1
|
Xu L, Wan X, Shan X, Zha W, Shi Y, Fan R. ONECUT3 activates the TRIM46-NF-κB pathway to promote the development of pancreatic cancer. Biochem Biophys Res Commun 2025; 759:151705. [PMID: 40154001 DOI: 10.1016/j.bbrc.2025.151705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Pancreatic cancer (PC) remains one of the deadliest cancers, characterized by its high aggressiveness and low overall survival, with chemotherapy and immunotherapy showing limited efficacy. It is essential to investigate the molecular mechanisms driving the PC progression. In this study, we showed that One Cut homeobox 3 (ONECUT3) acted as an oncogene promoting PC progression and observed a significant increase of ONECUT3 levels in PC tissues and cells. The reduced ONECUT3 expression was positively correlated with decreased tumor volumes and weight, and the depressed proliferation, migration and invasion abilities. Mechanistically, ONECUT3 directly bound to the promoter of tripartite motif-containing 46 (TRIM46) and transcriptionally upregulated its expression. Tripartite motif (TRIM)-containing proteins have been identified as closely linked to the advancement of tumors. However, the role of TRIM46 in PC remains largely unexplored. The expression of ONECUT3 was found to be positively linked with TRIM46 in human PC tissues. The upregulation of TRIM46 rescued ONECUT3 knockdown-induced suppression of cell proliferation, migration and invasion abilities, and tumor growth in PC. TRIM46 overexpression also activated NF-κB signaling in PC cells. To sum up, ONECUT3 has been identified as a promising prognostic indicator in PC, and targeting this cancer-promoting pathway could offer an effective therapeutic approach to combat the PC progression.
Collapse
Affiliation(s)
- Linyi Xu
- The Yancheng Clinical College of Xuzhou Medical University, 224001, China
| | - Xinqiang Wan
- Department of Gynaecology and Obstetrics, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No.166, Yulong West Road, Yancheng, Jiangsu Province, 224001, China
| | - Xiangxiang Shan
- Department of Geraeology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No.166, Yulong West Road, Yancheng, Jiangsu Province, 224001, China
| | - Wenzhang Zha
- Department of General Surgery, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No.166, Yulong West Road, Yancheng, Jiangsu Province, 224001, China
| | - Yuhua Shi
- Department of General Surgery, Affiliated Hospital of Nantong University, Third People's Hospital of Yancheng, No.75, Juchang Road, Yancheng, Jiangsu Province 224001, China.
| | - Rengen Fan
- Department of General Surgery, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No.166, Yulong West Road, Yancheng, Jiangsu Province, 224001, China.
| |
Collapse
|
2
|
Wang YY, Choi MJ, Kim JH, Choi JH. Enhanced Expression of TRIM46 in Ovarian Cancer Cells Induced by Tumor-Associated Macrophages Promotes Invasion via the Wnt/β-Catenin Pathway. Cells 2025; 14:214. [PMID: 39937005 PMCID: PMC11817100 DOI: 10.3390/cells14030214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/19/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Metastasis presents significant challenges in ovarian cancer treatment. Tumor-associated macrophages (TAMs) within the tumor microenvironment (TME) facilitate metastasis through epithelial-mesenchymal transition, yet the molecular underlying mechanisms are not fully understood. Here, we identified that tripartite motif-containing 46 (TRIM46) is significantly upregulated in ovarian cancer cells treated with a conditioned medium derived from macrophages stimulated by ovarian cancer cells (OC-MQs). Furthermore, TRIM46 was highly expressed in late-stage ovarian cancer patients and was associated with poor prognosis. Silencing of TRIM46 suppressed cancer cell invasion stimulated by OC-MQ and mesenchymal marker expression without affecting cell viability. Gene set enrichment analysis showed that the Wnt/β-catenin pathway is enriched in the high-TRIM46 expression group. Importantly, the inhibition of TRIM46-mediated β-catenin nuclear translocation and ovarian cancer cell invasion was reversed by CHIR99021, a Wnt/β-catenin activator. Additionally, C-X-C motif chemokine ligand 8 (CXCL8) was identified as being highly expressed in peritoneal MQs from the ascites of ovarian cancer patients and was positively correlated with C-X-C chemokine receptor 1/2 (CXCR1/2) expression in tumor cells. Notably, pre-treatment with reparixin, a CXCR1/2 inhibitor, blocked OC-MQ-induced TRIM46 expression and cell invasion. These results suggest that CXCL8 derived from TAMs promotes human ovarian cancer cell invasion via the Wnt/β-catenin pathway by upregulating TRIM46.
