1
|
Zhou B, Yu J, Zhou C, Luo Z, Lu X, Zhu L. Bushen Huoxue decotion-containing serum prevents chondrocyte pyroptosis in a m 6A-dependent manner in facet joint osteoarthritis. Transpl Immunol 2024; 86:102083. [PMID: 38996984 DOI: 10.1016/j.trim.2024.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Facet joint osteoarthritis (FJOA) is a common lumbar osteoarthritis characterized by degeneration of small joint cartilage. Bushen Huoxue decotion (BSHXD) has good therapeutic effects on OA. Our work aimed to further probe the pharmacological effects of BSHXD-containing serum (BSHXD-CS) on FJOA and define underlying the mechanisms invovled. METHODS To establish a FJOA cell model, primary rat chondrocytes were treated with LPS. The mRNA and protein expressions were assessed using qRT-PCR and western blot, respectively. The secretion levels of pro-inflammatory cytokines were measured by ELISA. Cell viability was determined by CCK8 assay. The global m6A level was detected by the kit, and NLRP3 mRNA m6A level was determined by Me-RIP assay. The molecular interactions were analyzed by RIP and RNA pull-down assays. RESULTS BSHXD-CS treatment relieved LPS-induced cell injury, inflammation, NLRP3 inflammasome and pyroptosis in chondrocytes (all p < 0.05). LPS-induced NLRP3 upregulation in chondrocytes was related to its high m6A modification level (p < 0.05). It was also observed that BSHXD-CS reduced LPS-induced m6A modification in chondrocytes via repressing STAT3 (all p < 0.05), suggesting BSHXD-CS could repress NLRP3 expression via m6A-dependent manner. Moreover, DAA, a m6A specific inhibitor, was proved to strengthen the protectively roles of BSHXD-CS on LPS-challenged pytoptosis (all p < 0.05). CONCLUSION BSHXD-CS inhibited NLRP3 inflammasome activation and pyroptosis in chondrocytes to repress OA progression by reducing RNA m6A modification.
Collapse
Affiliation(s)
- Biao Zhou
- Department of Orthopedics, Wangjing Hospital of Chinese Academy of Chinese Medical Science, Beijing 100102, PR China; Department of Orthopedics, Xiangtan Hospital Affiliated to Nanhua University, Xiangtan 411101, Hunan Province, PR China
| | - Jie Yu
- Department of Orthopedics, Wangjing Hospital of Chinese Academy of Chinese Medical Science, Beijing 100102, PR China
| | - Can Zhou
- Department of Orthopedics, Wangjing Hospital of Chinese Academy of Chinese Medical Science, Beijing 100102, PR China; Department of Orthopedics, Xiangtan Hospital Affiliated to Nanhua University, Xiangtan 411101, Hunan Province, PR China
| | - Zhiqiang Luo
- Department of Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, PR China
| | - Xiaolong Lu
- Department of Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, PR China
| | - Liguo Zhu
- Department of Orthopedics, Wangjing Hospital of Chinese Academy of Chinese Medical Science, Beijing 100102, PR China.
