1
|
Sheng C, Yue R. Investigating metabolic characteristics of type 2 diabetes mellitus-related cognitive dysfunction and correlating therapeutic effects of Di Dang Tang in animal models. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119338. [PMID: 39826792 DOI: 10.1016/j.jep.2025.119338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Di Dang Tang is a classic formula from Shang Han Lun, originally used to treat conditions such as blood stasis and heat accumulation. It is widely applied in the treatment of diabetes and its complications, but its effects on Type 2 Diabetes Mellitus-related Cognitive Dysfunction (T2DM-CD) remain unclear. AIM OF THE STUDY The study aimed to investigate the metabolic characteristics of patients with T2DM-CD. Additionally, it sought to evaluate the effects of Di Dang Tang on cognitive function in T2DM-CD model rats by targeting the metabolic pathways identified in the clinical analysis, exploring the underlying mechanisms through animal experiments. METHODS Fasting venous serum was collected from patients with Type 2 Diabetes Mellitus (T2DM) to detect metabolism-related products, and KEGG annotation analysis was performed. Separately, thirty rats were randomly divided using a random number table method, with six rats selected as the blank control group. Twenty-four successfully modeled rats were then randomly divided into the model group and three Di Dang Tang groups (low, medium, and high doses). After administering the medication, the relevant indicators in the rats were assessed. RESULTS Clinical metabolomics detected 32 key differential metabolites between the T2DM-CD and the blank control groups. Between the T2DM-CD and T2DM groups, 29 key differential metabolites were identified. In animal experiments, blood glucose levels in the model group were significantly higher compared to the blank control group at the same time points, whereas the high dose groups of Di Dang Tang exhibited reduced blood glucose levels at weeks 6 and 8 relative to the model group. In the Morris water maze test, the model group had longer escape latencies than the blank control group. The medium and high dose groups of Di Dang Tang showed shorter latencies. Additionally, compared to the model group, the Di Dang Tang groups spent more time and covered more distance in the target quadrant but had reduced average proximity and fewer platform entries. HE staining observation of the hippocampal CA1 area showed no apparent pathological changes in the blank group, obvious pathological damage in the model group, and no significant pathological changes in the medium and high dose groups of Di Dang Tang. Compared to the blank control group, the model group showed significant increases in the levels of Arachidonic Acid (AA), Ceramide (Cer), Glutamate (Glu), TNF- α, IL-1β, TG, and LDL-C, and a significant decrease in HDL-C levels. Compared to the model group, the groups of Di Dang Tang significantly modulated the levels of the above indicators. In Western Blot (WB) assays, compared to the blank control group, the model group rats exhibited significantly higher levels of cPLA2, PKC, ERK, and JNK , and significantly lower levels of claudin-5, NMDA, CaMKII, CREB, and BDNF. The Di Dang Tang groups significantly altered the levels of the above indicators compared to the model group. CONCLUSION Amino acid metabolism, sphingolipid signaling pathways, glycerophospholipid metabolism, and various signaling pathways play significant roles in the pathogenesis of T2DM-CD. Di Dang Tang can improve learning and memory abilities in T2DM model rats and ameliorate cognitive impairments, potentially by regulating metabolic levels and inflammatory responses.
