1
|
Yuan Y, Xiao Y, Zhao J, Zhang L, Li M, Luo L, Jia Y, Wang K, Chen Y, Wang P, Wang Y, Wei J, Shen K, Hu D. Exosomes as novel biomarkers in sepsis and sepsis related organ failure. J Transl Med 2024; 22:1078. [PMID: 39609831 PMCID: PMC11604007 DOI: 10.1186/s12967-024-05817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Sepsis, a severe and life-threatening condition arising from a dysfunctional host response to infection, presents considerable challenges to the health care system and is characterized by high mortality rates and substantial economic costs. Exosomes have garnered attention as potential diagnostic markers because of their capacity to mirror the pathophysiological milieu of sepsis. This discourse reviews the progression of sepsis classification from Sepsis 1.0 to Sepsis 3.0, highlighting the imperative for sensitive and specific biomarkers to facilitate timely diagnosis and optimize patient outcomes. Existing biomarkers, such as procalcitonin (PCT) and C-reactive protein (CRP), exhibit certain limitations, thereby prompting the quest for more dependable diagnostic indicators. Exosomal cargoes, which encompass proteins and miRNAs, present a trove of biomarker candidates, attributable to their stability, pervasive presence, and indicative nature of the disease status. The potential of exosomal biomarkers in the identification of sepsis-induced organ damage, including cardiomyopathy, acute kidney injury, and acute lung injury, is emphasized, as they provide real-time insights into cardiac and renal impairments. Despite promising prospects, hurdles persist in the standardization of exosome extraction and the need for extensive clinical trials to validate their efficacy. The combination of biomarker development and sophisticated exosome detection techniques represents a pioneering strategy in the realm of sepsis diagnosis and management, underscoring the significance of further research and clinical validation.
Collapse
Affiliation(s)
- Yixuan Yuan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Yujie Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Jiazhen Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Lixia Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Mengyang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Yuxi Chen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Peng Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Yuhang Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Jingtao Wei
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China.
- Air Force Hospital of Western Theater Command, Gongnongyuan Street #1, Chengdu, 610065, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Chang-Le Xi Street #127, Xi'an, 710032, China.
| |
Collapse
|
2
|
Herrera-Uribe J, Convery O, ALmohammadi D, Weinberg FI, Stevenson NJ. The Neglected Suppressor of Cytokine Signalling (SOCS): SOCS4-7. Inflammation 2024:10.1007/s10753-024-02163-7. [PMID: 39460806 DOI: 10.1007/s10753-024-02163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
SOCS proteins are essential for the regulation of oncogenic, anti-pathogenic, and proinflammatory signalling cascades, including the JAK/STAT and NF-kB pathways, where they act as negative feedback regulators. Given their powerful role in a broad spectrum of biological processes, it is surprising that the functions of many SOCS proteins have not been widely explored. While the mechanisms of action of CIS, SOCS1-3 are well-documented, information regarding SOCS4-7 remains limited. However, recent studies have begun to elucidate the regulatory functions of these proteins during infection and disease, such as influenza infection, cancer and diabetes. Therefore, this review aims to describe and discuss studies detailing our current understanding of SOCS4-7, painting a clearer picture of the biological processes these regulatory proteins maintain. Indeed, our review highlights important evidence proving that all SOCS play a role in biological processes that are essential for normal immunological homeostasis, clearance of infection and avoidance of disease. Understanding how SOCS proteins interact with other proteins or how they are dysregulated in disease is likely to provide valuable insights for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Convery
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniah ALmohammadi
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabienne Ingrid Weinberg
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Xiao Y, Yuan Y, Hu D, Wang H. Exosome-Derived microRNA: Potential Target for Diagnosis and Treatment of Sepsis. J Immunol Res 2024; 2024:4481452. [PMID: 39104595 PMCID: PMC11300089 DOI: 10.1155/2024/4481452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/23/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are emerging as pivotal players in the pathophysiology of sepsis, representing a new frontier in both the diagnosis and treatment of this complex condition. Sepsis, a severe systemic response to infection, involves intricate immune and nonimmune mechanisms, where exosome-mediated communication can significantly influence disease progression and outcomes. During the progress of sepsis, the miRNA profile of exosomes undergoes notable alterations, is reflecting, and may affect the progression of the disease. This review comprehensively explores the biology of exosome-derived miRNAs, which originate from both immune cells (such as macrophages and dendritic cells) and nonimmune cells (such as endothelial and epithelial cells) and play a dynamic role in modulating pathways that affect the course of sepsis, including those related to inflammation, immune response, cell survival, and apoptosis. Taking into account these dynamic changes, we further discuss the potential of exosome-derived miRNAs as biomarkers for the early detection and prognosis of sepsis and advantages over traditional biomarkers due to their stability and specificity. Furthermore, this review evaluates exosome-based therapeutic miRNA delivery systems in sepsis, which may pave the way for targeted modulation of the septic response and personalized treatment options.