| |
Collapse
|
2
|
Feng X, Wei G, Su Y, Xian Y, Liu Z, Gao Y, Liang J, Lian H, Xu J, Zhao J, Liu Q, Song F. Active fraction of Polyrhachis vicina (Rogers) inhibits osteoclastogenesis by targeting Trim38 mediated proteasomal degradation of TRAF6. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155890. [PMID: 39033726 DOI: 10.1016/j.phymed.2024.155890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Reactive Oxygen Species (ROS) is a key factor in the pathogenesis of osteoporosis (OP) primarily characterized by excessive osteoclast activity. Active fraction of Polyrhachis vicina Rogers (AFPR) exerts antioxidant effects and possesses extensive promising therapeutic effects in various conditions, however, its function in osteoclastogenesis and OP is unknown. PURPOSE The aim of this study is to elucidate the cellular and molecular mechanisms of AFPR in OP. STUDY DESIGN AND METHODS CCK8 assay was used to evaluate the cell viability under AFPR treatment. TRAcP staining, podosome belts staining and bone resorption were used to test the effect of AFPR on osteoclastogenesis. Immunofluorescence staining was used to observe the effect of AFPR on ROS production. si-RNA transfection, coimmunoprecipitation and Western-blot were used to clarify the underlying mechanisms. Further, an ovariectomy (OVX) -induced OP mice model was used to identify the effect of AFPR on bone loss using Micro-CT scanning and histological examination. RESULTS In the present study, AFPR inhibited osteoclast differentiation and bone resorption induced by nuclear factor-κB receptor activator (NF-κB) ligand (RANKL) in dose-/ time-dependent with no cytotoxicity. Meanwhile, AFPR decreased RANKL-mediated ROS levels and enhanced ROS scavenging enzymes. Mechanistically, AFPR promoted proteasomal degradation of TRAF6 by significantly upregulating its K48-linked ubiquitination, subsequently inhibiting NFATc1 activity. We further observed that tripartite motif protein 38 (TRIM38) could mediate the ubiquitination of TRAF6 in response to RANKL. Moreover, TRIM38 could negatively regulate the RANKL pathway by binding to TRAF6 and promoting K48-linked polyubiquitination. In addition, TRIM38 deficiency rescued the inhibition of AFPR on ROS and NFATc1 activity and osteoclastogenesis. In line with these results, AFPR reduced OP caused by OVX through ameliorating osteoclastogenesis. CONCLUSION AFPR alleviates ovariectomized-induced bone loss via suppressing ROS and NFATc1 by targeting Trim38 mediated proteasomal degradation of TRAF6. The research offers innovative perspectives on AFPR's suppressive impact in vivo OVX mouse model and in vitro, and clarifies the fundamental mechanism.
Collapse
Affiliation(s)
- Xiaoliang Feng
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Guining Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, 530022, PR China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yansi Xian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Zhijuan Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yijie Gao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jiamin Liang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, Australia; Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
3
|
Ji J, Wang H, Yuan M, Li J, Song X, Lin K. Exosomes from ectopic endometrial stromal cells promote M2 macrophage polarization by delivering miR-146a-5p. Int Immunopharmacol 2024; 128:111573. [PMID: 38278065 DOI: 10.1016/j.intimp.2024.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Ectopic endometrial stromal cells (ESCs) and M2 macrophages co-exist in the lesions of endometriosis and participate in the occurrence and progression of endometriosis. However, the interaction between ectopic ESCs and M2-type macrophage polarization is poorly understood. This study aims to investigate the effect of exosomes released from ectopic ESCs on M2 macrophage polarization and the potential mechanism. METHODS Human THP-1 monocytic cells induced macrophage differentiation (M0) and M2 polarization. Ectopic ESCs and their exosomes were used to stimulate M2 macrophages. M2 macrophage polarization was examined by detecting CD163 and ARG1 expression. Exosomal microRNAs were analyzed by small-RNA sequencing. RESULTS Our in vitro results suggest that exosomes of ectopic ESCs promoted M2 macrophage polarization. Meanwhile, The miR-146a-5p level was highly increased in ectopic ESCs and their exosomes and promoted the role of exosomes in M2 macrophage polarization. As a target, TRAF6 overexpression inhibits the function of miR-146a-5p mimic on M2 macrophage polarization. In the rat model, exosomes from ectopic ESCs contribute to the development of endometriosis. CONCLUSIONS It was suggested that exosomes derived from ectopic ESCs promote the M2 macrophage polarization by delivering miR-146a-5p targeting TRAF6 in the pathological process of endometriosis.