Collapse
Affiliation(s)
- Yi-Yue Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine & School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China;
- Department of Biomedical and Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (M.-J.C.); (J.-H.K.)
| | - Min-Jun Choi
- Department of Biomedical and Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (M.-J.C.); (J.-H.K.)
| | - Jin-Hyung Kim
- Department of Biomedical and Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (M.-J.C.); (J.-H.K.)
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (M.-J.C.); (J.-H.K.)
| |
Collapse
|
3
|
Wei S, Huang X, Zhu Q, Chen T, Zhang Y, Tian J, Pan T, Zhang L, Xie T, Zhang Q, Kuang X, Lei E, Li Y. TRIM65 deficiency alleviates renal fibrosis through NUDT21-mediated alternative polyadenylation. Cell Death Differ 2024; 31:1422-1438. [PMID: 38951701 PMCID: PMC11519343 DOI: 10.1038/s41418-024-01336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern and the third leading cause of premature death. Renal fibrosis is the primary process driving the progression of CKD, but the mechanisms behind it are not fully understood, making treatment options limited. Here, we find that the E3 ligase TRIM65 is a positive regulator of renal fibrosis. Deletion of TRIM65 results in a reduction of pathological lesions and renal fibrosis in mouse models of kidney fibrosis induced by unilateral ureteral obstruction (UUO)- and folic acid. Through screening with a yeast-hybrid system, we identify a new interactor of TRIM65, the mammalian cleavage factor I subunit CFIm25 (NUDT21), which plays a crucial role in fibrosis through alternative polyadenylation (APA). TRIM65 interacts with NUDT21 to induce K48-linked polyubiquitination of lysine 56 and proteasomal degradation, leading to the inhibition of TGF-β1-mediated SMAD and ERK1/2 signaling pathways. The degradation of NUDT21 subsequently altered the length and sequence content of the 3'UTR (3'UTR-APA) of several pro-fibrotic genes including Col1a1, Fn-1, Tgfbr1, Wnt5a, and Fzd2. Furthermore, reducing NUDT21 expression via hydrodynamic renal pelvis injection of adeno-associated virus 9 (AAV9) exacerbated UUO-induced renal fibrosis in the normal mouse kidneys and blocked the protective effect of TRIM65 deletion. These findings suggest that TRIM65 promotes renal fibrosis by regulating NUDT21-mediated APA and highlight TRIM65 as a potential target for reducing renal fibrosis in CKD patients.
Collapse
Affiliation(s)
- Sisi Wei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qing Zhu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tao Chen
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan Zhang
- Department of Biological Sciences, College of Sciences and Arts, Michigan Technological University, Houghton, MI, 49931-1295, USA
| | - Juan Tian
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tingyu Pan
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lv Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Tao Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Qi Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies; Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xian Kuang
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Enjun Lei
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Chen HL, Chiang HY, Chang DR, Cheng CF, Wang CCN, Lu TP, Lee CY, Chattopadhyay A, Lin YT, Lin CC, Yu PT, Huang CF, Lin CH, Yeh HC, Ting IW, Tsai HK, Chuang EY, Tin A, Tsai FJ, Kuo CC. Discovery and prioritization of genetic determinants of kidney function in 297,355 individuals from Taiwan and Japan. Nat Commun 2024; 15:9317. [PMID: 39472450 PMCID: PMC11522641 DOI: 10.1038/s41467-024-53516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/12/2024] [Indexed: 11/02/2024] Open
Abstract
Current genome-wide association studies (GWAS) for kidney function lack ancestral diversity, limiting the applicability to broader populations. The East-Asian population is especially under-represented, despite having the highest global burden of end-stage kidney disease. We conducted a meta-analysis of multiple GWASs (n = 244,952) on estimated glomerular filtration rate and a replication dataset (n = 27,058) from Taiwan and Japan. This study identified 111 lead SNPs in 97 genomic risk loci. Functional enrichment analyses revealed that variants associated with F12 gene and a missense mutation in ABCG2 may contribute to chronic kidney disease (CKD) through influencing inflammation, coagulation, and urate metabolism pathways. In independent cohorts from Taiwan (n = 25,345) and the United Kingdom (n = 260,245), polygenic risk scores (PRSs) for CKD significantly stratified the risk of CKD (p < 0.0001). Further research is required to evaluate the clinical effectiveness of PRSCKD in the early prevention of kidney disease.