Collapse
Affiliation(s)
- Yujie Xiao
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Yixuan Yuan
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Dahai Hu
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous SurgeryXijing HospitalFourth Military Medical University, 127 West Chang-le Road, Xi'an 710032, Shaanxi, China
| |
Collapse
|
4
|
Zhang X, Cheng Z, Zeng M, He Z. The efficacy of extracellular vesicles for acute lung injury in preclinical animal models: a meta-analysis. BMC Pulm Med 2024; 24:128. [PMID: 38481171 PMCID: PMC10935944 DOI: 10.1186/s12890-024-02910-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND With the increasing research on extracellular vesicles (EVs), EVs have received widespread attention as biodiagnostic markers and therapeutic agents for a variety of diseases. Stem cell-derived EVs have also been recognized as a new viable therapy for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). To assess their efficacy, we conducted a meta-analysis of existing preclinical experimental animal models of EVs for ALI treatment. METHODS The database was systematically interrogated for pertinent data encompassing the period from January 2010 to April 2022 concerning interventions involving extracellular vesicles (EVs) in animal models of acute lung injury (ALI). The lung injury score was selected as the primary outcome measure for statistical analysis. Meta-analyses were executed utilizing RevMan 5.3 and State15.1 software tools. RESULTS The meta-analyses comprised 31 studies, exclusively involving animal models of acute lung injury (ALI), categorized into two cohorts based on the presence or absence of extracellular vesicle (EV) intervention. The statistical outcomes from these two study groups revealed a significant reduction in lung injury scores with the administration of stem and progenitor cell-derived EVs (SMD = -3.63, 95% CI [-4.97, -2.30], P < 0.05). Conversely, non-stem cell-derived EVs were associated with an elevation in lung injury scores (SMD = -4.34, 95% CI [3.04, 5.63], P < 0.05). EVs originating from stem and progenitor cells demonstrated mitigating effects on alveolar neutrophil infiltration, white blood cell counts, total cell counts in bronchoalveolar lavage fluid (BALF), lung wet-to-dry weight ratios (W/D), and total protein in BALF. Furthermore, pro-inflammatory mediators exhibited down-regulation, while anti-inflammatory mediators demonstrated up-regulation. Conversely, non-stem cell-derived EVs exacerbated lung injury. CONCLUSION In preclinical animal models of acute lung injury (ALI), the administration of extracellular vesicles (EVs) originating from stem and progenitor cells demonstrably enhances pulmonary function. This ameliorative effect is attributed to the mitigation of pulmonary vascular permeability and the modulation of immune homeostasis, collectively impeding the progression of inflammation. In stark contrast, the utilization of EVs derived from non-stem progenitor cells exacerbates the extent of lung injury. These findings substantiate the potential utility of EVs as a novel therapeutic avenue for addressing acute lung injury.
Collapse
Affiliation(s)
- Xuefeng Zhang
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zongyong Cheng
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Menghao Zeng
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- 138 Tongzibo Road, Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
5
|
Xia R, Shan Y, Luo S, Li J, Liu Y. CIRC_0033530 KNOCKDOWN ALLEVIATES LIPOPOLYSACCHARIDE-INDUCED ACUTE LUNG INJURY MODEL OF HUMAN LUNG FIBROBLASTS BY MIR-1184/TLR4 AXIS. Shock 2024; 61:215-222. [PMID: 37962954 DOI: 10.1097/shk.0000000000002270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
ABSTRACT Background: Circular RNAs have been reported to be involved in regulating the progression of sepsis and sepsis-associated damage. Herein, this work investigated whether circ_0033530 had roles in the process of septic acute lung injury (sepsis-ALI) and its associated mechanism. Methods: Lipopolysaccharide (LPS)-stimulated human lung fibroblasts MRC-5 were used to mimic the cell model of sepsis-ALI in vitro . Levels of genes and proteins were detected by quantitative real-time polymerase chain reaction and Western blotting. Functional experiments were conducted using 5-ethynyl-2'-deoxyuridine assay, Cell Counting Kit-8 assay, flow cytometry, and enzyme-linked immunosorbent assay. The interaction between miR-1184 and circ_0033530 or toll-like receptor 4 (TLR4) was confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. Results: Circ_0033530 expression was lower in sepsis patients and LPS-induced fibroblasts than those in healthy control and untreated cells. Functionally, knockdown of circ_0033530 protected fibroblasts against LPS-induced proliferation arrest, apoptosis, and inflammatory response. Mechanistically, circ_0033530 acted as a sponge for miR-1184, and TLR4 RNA was targeted by miR-1184, indicating the circ_0033530/miR-1184/TLR4 axis. Further rescue experiments showed that circ_0033530 silencing-mediated growth inhibition and inflammation on fibroblasts were attenuated by miR-1184 downregulation or TLR4 upregulation. Conclusion: Circ_0033530 knockdown alleviated LPS-induced proliferation arrest, apoptosis, and inflammation in lung fibroblasts by miR-1184/TLR4 axis, and provided molecular theoretical basis for circ_0033530 on the pathogenesis of sepsis-ALI.