Collapse
Affiliation(s)
- Jiaqi Ji
- Hangzhou Normal University Division of Health Sciences, Yuhangtang Road 2318, Hangzhou, Zhejiang 311121, PR China
| | - Huihua Wang
- Department of Gynecology, the First People's Hospital of Tongxiang, Jiaochang Road 1918, Tongxiang, Zhejiang 314500, PR China
| | - Ming Yuan
- Hangzhou Normal University Division of Health Sciences, Yuhangtang Road 2318, Hangzhou, Zhejiang 311121, PR China
| | - Jin Li
- Department of Gynecology, Women's Hospital of Hangzhou Normal University, Kunpeng Road 369, Hangzhou, Zhejiang 310000, PR China
| | - Xiaohong Song
- Department of Gynecology, Women's Hospital of Hangzhou Normal University, Kunpeng Road 369, Hangzhou, Zhejiang 310000, PR China
| | - Kaiqing Lin
- Department of Gynecology and Obstetrics, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| |
Collapse
|
4
|
Duan Y, Yu C, Kuang W, Li J, Qiu S, Ni S, Chen Z. Mesenchymal stem cell exosomes inhibit nucleus pulposus cell apoptosis via the miR-125b-5p/TRAF6/NF-κB pathway axis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1938-1949. [PMID: 37964606 PMCID: PMC10753375 DOI: 10.3724/abbs.2023241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/07/2023] [Indexed: 11/16/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is the pathological basis of a range of degenerative spinal diseases and is the primary cause of lower back pain. Mesenchymal stem cell (MSC) transplantation inhibits IVDD progression. However, the specific mechanisms that underlie these effects remain unclear. In this study, candidate microRNAs (miRNAs) are screened using bioinformatics and high-throughput sequencing. TNF-α is used to induce nucleus pulposus cell (NPC) degeneration. MSC-derived exosomes (MSC-exosomes) are obtained using high-speed centrifugation and identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blot analysis. Cell viability is determined by CCK-8 assay. Flow cytometry and TUNEL assays are used to detect cell apoptosis. The expression levels of miR-125b-5p are detected by RT-qPCR, and a dual-luciferase gene reporter assay confirms the downstream target genes of miR-125b-5p. Protein expression is determined by western blot analysis. Rat models are used to validate the function of miR-125b-5p in MSC-exosomes. The results show that miR-125b-5p is expressed at low levels in degenerated disc tissues compared with that in normal disc tissues; however, it is highly expressed in MSC-exosomes. Furthermore, MSC-exosomes are efficiently taken up by NPCs while miR-125b-5p is delivered into NPCs; thus, MSC-exosomes act as inhibitors of apoptosis in NPCs. Overexpression of miR-125b-5p downregulates TRAF6 expression and inhibits NF-κB activation. However, TRAF6 overexpression reverses these effects of miR-125b-5p. We demonstrate that MSC-exosomes attenuate IVDD in vivo by delivering miR-125b-5p. MSC-exosomes can deliver miR-125b-5p to target TRAF6, inhibit NF-κB activation, and attenuate the progression of IVDD.