Collapse
Affiliation(s)
- Hung-Lin Chen
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiu-Yin Chiang
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, College of Medicine, China Medical University, Taichung, Taiwan
| | - David Ray Chang
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Chi-Fung Cheng
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Charles C N Wang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Tzu-Pin Lu
- Institute of Health Data Analytics and Statistics, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chien-Yueh Lee
- Master Program in Artificial Intelligence, Innovation Frontier Institute of Research for Science and Technology, National Taipei University of Technology, Taipei, Taiwan
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Amrita Chattopadhyay
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lin
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, College of Medicine, China Medical University, Taichung, Taiwan
| | - Che-Chen Lin
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Tzu Yu
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chien-Fong Huang
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chieh-Hua Lin
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hung-Chieh Yeh
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - I-Wen Ting
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Eric Y Chuang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan
| | - Adrienne Tin
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan.
- Department of Medical Laboratory Science & Biotechnology, Asia University, Taichung, Taiwan.
| | - Chin-Chi Kuo
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Biomedical Informatics, College of Medicine, China Medical University, Taichung, Taiwan.
- Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Vadon C, Magiera MM, Cimarelli A. TRIM Proteins and Antiviral Microtubule Reorganization: A Novel Component in Innate Immune Responses? Viruses 2024; 16:1328. [PMID: 39205302 PMCID: PMC11359181 DOI: 10.3390/v16081328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
TRIM proteins are a family of innate immune factors that play diverse roles in innate immunity and protect the cell against viral and bacterial aggression. As part of this special issue on TRIM proteins, we will take advantage of our findings on TRIM69, which acts by reorganizing the microtubules (MTs) in a manner that is fundamentally antiviral, to more generally discuss how host-pathogen interactions that take place for the control of the MT network represent a crucial facet of the struggle that opposes viruses to their cell environment. In this context, we will present several other TRIM proteins that are known to interact with microtubules in situations other than viral infection, and we will discuss evidence that may suggest a possible contribution to viral control. Overall, the present review will highlight the importance that the control of the microtubule network bears in host-pathogen interactions.
Collapse
Affiliation(s)
- Charlotte Vadon
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| | - Maria Magda Magiera
- Institut Curie, CNRS, UMR3348, Centre Universitaire, Bat 110, F-91405 Orsay, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| |
Collapse
|
6
|
Guan F, Gao S, Sheng H, Ma Y, Chen W, Qi X, Zhang X, Gao X, Pang S, Zhang L, Zhang L. Trim46 knockout impaired neuronal architecture and caused hypoactive behavior in rats. Dev Dyn 2024; 253:659-676. [PMID: 38193537 DOI: 10.1002/dvdy.687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/16/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Tripartite motif (TRIM46) is a relatively novel protein that belongs to tripartite motif family. TRIM46 organizes parallel microtubule arrays on the axons, which are important for neuronal polarity and axonal function. TRIM46 is highly expressed in the brain, but its biological function in adults has not yet been determined. RESULTS Trim46 knockout (KO) rat line was established using CRISPR/cas9. Trim46 KO rats had smaller hippocampus sizes, fewer neuronal dendritic arbors and dendritic spines, and shorter and more distant axon initial segment. Furthermore, the protein interaction between endogenous TRIM46 and FK506 binding protein 5 (FKBP5) in brain tissues was determined; Trim46 KO increased hippocampal FKBP5 protein levels and decreased hippocampal protein kinase B (Akt) phosphorylation, gamma-aminobutyric acid type A receptor subunit alpha1 (GABRA1) and glutamate ionotropic receptor NMDA type subunit 1 (NMDAR1) protein levels. Trim46 KO rats exhibited hypoactive behavioral changes such as reduced spontaneous activity, social interaction, sucrose preference, impaired prepulse inhibition (PPI), and short-term reference memory. CONCLUSIONS These results demonstrate the significant impact of Trim46 KO on brain structure and behavioral function. This study revealed a novel potential association of TRIM46 with dendritic development and neuropsychiatric behavior, providing new insights into the role of TRIM46 in the brain.