Collapse
Affiliation(s)
- Changting Sheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Lee HR, Jee HJ, Jung YS. Neuroprotective Effect of β-Lapachone against Glutamate-Induced Injury in HT22 Cells. Biomol Ther (Seoul) 2025; 33:286-296. [PMID: 39933959 PMCID: PMC11893500 DOI: 10.4062/biomolther.2024.241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
While glutamate, a key neurotransmitter in the central nervous system, is fundamental to neuronal viability and normal brain function, its excessive accumulation leads to oxidative stress, contributing to neuronal damage and neurodegenerative diseases. In this study, we investigated the effect of β-lapachone (β-Lap), a naturally occurring naphthoquinone, on glutamate-induced injury in HT22 cells and explored the underlying mechanism involved. Our results show that β-Lap significantly improved cell viability in a dose-dependent manner. Additionally, β-Lap exhibited a significant antioxidant activity, reducing intracellular reactive oxygen species levels and restoring glutathione levels. The antioxidant capacity of β-Lap was further demonstrated through 2,2-Diphenyl- 1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assays. Western blot analysis revealed that β-Lap upregulated brain-derived neurotrophic factor (BDNF) and promoted the phosphorylation of tropomyosin receptor kinase B (TrkB), extracellular signal-regulated kinase (ERK), and cAMP response elementbinding protein (CREB), which were downregulated by glutamate. Furthermore, β-Lap enhanced the cellular antioxidant molecules, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). In conclusion, β-Lap can protect HT22 cells against glutamate-induced injury by activating the BDNF/TrkB/ERK/CREB and ERK/Nrf2/HO-1 signaling pathways, suggesting its therapeutic potential for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hae Rim Lee
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hye Jin Jee
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Yi-Sook Jung
- Department of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou university, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Alva S, Parithathvi A, Harshitha P, Dsouza HS. Influence of lead on cAMP-response element binding protein (CREB) and its implications in neurodegenerative disorders. Toxicol Lett 2024; 400:35-41. [PMID: 39117292 DOI: 10.1016/j.toxlet.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Lead (Pb2+) is one of the most common toxic metals present in the environment, and lead exposure causes serious health issues in humans. Lead is widely used because of its physio-chemical characteristics, which include softness, corrosion resistance, ductility, and low conductivity. Lead affects almost all human organs, specifically the central nervous system. Lead neurotoxicity is connected to various neural pathways, including brain-derived neurotrophic factor (BDNF) protein level alterations, cyclic adenosine 3',5'-monophosphate (cAMP) response element binding protein (CREB) pathway changes, and N-methyl-D-aspartate receptors (NMDARs) changes. Lead primarily affects protein kinase C (PKC) through the replacement of calcium (Ca2+) ions in the CREB pathway. In this review, we have discussed the effect of lead on the CREB pathway and its implications on the nervous system, highlighting its effects on learning, synaptic plasticity, memory, and cognitive deficits. This review provides an understanding of the lead-induced alterations in the CREB pathway, which can lead to the future prospect of its use as a diagnostic marker as well as a therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Sharal Alva
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Aluru Parithathvi
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - P Harshitha
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
4
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
5
|
Farid HA, Sayed RH, El-Shamarka MES, Abdel-Salam OME, El Sayed NS. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson's disease in rats. Inflammopharmacology 2024; 32:1421-1437. [PMID: 37541971 PMCID: PMC11006765 DOI: 10.1007/s10787-023-01305-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive age-related neurodegenerative disorder. Paramount evidence shed light on the role of PI3K/AKT signaling activation in the treatment of neurodegenerative disorders. PI3K/AKT signaling can be activated via cAMP-dependent pathways achieved by phosphodiesterase 4 (PDE4) inhibition. Roflumilast is a well-known PDE4 inhibitor that is currently used in the treatment of chronic obstructive pulmonary disease. Furthermore, roflumilast has been proposed as a favorable candidate for the treatment of neurological disorders. The current study aimed to unravel the neuroprotective role of roflumilast in the rotenone model of PD in rats. Ninety male rats were allocated into six groups as follows: control, rotenone (1.5 mg/kg/48 h, s.c.), L-dopa (22.5 mg/kg, p.o), and roflumilast (0.2, 0.4 or 0.8 mg/kg, p.o). All treatments were administrated for 21 days 1 h after rotenone injection. Rats treated with roflumilast showed an improvement in motor activity and coordination as well as preservation of dopaminergic neurons in the striatum. Moreover, roflumilast increased cAMP level and activated the PI3K/AKT axis via stimulation of CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling cascades. Roflumilast also caused an upsurge in mTOR and Nrf2, halted GSK-3β and NF-ĸB, and suppressed FoxO1 and caspase-3. Our study revealed that roflumilast exerted neuroprotective effects in rotenone-induced neurotoxicity in rats. These neuroprotective effects were mediated via the crosstalk between CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling pathways which activates PI3K/AKT trajectory. Therefore, PDE4 inhibition is likely to offer a reliable persuasive avenue in curing PD via PI3K/AKT signaling activation.
