMID: 36112350 DOI: 10.1089/omi.2022.0090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glutathione S-transferase Mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) enzymes are glutathione-S-transferases with broad significance for susceptibility or resistance to multifactorial human diseases, as well as detoxification of environmental chemicals and drugs. Moreover, some individuals may have a complete deletion of GSTM1 and GSTT1 genes, which can contribute to patient-to-patient variability in drug safety and efficacy. GSTM1 and GSTT1 gene deletion frequencies can vary according to ethnicity and continental origin of the studied population with implications for achieving the goal of precision/personalized medicine in clinical practice. We report here a worldwide systematic review of the null genotypes in these two clinically important genes by continents, ethnicities, and therapeutic areas (TAs). Searches were performed in the PubMed database covering the period from 1992 to 2020. Out of the 1925 articles included, most studies analyzed European individuals, corroborating the literature failure for not adequately considering the non-European ethnicities. The frequency of GSTM1 and GSTT1 null genotypes was higher in patients than in healthy volunteers. Conversely, in East Asians, higher frequencies of the null genotypes were observed in healthy volunteers than patients. Oncology was the most intensively studied TA (57% of the articles) in relation to GSTM1 and GSTT1. In all, these results demonstrate that there is an important gap in the literature in terms of failure to consider a broader range of populations, as well as diseases wherein GSTM1 and GSTT1 variations have clinical and biological implications. To achieve precision/personalized medicine on a global/worldwide scale, with equity and inclusiveness, this knowledge/research gap ought to be remedied in studies of GSTM1 and GSTT1 null genotypes. To the best of our knowledge, this is the largest systematic review conducted to date addressing the GSTM1 and GSTT1 null genotypes worldwide. The analyses from the 1925 articles highlighted the current knowledge gaps in different TAs, ethnicities, and populations. Filling these gaps is of importance, given the role these genes play in relation to the metabolism of substances to which we have frequent contact with, the associations observed between their deletion and diseases such as cancer, in addition to the interethnic differences observed for the deletion frequencies of these genes.
Collapse
Affiliation(s)
- Giovana Nakanishi
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Murilo Pita-Oliveira
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Laísa S Bertagnolli
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Sabrina Torres-Loureiro
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Mariana M Scudeler
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Heithor S Cirino
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Maria Laura Chaves
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Bruno Miwa
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Fernanda Rodrigues-Soares
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
4
|
Feng X, Jin X, Zhou R, Jiang Q, Wang Y, Zhang X, Shang K, Zhang J, Yu C, Shou J. Deep learning approach identified a gene signature predictive of the severity of renal damage caused by chronic cadmium accumulation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128795. [PMID: 35405588 DOI: 10.1016/j.jhazmat.2022.128795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Epidemiology studies have indicated that environmental cadmium exposure, even at low levels, will result in chronic cadmium accumulation in the kidney with profound adverse consequences and that the diabetic population is more susceptible. However, the underlying mechanisms are yet not fully understood. In the present study, we applied an animal model to study chronic cadmium exposure-induced renal injury and performed whole transcriptome profiling studies. Repetitive CdCl2 exposure resulted in cadmium accumulation and remarkable renal injuries in the animals. The diabetic ob/ob mice manifested increased severity of renal injury compared with the wild type C57BL/6 J littermate controls. RNA-Seq data showed that cadmium treatment induced dramatic gene expression changes in a dose-dependent manner. Among the differentially expressed genes include the apoptosis hallmark genes which significantly demarcated the treatment effects. Pathway enrichment and network analyses revealed biological oxidation (mainly glucuronidation) as one of the major stress responses induced by cadmium treatment. We next implemented a deep learning algorithm in conjunction with cloud computing and discovered a gene signature that can predict the degree of renal injury induced by cadmium treatment. The present study provided, for the first time, a comprehensive mechanistic understanding of chronic cadmium-induced nephrotoxicity in normal and diabetic populations at the whole genome level.