Collapse
Affiliation(s)
- Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hanxuan Sheng
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanwu Ma
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolong Qi
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Hadpech S, Thongboonkerd V. Epithelial-mesenchymal plasticity in kidney fibrosis. Genesis 2024; 62:e23529. [PMID: 37345818 DOI: 10.1002/dvg.23529] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important biological process contributing to kidney fibrosis and chronic kidney disease. This process is characterized by decreased epithelial phenotypes/markers and increased mesenchymal phenotypes/markers. Tubular epithelial cells (TECs) are commonly susceptible to EMT by various stimuli, for example, transforming growth factor-β (TGF-β), cellular communication network factor 2, angiotensin-II, fibroblast growth factor-2, oncostatin M, matrix metalloproteinase-2, tissue plasminogen activator (t-PA), plasmin, interleukin-1β, and reactive oxygen species. Similarly, glomerular podocytes can undergo EMT via these stimuli and by high glucose condition in diabetic kidney disease. EMT of TECs and podocytes leads to tubulointerstitial fibrosis and glomerulosclerosis, respectively. Signaling pathways involved in EMT-mediated kidney fibrosis are diverse and complex. TGF-β1/Smad and Wnt/β-catenin pathways are the major venues triggering EMT in TECs and podocytes. These two pathways thus serve as the major therapeutic targets against EMT-mediated kidney fibrosis. To date, a number of EMT inhibitors have been identified and characterized. As expected, the majority of these EMT inhibitors affect TGF-β1/Smad and Wnt/β-catenin pathways. In addition to kidney fibrosis, these EMT-targeted antifibrotic inhibitors are expected to be effective for treatment against fibrosis in other organs/tissues.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Qiu L, Sun Y, Ning H, Chen G, Zhao W, Gao Y. The scaffold protein AXIN1: gene ontology, signal network, and physiological function. Cell Commun Signal 2024; 22:77. [PMID: 38291457 PMCID: PMC10826278 DOI: 10.1186/s12964-024-01482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
AXIN1, has been initially identified as a prominent antagonist within the WNT/β-catenin signaling pathway, and subsequently unveiled its integral involvement across a diverse spectrum of signaling cascades. These encompass the WNT/β-catenin, Hippo, TGFβ, AMPK, mTOR, MAPK, and antioxidant signaling pathways. The versatile engagement of AXIN1 underscores its pivotal role in the modulation of developmental biological signaling, maintenance of metabolic homeostasis, and coordination of cellular stress responses. The multifaceted functionalities of AXIN1 render it as a compelling candidate for targeted intervention in the realms of degenerative pathologies, systemic metabolic disorders, cancer therapeutics, and anti-aging strategies. This review provides an intricate exploration of the mechanisms governing mammalian AXIN1 gene expression and protein turnover since its initial discovery, while also elucidating its significance in the regulation of signaling pathways, tissue development, and carcinogenesis. Furthermore, we have introduced the innovative concept of the AXIN1-Associated Phosphokinase Complex (AAPC), where the scaffold protein AXIN1 assumes a pivotal role in orchestrating site-specific phosphorylation modifications through interactions with various phosphokinases and their respective substrates.
Collapse
Affiliation(s)
- Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haoming Ning
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
9
|
Hughes O, Bentley AR, Breeze CE, Aguet F, Xu X, Nadkarni G, Sun Q, Lin BM, Gilliland T, Meyer MC, Du J, Raffield LM, Kramer H, Morton RW, Gouveia MH, Atkinson EG, Valladares-Salgado A, Wacher-Rodarte N, Dueker ND, Guo X, Hai Y, Adeyemo A, Best LG, Cai J, Chen G, Chong M, Doumatey A, Eales J, Goodarzi MO, Ipp E, Irvin MR, Jiang M, Jones AC, Kooperberg C, Krieger JE, Lange EM, Lanktree MB, Lash JP, Lotufo PA, Loos RJF, Ha My VT, Peralta-Romero J, Qi L, Raffel LJ, Rich SS, Rodriquez EJ, Tarazona-Santos E, Taylor KD, Umans JG, Wen J, Young BA, Yu Z, Zhang Y, Ida Chen YD, Rundek T, Rotter JI, Cruz M, Fornage M, Lima-Costa MF, Pereira AC, Paré G, Natarajan P, Cole SA, Carson AP, Lange LA, Li Y, Perez-Stable EJ, Do R, Charchar FJ, Tomaszewski M, Mychaleckyj JC, Rotimi C, Morris AP, Franceschini N. Genome-wide study investigating effector genes and polygenic prediction for kidney function in persons with ancestry from Africa and the Americas. CELL GENOMICS 2024; 4:100468. [PMID: 38190104 PMCID: PMC10794846 DOI: 10.1016/j.xgen.2023.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/31/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Chronic kidney disease is a leading cause of death and disability globally and impacts individuals of African ancestry (AFR) or with ancestry in the Americas (AMS) who are under-represented in genome-wide association studies (GWASs) of kidney function. To address this bias, we conducted a large meta-analysis of GWASs of estimated glomerular filtration rate (eGFR) in 145,732 AFR and AMS individuals. We identified 41 loci at genome-wide significance (p < 5 × 10-8), of which two have not been previously reported in any ancestry group. We integrated fine-mapped loci with epigenomic and transcriptomic resources to highlight potential effector genes relevant to kidney physiology and disease, and reveal key regulatory elements and pathways involved in renal function and development. We demonstrate the varying but increased predictive power offered by a multi-ancestry polygenic score for eGFR and highlight the importance of population diversity in GWASs and multi-omics resources to enhance opportunities for clinical translation for all.