Collapse
Affiliation(s)
- Yang Duan
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Cheng Yu
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Wenhao Kuang
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Jianjun Li
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Sujun Qiu
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Songjia Ni
- Department of Orthopedics and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Zhong Chen
- Department of Spinal SurgeryZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| |
Collapse
|
5
|
Wang Y, Li Z, Wang B, Li K, Zheng J. Naringenin attenuates inflammation and apoptosis of osteoarthritic chondrocytes via the TLR4/TRAF6/NF-κB pathway. PeerJ 2023; 11:e16307. [PMID: 37953787 PMCID: PMC10638912 DOI: 10.7717/peerj.16307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Naringenin is a flavonoid extracted from the seed coat of Anacardiaceae plants. Increasing evidence indicates that it has several properties of biological significance, such as anti-infection, sterilization, anti-allergy, antioxidant free radical, and anti-tumor. However, its effect on osteoarthritis has not been elucidated properly. In this study, the treatment of primary chondrocytes with interleukin (IL)-1β was found to increase the secretions of IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase-2 (COX-2). Further, the mRNA expression of matrix metalloproteinase ((MMP)3, MMP9, and MMP13), the protein expression of Recombinant A Disintegrin And Metalloproteinase With Thrombospondin 5 (ADAMTS5), and cell apoptosis increased; the protein expression of Collagen II decreased. The injury of primary chondrocytes induced by IL-1β was reversed under the intervention of naringenin; this reversal was dose-dependent. The mechanistic study showed that naringenin inhibited the toll-like receptor 4 (TLR4)/TNF receptor-associated factor 6 (TRAF6)/NF-κB pathway in IL-1β-stimulated primary cells, and LPS, a TLR4 activator, reversed this inhibitory effect. In addition, a mouse model of osteoarthritis was established and treated with naringenin. The results revealed that naringenin alleviated the pathological symptoms of osteoarthritis in mice, reduced the expression of TLR4 and TRAF6, and the phosphorylation of NF-κB in knee cartilage tissue. It also inhibited the secretion of inflammatory factors, reduced extracellular matrix degradation, and decreased the protein expression of cleaved caspase3. In conclusion, the findings of this study suggest that naringenin may be a potential option for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hand Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhengzhao Li
- Department of Emergency Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Bo Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Ke Li
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jiaxuan Zheng
- Department of Pathology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
6
|
Yassin AM, AbuBakr HO, Abdelgalil AI, Farid OA, El-Behairy AM, Gouda EM. Circulating miR-146b and miR-27b are efficient biomarkers for early diagnosis of Equidae osteoarthritis. Sci Rep 2023; 13:7966. [PMID: 37198318 PMCID: PMC10192321 DOI: 10.1038/s41598-023-35207-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/14/2023] [Indexed: 05/19/2023] Open
Abstract
One of the most orthopedic problems seen in the equine is osteoarthritis (OA). The present study tracks some biochemical, epigenetic, and transcriptomic factors along different stages of monoiodoacetate (MIA) induced OA in donkeys in serum and synovial fluid. The aim of the study was the detection of sensitive noninvasive early biomarkers. OA was induced by a single intra-articular injection of 25 mg of MIA into the left radiocarpal joint of nine donkeys. Serum and synovial samples were taken at zero-day and different intervals for assessment of total GAGs and CS levels as well as miR-146b, miR-27b, TRAF-6, and COL10A1 gene expression. The results showed that the total GAGs and CS levels increased in different stages of OA. The level of expression of both miR-146b and miR-27b were upregulated as OA progressed and then downregulated at late stages. TRAF-6 gene was upregulated at the late stage while synovial fluid COL10A1 was over-expressed at the early stage of OA and then decreased at the late stages (P < 0.05). In conclusion, both miR-146b and miR-27b together with COL10A1 could be used as promising noninvasive biomarkers for the very early diagnosis of OA.
Collapse
Affiliation(s)
- Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed I Abdelgalil
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Omar A Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Adel M El-Behairy
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Eman M Gouda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
7
|
Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 2023; 19:136-152. [PMID: 36702892 DOI: 10.1038/s41584-022-00888-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.