Collapse
Affiliation(s)
- Rui Xia
- Synthesize Intensive Care Unit, Zhumadian Central Hospital, Zhumadian 463000, China
| | | | | | | | | |
Collapse
|
6
|
Lan B, Dong X, Yang Q, Luo Y, Wen H, Chen Z, Chen H. Exosomal MicroRNAs: An Emerging Important Regulator in Acute Lung Injury. ACS OMEGA 2023; 8:35523-35537. [PMID: 37810708 PMCID: PMC10551937 DOI: 10.1021/acsomega.3c04955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Acute lung injury (ALI) is a clinically life-threatening form of respiratory failure with a mortality of 30%-40%. Acute respiratory distress syndrome is the aggravated form of ALI. Exosomes are extracellular lipid vesicles ubiquitous in human biofluids with a diameter of 30-150 nm. They can serve as carriers to convey their internal cargo, particularly microRNA (miRNA), to the target cells involved in cellular communication. In disease states, the quantities of exosomes and the cargo generated by cells are altered. These exosomes subsequently function as autocrine or paracrine signals to nearby or distant cells, regulating various pathogenic processes. Moreover, exosomal miRNAs from multiple stem cells can provide therapeutic value for ALI by regulating different signaling pathways. In addition, changes in exosomal miRNAs of biofluids can serve as biomarkers for the early diagnosis of ALI. This study aimed to review the role of exosomal miRNAs produced by different sources participating in various pathological processes of ALI and explore their potential significance in the treatment and diagnosis.
Collapse
Affiliation(s)
- Bowen Lan
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Xuanchi Dong
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Qi Yang
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Department
of Traditional Chinese Medicine, The Second
Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Haiyun Wen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| | - Zhe Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Hailong Chen
- Department
of General Surgery, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Laboratory
of Integrative Medicine, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Institute
(College) of Integrative Medicine, Dalian
Medical University, Dalian 116044, China
| |
Collapse
|
7
|
Xu C, Luo M, Liu X, Wei T, Zhou Z, Li C, He Z, Sui H. MicroRNA-1298-5p in granulosa cells facilitates cell autophagy in polycystic ovary syndrome by suppressing glutathione-disulfide reductase. Cell Tissue Res 2023:10.1007/s00441-023-03747-9. [PMID: 36781484 DOI: 10.1007/s00441-023-03747-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
The aim of this study was to investigate the effect and mechanism of action of miR-1298-5p in polycystic ovary syndrome (PCOS). Granulosa cells were isolated from follicular fluid of patients with PCOS and healthy women, and the expression of miR-1298-5p and glutathione-disulfide reductase (GSR) mRNA in these cells was evaluated using reverse transcription-quantitative polymerase chain reaction (qRT-PCR). Clinical data were obtained from all subjects, and reproductive hormones and endocrine indices were assayed to analyze the correlation between miR-1298-5p and clinicopathological characteristics of patients with PCOS. Following transfection with the miR-1298-5p mimic or inhibitor and/or pcDNA3.1-GSR, LC3 immunofluorescence and transmission electron microscopy were used to evaluate autophagy in the COV434 human granulosa cell line. Additionally, western blotting was performed to detect LC3-II, Beclin 1, and p62 protein levels in COV434 cells. The interaction between miR-1298-5p and GSR was also examined. A PCOS rat model was established and injected with the miR-1298-5p antagomir, followed by measurement of body and ovary weights, histological examination, and autophagosome observation. The protein expression levels of GSR, LC3-II, Beclin 1, and p62 were determined in rat ovaries. miR-1298-5p was expressed at a high level, and GSR was downregulated in granulosa cells from patients with PCOS. In COV434 cells, miR-1298-5p inversely mediated GSR expression, and miR-1298-5p mimic transfection promoted autophagy, whereas GSR overexpression blocked miR-1298-5p mimic-promoted autophagy. In PCOS rats, miR-1298-5p inhibition reduced autophagy and alleviated abnormalities in follicular development. Overall, miR-1298-5p enhances autophagy in granulosa cells by downregulating GSR, thereby affecting PCOS development.