Collapse
Affiliation(s)
- Odessica Hughes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles E Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA; UCL Cancer Institute, University College London, London, UK
| | - Francois Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Girish Nadkarni
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bridget M Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Gilliland
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mariah C Meyer
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jiawen Du
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Holly Kramer
- Division of Nephrology and Hypertension, Loyola University Chicago, Maywood, IL, USA
| | - Robert W Morton
- Population Health Research Institute, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Mateus H Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Adan Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Niels Wacher-Rodarte
- Unidad de Investigación Médica en Epidemiologia Clinica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Nicole D Dueker
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Yang Hai
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lyle G Best
- Missouri Breaks Industries Research Inc., Eagle Butte, SD, USA
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Chong
- Population Health Research Institute, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Ayo Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - James Eales
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eli Ipp
- Division of Endocrinology and Metabolism, Department of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marguerite Ryan Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Minzhi Jiang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alana C Jones
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jose E Krieger
- Laboratório de Genética e Cardiologia Molecular do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ethan M Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew B Lanktree
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - James P Lash
- Division of Nephrology, Department of Medicine, University of Illinois, Chicago, IL, USA
| | - Paulo A Lotufo
- Center for Clinical and Epidemiological Research, Hospital Universitário, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Ruth J F Loos
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vy Thi Ha My
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jesús Peralta-Romero
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Lihong Qi
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA
| | - Leslie J Raffel
- Department of Pediatrics, Genetic and Genomic Medicine, University of California, Irvine, Irvine, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Erik J Rodriquez
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville MD and Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bessie A Young
- University of Washington School of Medicine, Seattle, WA, USA; Office of Healthcare Equity, UW Justice, Equity, Diversity, and Inclusion Center for Transformational Research (UW JEDI-CTR), University of Washington, Seattle, WA, USA; Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA; Kidney Research Institute, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Zhi Yu
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Ying Zhang
- Center for American Indian Health Research, Department of Biostatistics and Epidemiology, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Tanja Rundek
- Department of Neurology, Epidemiology and Public Health, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA USA
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | | | - Alexandre C Pereira
- Laboratório de Genética e Cardiologia Molecular do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Aging Division, Brigham Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Guillaume Paré
- Population Health Research Institute, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eliseo J Perez-Stable
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Ron Do
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fadi J Charchar
- School of Science, Psychology and Sport, Federation University, Ballarat, VIC, Australia; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; Department of Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK; Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Josyf C Mychaleckyj
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK.
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Feng Q, Nie F, Gan L, Wei X, Liu P, Liu H, Zhang K, Fang Z, Wang H, Fang N. Tripartite motif 31 drives gastric cancer cell proliferation and invasion through activating the Wnt/β-catenin pathway by regulating Axin1 protein stability. Sci Rep 2023; 13:20099. [PMID: 37973999 PMCID: PMC10654727 DOI: 10.1038/s41598-023-47139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
Mounting evidence has proposed the importance of the Wnt/β-catenin pathway and tripartite motif 31 (TRIM31) in certain malignancies. Our research aimed to clarify the correlation between aberrant TRIM31 expression and the Wnt/β-catenin pathway during gastric cancer (GC) oncogenesis and development. TRIM31 was drastically elevated in GC tissues and was closely associated with aggressive clinical outcomes and poor prognosis. Moreover, TRIM31 downregulation attenuated GC cell proliferation and invasion in vitro. Mechanistically, TRIM31 could bind and ubiquitinate Axin1 protein, thereby facilitating the activation of the Wnt/β-catenin pathway. Additionally, Axin1 knockdown partially abrogated the inhibitory effects on the proliferative, invasive and migratory abilities of GC cells induced by TRIM31 silencing. Furthermore, TRIM31 was negatively correlated with Axin1 protein expression in GC tissues. In summary, we revealed a new TRIM31-Axin1-Wnt/β-catenin axis that contributed greatly to the progression of GC, and targeting this regulatory axis may represent an effective treatment for GC patients.