Collapse
Affiliation(s)
- Xuefang Feng
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Xian Jin
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Qian Jiang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Yanan Wang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Xing Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China
| | - Ke Shang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Jianhua Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jianyong Shou
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China.
| |
Collapse
|
5
|
Le TH. GSTM1 Gene, Diet, and Kidney Disease: Implication for Precision Medicine?: Recent Advances in Hypertension. Hypertension 2021; 78:936-945. [PMID: 34455814 DOI: 10.1161/hypertensionaha.121.16510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the United States, the prevalence of chronic kidney disease in adults is ≈14%. The mainstay of therapy for chronic kidney disease is angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, but many patients with chronic kidney disease still progress to end-stage kidney disease. Increased oxidative stress is a major molecular underpinning of chronic kidney disease progression. In humans, a common deletion variant of the glutathione-S-transferase μ-1 (GSTM1) gene, the GSTM1 null allele (GSTM1(0)), results in decreased GSTM1 enzymatic activity and is associated with higher levels of oxidative stress. GSTM1 belongs to the superfamily of GSTs that are phase II antioxidant enzymes and are regulated by Nrf2 (nuclear factor erythroid 2-related factor 2). Cruciferous vegetables in general, and broccoli in particular, are rich in glucoraphanin, a precursor of sulforaphane that has been shown to have protective effects against oxidative damage through the activation of Nrf2. This review will highlight recent human and animal studies implicating the role of GSTM1 deficiency in hypertension and kidney disease, and its impact on the effects of cruciferous vegetables on kidney injury and disease progression, illustrating the significance of gene and environment interaction and a potential for targeted precision medicine in the treatment of kidney disease.
Collapse
Affiliation(s)
- Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, NY
| |
Collapse
|
6
|
Yuvaraj S, Ramprasath T, Saravanan B, Vasudevan V, Sasikumar S, Selvam GS. Chrysin attenuates high-fat-diet-induced myocardial oxidative stress via upregulating eNOS and Nrf2 target genes in rats. Mol Cell Biochem 2021; 476:2719-2727. [PMID: 33677805 DOI: 10.1007/s11010-021-04105-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Hypercholesterolemia is one of the risk factors associated with increased morbidity and mortality in cardiovascular disorders. Chrysin (Chy) is reported to exhibit anti-inflammatory, anti-cancerous, anti-oxidative, anti-aging, and anti-atherogenic properties. In the present study, we aimed to investigate whether Chy would mediate the cardioprotective effect against hypercholesterolemia-triggered myocardial oxidative stress. Male Sprague Dawley rats were divided into different groups as control and fed with high-fat diet (HFD) followed by oral administration of Chy (100 mg/kg b.wt), atorvastatin (Atv) (10 mg/kg b.wt), and L-NAME (10 mg/kg b.wt) for 30 days. At the end of the experimental period, the rats were sacrificed and tissues were harvested. Biochemical results showed a significant increase of cardiac disease marker enzymes (ALT, AST, and CKMB), lipid peroxidation, and lipid profile (TC, TG, LDL, and VLDL) in HFD-fed rat tissues when compared to control, whereas oral administration of Chy significantly reduced the activities of these marker enzymes and controlled the lipid profile. qRT-PCR studies revealed that Chy administration significantly increased the expression of endothelial nitric oxide synthase (eNOS), and Nrf2 target genes such as SOD, catalase, and GCL3 in left ventricular heart tissue of HFD-challenged rats. Immunohistochemistry results also showed that Chy treatment increased myocardial protein expression of eNOS and Nrf2 in HFD-challenged rats. Concluding the results of the present study, the Chy could mediate the cardioprotective effect through the activation of eNOS and Nrf2 signaling against hypercholesterolemia-induced oxidative stress. Thus, the administration of Chy would provide a promising therapeutic strategy for the prevention of HFD-induced oxidative stress-mediated myocardial complications.
Collapse
Affiliation(s)
- Subramani Yuvaraj
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Balakrishnan Saravanan
- National Institute for Research in Tuberculosis (NIRT) - ICMR Chetpet, Chennai, 600 031, India
| | - Varadaraj Vasudevan
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Sundaresan Sasikumar
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Govindan Sadasivam Selvam
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| |
Collapse
|