Collapse
Affiliation(s)
- Changlong Xu
- The Reproductive Medical Center, Nanning Second People's Hospital, No.13 Dancun Road, Nanning, Guangxi 530031, People's Republic of China
| | - Mingjiu Luo
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Xiaodong Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Tao Wei
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Zheng Zhou
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Changze Li
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Zilin He
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China.
| |
Collapse
|
8
|
Weber B, Henrich D, Hildebrand F, Marzi I, Leppik L. THE ROLES OF EXTRACELLULAR VESICLES IN SEPSIS AND SYSTEMIC INFLAMMATORY RESPONSE SYNDROME. Shock 2023; 59:161-172. [PMID: 36730865 PMCID: PMC9940838 DOI: 10.1097/shk.0000000000002010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Sepsis is a life-threatening organ dysfunction, caused by dysregulation of the host response to infection. To understand the underlying mechanisms of sepsis, the vast spectrum of extracellular vesicles (EVs) is gaining importance in this research field. A connection between EVs and sepsis was shown in 1998 in an endotoxemia pig model. Since then, the number of studies describing EVs as markers and mediators of sepsis increased steadily. Extracellular vesicles in sepsis could be friends and foes at the same time depending on their origin and cargo. On the one hand, transfer of EVs or outer membrane vesicles can induce sepsis or systemic inflammatory response syndrome with comparable efficiency as well-established methods, such as cecal ligation puncture or lipopolysaccharide injection. On the other hand, EVs could provide certain therapeutic effects, mediated via reduction of reactive oxygen species, inflammatory cytokines and chemokines, influence on macrophage polarization and apoptosis, as well as increase of anti-inflammatory cytokines. Moreover, EVs could be helpful in the diagnosis of sepsis. Extracellular vesicles of different cellular origin, such as leucocytes, macrophages, platelets, and granulocytes, have been suggested as potential sepsis biomarkers. They ensure the diagnosis of sepsis earlier than classical clinical inflammation markers, such as C-reactive protein, leucocytes, or IL-6. This review summarizes the three roles of EVs in sepsis-mediator/inducer, biomarker, and therapeutic tool.
Collapse
Affiliation(s)
- Birte Weber
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Frank Hildebrand
- Department of Trauma and Reconstructive Surgery, University Hospital RWTH Aachen. Aachen, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
9
|
You T, Zhang B. CircWDR33 alleviates human pulmonary microvascular endothelial cell injury in sepsis-associated acute lung injury by targeting miR-217-5p/SERP1 axis. Int Immunopharmacol 2022; 113:109440. [DOI: 10.1016/j.intimp.2022.109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
|
10
|
Hu Q, Zhang S, Yang Y, Yao JQ, Tang WF, Lyon CJ, Hu TY, Wan MH. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil Med Res 2022; 9:61. [PMID: 36316787 PMCID: PMC9623953 DOI: 10.1186/s40779-022-00417-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common life-threatening lung diseases associated with acute and severe inflammation. Both have high mortality rates, and despite decades of research on clinical ALI/ARDS, there are no effective therapeutic strategies. Disruption of alveolar-capillary barrier integrity or activation of inflammatory responses leads to lung inflammation and injury. Recently, studies on the role of extracellular vesicles (EVs) in regulating normal and pathophysiologic cell activities, including inflammation and injury responses, have attracted attention. Injured and dysfunctional cells often secrete EVs into serum or bronchoalveolar lavage fluid with altered cargoes, which can be used to diagnose and predict the development of ALI/ARDS. EVs secreted by mesenchymal stem cells can also attenuate inflammatory reactions associated with cell dysfunction and injury to preserve or restore cell function, and thereby promote cell proliferation and tissue regeneration. This review focuses on the roles of EVs in the pathogenesis of pulmonary inflammation, particularly ALI/ARDS.