Collapse
Affiliation(s)
- Noah Fine
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Cheryle Ann Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, University of Western Ontario London, London, Ontario, Canada
| | - Anthony V Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
马 沁, 刘 莉, 于 嘉, 宫 照, 王 晓, 吴 晓, 邓 光. [TRAF6 promotes Bacillus Calmette- Guérin-induced macrophage apoptosis through the intrinsic apoptosis pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1279-1287. [PMID: 36210699 PMCID: PMC9550557 DOI: 10.12122/j.issn.1673-4254.2022.09.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the role of tumor necrosis factor receptor-associated factor 6 (TRAF6) in regulating Bacillus Calmette-Guérin (BCG)-induced macrophage apoptosis. METHODS The expression of TRAF6 in peripheral blood samples of 50 patients with active tuberculosis (TB) and 50 healthy individuals were detected using quantitative real-time PCR (qPCR). RAW264.7 macrophages were infected with BCG at different MOI and for different lengths of time, and the changes in expressions of Caspase 3 and TRAF6 were detected with Western blotting and qPCR. In a RAW264.7 cell model of BCG infection with TRAF6 knockdown established using RNA interference technique, the bacterial load was measured and cell apoptotic rate and mitochondrial membrane potential (MMP) were determined with flow cytometry. The expression levels of TRAF6, Caspase 3, PARP, BAX and Bcl-2 in the cells were detected using Western blotting, and the expressions of TRAF6 and Caspase 3 were also examined with immunofluorescence assay. RESULTS The expression of TRAF6 was significantly upregulated in the peripheral blood of patients with active TB as compared with healthy subjects (P < 0.001). In RAW264.7 cells, BCG infection significantly increased the expressions of Caspase 3 and TRAF6, which were the highest in cells infected for 18 h and at the MOI of 15. TRAF6 knockdown caused a significant increase of bacterial load in BCG-infected macrophages (P=0.05), lowered the cell apoptotic rate (P < 0.001) and reduced the expressions of Caspase 3 (P=0.002) and PARP (P < 0.001). BCG-infected RAW264.7 cells showed a significantly increased MMP (P < 0.001), which was lowered by TRAF6 knockdown (P < 0.001); the cells with both TRAF6 knockdown and BCG infection showed a lowered BAX expression (P=0.005) and an increased expression of Bcl-2 (P=0.04). CONCLUSION TRAF6 promotes BCG-induced macrophage apoptosis by regulating the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- 沁梅 马
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| | - 莉 刘
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| | - 嘉霖 于
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| | - 照乾 宫
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| | - 晓平 王
- 宁夏回族自治区第四人民医院,宁夏 银川 750021Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - 晓玲 吴
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| | - 光存 邓
- 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China
- 宁夏大学生命科学学院,宁夏 银川 750021College of Life Science, NingXia University, Yinchuan 750021, China
| |
Collapse
|
9
|
BAG3 protects chondrocytes against lumbar facet joint osteoarthritis by regulating autophagy and apoptosis. J Physiol Biochem 2022; 78:427-437. [DOI: 10.1007/s13105-021-00865-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
|
10
|
Liu JN, Lu S, Fu CM. MiR-146a expression profiles in osteoarthritis in different tissue sources: a meta-analysis of observational studies. J Orthop Surg Res 2022; 17:148. [PMID: 35248106 PMCID: PMC8898505 DOI: 10.1186/s13018-022-02989-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Background MiR-146a has been widely studied in the pathogenesis of osteoarthritis (OA); however, the results are still controversial. Objective This meta-analysis analyzes the expression profile of miR-146a in various tissues of OA patients. Methods Public databases were searched for appropriate studies published up to September 1, 2021. A case–control study comparing the OA population and a non-OA healthy population was included. Results 26 articles were included in analysis. The results showed that the expression level of miR-146a in peripheral blood mononuclear cells (PBMCs) was significantly higher in OA patients than in controls (SMD: 1.23; 95% CI 0.08–2.37; p = 0.035) but not in plasma (SMD: 1.09; 95% CI − 0.06, 2.24; p = 0.064). The expression level of miR-146a in cartilage was also significantly higher in OA patients than in controls (SMD: 6.39; 95% CI 0.36, 12.4; p = 0.038) but not in chondrocytes (SMD: − 0.71; 95% CI − 4.15, 2.73; p = 0.687). The miR-146a level was significantly lower in synoviocytes in the OA population than in control patients (SMD: − 0.97; 95% CI − 1.68, − 0.26; p = 0.008). In synovial tissue, synovial fluid, and regulatory T cells, there was no significant difference. Conclusion The expression level of miR-146a in cartilage tissue and PBMCs was significantly higher in OA patients than in non-OA healthy controls. Due to the limitations of this study, more research is needed to confirm these results in the future. Trial registration: retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-02989-7.
Collapse
|