Collapse
Affiliation(s)
- Qi Feng
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Fengting Nie
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lihong Gan
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Xianpin Wei
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Peng Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Hui Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Kaige Zhang
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China
| | - Ziling Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Heng Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Nian Fang
- Department of Gastroenterology, The Third Affiliated Hospital of Nanchang University Or Nanchang First Hospital, 128 Xiangshan North Road, Nanchang, 330008, Jiangxi, People's Republic of China.
| |
Collapse
|
11
|
Schmidt IM, Myrick S, Liu J, Verma A, Srivastava A, Palsson R, Onul IF, Stillman IE, Avillach C, Patil P, Waikar SS. The use of plasma biomarker-derived clusters for clinicopathologic phenotyping: results from the Boston Kidney Biopsy Cohort. Clin Kidney J 2023; 16:90-99. [PMID: 36726432 PMCID: PMC9871860 DOI: 10.1093/ckj/sfac202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Background Protein biomarkers may provide insight into kidney disease pathology but their use for the identification of phenotypically distinct kidney diseases has not been evaluated. Methods We used unsupervised hierarchical clustering on 225 plasma biomarkers in 541 individuals enrolled into the Boston Kidney Biopsy Cohort, a prospective cohort study of individuals undergoing kidney biopsy with adjudicated histopathology. Using principal component analysis, we studied biomarker levels by cluster and examined differences in clinicopathologic diagnoses and histopathologic lesions across clusters. Cox proportional hazards models tested associations of clusters with kidney failure and death. Results We identified three biomarker-derived clusters. The mean estimated glomerular filtration rate was 72.9 ± 28.7, 72.9 ± 33.4 and 39.9 ± 30.4 mL/min/1.73 m2 in Clusters 1, 2 and 3, respectively. The top-contributing biomarker in Cluster 1 was AXIN, a negative regulator of the Wnt signaling pathway. The top-contributing biomarker in Clusters 2 and 3 was Placental Growth Factor, a member of the vascular endothelial growth factor family. Compared with Cluster 1, individuals in Cluster 3 were more likely to have tubulointerstitial disease (P < .001) and diabetic kidney disease (P < .001) and had more severe mesangial expansion [odds ratio (OR) 2.44, 95% confidence interval (CI) 1.29, 4.64] and inflammation in the fibrosed interstitium (OR 2.49 95% CI 1.02, 6.10). After multivariable adjustment, Cluster 3 was associated with higher risks of kidney failure (hazard ratio 3.29, 95% CI 1.37, 7.90) compared with Cluster 1. Conclusion Plasma biomarkers may identify clusters of individuals with kidney disease that associate with different clinicopathologic diagnoses, histopathologic lesions and adverse outcomes, and may uncover biomarker candidates and relevant pathways for further study.
Collapse
Affiliation(s)
- Insa M Schmidt
- Boston University School of Medicine and Boston Medical Center, Department of Medicine, Section of Nephrology, Boston, MA, USA
| | - Steele Myrick
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Jing Liu
- Division of Nephrology and National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| | - Ashish Verma
- Boston University School of Medicine and Boston Medical Center, Department of Medicine, Section of Nephrology, Boston, MA, USA
| | - Anand Srivastava
- Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ragnar Palsson
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ingrid F Onul
- Boston University School of Medicine and Boston Medical Center, Department of Medicine, Section of Nephrology, Boston, MA, USA
| | - Isaac E Stillman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Pathology, Boston, MA, USA
| | - Claire Avillach
- Boston Medical Center, Department of Pathology, Boston, MA, USA
| | - Prasad Patil
- Boston University School of Public Health, Department of Biostatistics, Boston, MA, USA
| | - Sushrut S Waikar
- Boston University School of Medicine and Boston Medical Center, Department of Medicine, Section of Nephrology, Boston, MA, USA
| |
Collapse
|
12
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|