Collapse
Affiliation(s)
- Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yue Yang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jia-Qi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wen-Fu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Christopher J Lyon
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
| | - Tony Ye Hu
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA. .,Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Mei-Hua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China. .,West China Hospital (Airport) of Sichuan University, Chengdu, 610299, China.
| |
Collapse
|
11
|
Maiese A, Scatena A, Costantino A, Chiti E, Occhipinti C, La Russa R, Di Paolo M, Turillazzi E, Frati P, Fineschi V. Expression of MicroRNAs in Sepsis-Related Organ Dysfunction: A Systematic Review. Int J Mol Sci 2022; 23:9354. [PMID: 36012630 PMCID: PMC9409129 DOI: 10.3390/ijms23169354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a critical condition characterized by increased levels of pro-inflammatory cytokines and proliferating cells such as neutrophils and macrophages in response to microbial pathogens. Such processes lead to an abnormal inflammatory response and multi-organ failure. MicroRNAs (miRNA) are single-stranded non-coding RNAs with the function of gene regulation. This means that miRNAs are involved in multiple intracellular pathways and thus contribute to or inhibit inflammation. As a result, their variable expression in different tissues and organs may play a key role in regulating the pathophysiological events of sepsis. Thanks to this property, miRNAs may serve as potential diagnostic and prognostic biomarkers in such life-threatening events. In this narrative review, we collect the results of recent studies on the expression of miRNAs in heart, blood, lung, liver, brain, and kidney during sepsis and the molecular processes in which they are involved. In reviewing the literature, we find at least 122 miRNAs and signaling pathways involved in sepsis-related organ dysfunction. This may help clinicians to detect, prevent, and treat sepsis-related organ failures early, although further studies are needed to deepen the knowledge of their potential contribution.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Scatena
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Costantino
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Enrica Chiti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carla Occhipinti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Marco Di Paolo
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| |
Collapse
|
12
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
13
|
Liu Y, Su CY, Yan YY, Wang J, Li JJ, Fu JJ, Wang YQ, Zhang JY. Exosomes of A549 Cells Induced Migration, Invasion, and EMT of BEAS-2B Cells Related to let-7c-5p and miR-181b-5p. Front Endocrinol (Lausanne) 2022; 13:926769. [PMID: 35898472 PMCID: PMC9309177 DOI: 10.3389/fendo.2022.926769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022] Open
Abstract
As carriers containing abundant biological information, exosomes could deliver the property of donor cells to recipient cells. Emerging studies have shown that tumor cells could secrete a mass of exosomes into the microenvironment to regulate bystander cells. However, the underlying mechanisms of such a phenomenon remain largely unexplored. In this research, we purified and identified the exosomes of A549 cells and found that A549-cell-derived exosomes promoted BEAS-2B cells migration, invasion, and epithelial-mesenchymal transition (EMT). Importantly, we observed that let-7c-5p and miR-181b-5p were attenuated in A549-cell-derived exosomes compared to BEAS-2B-cell-derived exosomes. The analysis of miRNA expression level in BEAS-2B cells indicated that incubation with A549-cell-derived exosomes reduced the expression levels of let-7c-5p and miR-181b-5p. In transient transfections assay, we found that downregulation of let-7c-5p and miR-181b-5p simultaneously showed stronger promotion of BEAS-2B cells migration and invasion than individually. Moreover, exosomes secreted from A549 cells with upregulated expression of let-7c-5p and miR-181b-5p significantly reduce their regulatory effect on BEAS-2B cells. Bioinformatics analyses revealed that let-7c-5p and miR-181b-5p inhibit the EMT process mainly by regulating focal adhesion and mitogen-activated protein kinase (MAPK) signaling pathway. Thus, our data demonstrated that A549-cell-derived exosomal let-7c-5p and miR-181b-5p could induce migration, invasion, and EMT in BEAS-2B cells, which might be regulated through focal adhesion and MAPK signaling pathway. The expression level of let-7c-5p and miR-181b-5p may show great significance for the early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Yun Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chao-Yue Su
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan-Yan Yan
- School of Medicine, Shanxi Datong University, Datong, China
| | - Jian Wang
- School of Medicine, Shanxi Datong University, Datong, China
| | - Jia-Jun Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ji-Jun Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu-Qing Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Huang J, Ren H, Chen A, Li T, Wang H, Jiang L, Zheng S, Qi H, Ji B, Wang X, Qu J, Zhao J, Qiu L. Perfluorooctane sulfonate induces suppression of testosterone biosynthesis via Sertoli cell-derived exosomal/miR-9-3p downregulating StAR expression in Leydig cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118960. [PMID: 35150797 DOI: 10.1016/j.envpol.2022.118960] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is associated with male reproductive disorder, but the related mechanisms are still unclear. In this study, we used in vivo and in vitro models to explore the role of Sertoli cell-derived exosomes (SC-Exo)/miR-9-3p/StAR signaling pathway on PFOS-induced suppression of testosterone biosynthesis. Forty male ICR mice were orally administrated PFOS (0.5-10 mg/kg/bw) for 4 weeks. Bodyweight, organ index, sperm count, reproductive hormones were evaluated. Primary Sertoli cells and Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently induced a decrease in sperm count, low levels of testosterone, and damage in testicular interstitium morphology. In vitro models, PFOS significantly increased miR-9-3p levels in Sertoli cells and SC-Exo, accompanied by a decrease in testosterone secretion and StAR expression in Leydig cells when Leydig cells were exposed to SC-Exo. Meanwhile, inhibition of SC-Exo or miR-9-3p by their inhibitors significantly rescued PFOS-induced decreases in testosterone secretion and the mRNA and protein expression of the StAR gene in Leydig cells. In summary, the present study highlights the role of the SC-Exo/miR-9-3p/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
Affiliation(s)
- Jiyan Huang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hang Ren
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Anni Chen
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Ting Li
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hongxia Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Han Qi
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Binyan Ji
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Xipei Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China; Jiangsu Province-Hai'an People's Hospital, Hai'an City, Nantong City, 17 Zhongba Middle Road, (Affiliated Haian Hospital of Nantong University), PR China
| | - Jianhua Qu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Jianya Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China.
| |
Collapse
|
15
|
DNMT3a-Mediated Enterocyte Barrier Dysfunction Contributes to Ulcerative Colitis via Facilitating the Interaction of Enterocytes and B Cells. Mediators Inflamm 2022; 2022:4862763. [PMID: 35574272 PMCID: PMC9106515 DOI: 10.1155/2022/4862763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Objective Dysfunction of the enterocyte barrier is associated with the development of ulcerative colitis (UC). This study was aimed at exploring the effect of DNMT3a on enterocyte barrier function in the progression of UC and the underlying mechanism. Method Mice were given 3.5% dextran sodium sulphate (DSS) in drinking water to induce colitis. The primary intestinal epithelial cells (IECs) were isolated and treated with lipopolysaccharide (LPS) to establish an in vitro inflammatory model. We detected mouse clinical symptoms, histopathological damage, enterocyte barrier function, B cell differentiation, DNA methylation level, and cytokine production. Subsequently, the effect of DNMT3a from IECs on B cell differentiation was explored by a cocultural experiment. Result DSS treatment significantly reduced the body weight and colonic length, increased disease activity index (DAI), and aggravated histopathological damage. In addition, DSS treatment induced downregulation of tight junction (TJ) protein, anti-inflammatory cytokines (IL-10 and TGF-β), and the number of anti-inflammatory B cells (CD1d+) in intestinal epithelial tissues, while upregulated proinflammatory cytokines (IL-6 and TNF-α), proinflammatory B cells (CD138+), and DNA methylation level. Further in vitro results revealed that DNMT3a silencing or TNFSF13 overexpression in IECs partly abolished the result of LPS-induced epithelial barrier dysfunction, as well as abrogated the effect of IEC-regulated B cell differentiation, while si-TACI transfection reversed these effects. Moreover, DNMT3a silencing decreased TNFSF13 methylation level and induced CD1d+ B cell differentiation, and the si-TNFSF13 transfection reversed the trend of B cell differentiation but did not affect TNFSF13 methylation level. Conclusion Our study suggests that DNMT3a induces enterocyte barrier dysfunction to aggravate UC progression via TNFSF13-mediated interaction of enterocyte and B cells.
Collapse
|
16
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Arefian N. Regulatory Role of Non-Coding RNAs on Immune Responses During Sepsis. Front Immunol 2021; 12:798713. [PMID: 34956235 PMCID: PMC8695688 DOI: 10.3389/fimmu.2021.798713] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal agents. The induced inflammatory response by these microorganisms can lead to multiple organ system failure with devastating consequences. Recent studies have shown altered expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have also been found to participate in the pathogenesis of multiple organ system failure through different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21, miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and miR-218 are examples of miRNAs participating in these complications. Finally, tens of circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the current review, we describe the role of these three classes of noncoding RNAs in the pathoetiology of sepsis-related complications.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Normohammad Arefian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|