Collapse
Affiliation(s)
- Heba A Farid
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | | | - Omar M E Abdel-Salam
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
6
|
Yadav B, Kaur S, Yadav A, Verma H, Kar S, Sahu BK, Pati KR, Sarkar B, Dhiman M, Mantha AK. Implications of organophosphate pesticides on brain cells and their contribution toward progression of Alzheimer's disease. J Biochem Mol Toxicol 2024; 38:e23660. [PMID: 38356323 DOI: 10.1002/jbt.23660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
The most widespread neurodegenerative disorder, Alzheimer's disease (AD) is marked by severe behavioral abnormalities, cognitive and functional impairments. It is inextricably linked with the deposition of amyloid β (Aβ) plaques and tau protein in the brain. Loss of white matter, neurons, synapses, and reactive microgliosis are also frequently observed in patients of AD. Although the causative mechanisms behind the neuropathological alterations in AD are not fully understood, they are likely influenced by hereditary and environmental factors. The etiology and pathogenesis of AD are significantly influenced by the cells of the central nervous system, namely, glial cells and neurons, which are directly engaged in the transmission of electrical signals and the processing of information. Emerging evidence suggests that exposure to organophosphate pesticides (OPPs) can trigger inflammatory responses in glial cells, leading to various cascades of events that contribute to neuroinflammation, neuronal damage, and ultimately, AD pathogenesis. Furthermore, there are striking similarities between the biomarkers associated with AD and OPPs, including neuroinflammation, oxidative stress, dysregulation of microRNA, and accumulation of toxic protein aggregates, such as amyloid β. These shared markers suggest a potential mechanistic link between OPP exposure and AD pathology. In this review, we attempt to address the role of OPPs on altered cell physiology of the brain cells leading to neuroinflammation, mitochondrial dysfunction, and oxidative stress linked with AD pathogenesis.
Collapse
Affiliation(s)
- Bharti Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Swastitapa Kar
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Binit Kumar Sahu
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Kumari Riya Pati
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Bibekanada Sarkar
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
7
|
Narasimhamurthy RK, Venkidesh BS, Nayak S, Reghunathan D, Mallya S, Sharan K, Rao BSS, Mumbrekar KD. Low-dose exposure to malathion and radiation results in the dysregulation of multiple neuronal processes, inducing neurotoxicity and neurodegeneration in mouse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1403-1418. [PMID: 38038914 PMCID: PMC10789675 DOI: 10.1007/s11356-023-31085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Neurodegenerative disorders are a debilitating and persistent threat to the global elderly population, carrying grim outcomes. Their genesis is often multifactorial, with a history of prior exposure to xenobiotics such as pesticides, heavy metals, enviornmental pollutants, ionizing radiation etc,. A holistic molecular insight into their mechanistic induction upon single or combinatorial exposure to different toxicants is still unclear. In the present study, one-month-old C57BL/6 male mice were administered orally with malathion (50 mg/kg body wt. for 14 days) and single whole-body radiation (0.5 Gy) on the 8th day. Post-treatment, behavioural assays for exploratory behaviour, memory, and learning were performed. After sacrifice, brains were collected for histology, biochemical assays, and transcriptomic analysis. Transcriptomic analysis revealed several altered processes like synaptic transmission and plasticity, neuronal survival, proliferation, and death. Signalling pathways like MAPK, PI3K-Akt, Apelin, NF-κB, cAMP, Notch etc., and pathways related to neurodegenerative diseases were altered. Increased astrogliosis was observed in the radiation and coexposure groups, with significant neuronal cell death and a reduction in the expression of NeuN. Sholl analysis, dendritic arborization and spine density studies revealed decreased total apical neuronal path length and dendritic spine density. Reduced levels of the antioxidants GST and GSH and acetylcholinesterase enzyme activity were also detected. However, no changes were seen in exploratory behaviour or learning and memory post-treatment. Thus, explicating the molecular mechanisms behind malathion and radiation can provide novel insights into external factor-driven neurotoxicity and neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Rekha Koravadi Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sangeetha Nayak
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dinesh Reghunathan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishna Sharan
- Department of Radiotherapy, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bola Sadashiva Satish Rao
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
- Directorate of Research, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
8
|
Guan W, Ni MX, Gu HJ, Yang Y. CREB: A Promising Therapeutic Target for Treating Psychiatric Disorders. Curr Neuropharmacol 2024; 22:2384-2401. [PMID: 38372284 PMCID: PMC11451321 DOI: 10.2174/1570159x22666240206111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024] Open
Abstract
Psychiatric disorders are complex, multifactorial illnesses. It is challenging for us to understand the underlying mechanism of psychiatric disorders. In recent years, the morbidity of psychiatric disorders has increased yearly, causing huge economic losses to the society. Although some progress, such as psychotherapy drugs and electroconvulsive therapy, has been made in the treatment of psychiatric disorders, including depression, anxiety, bipolar disorder, obsessive-compulsive and autism spectrum disorders, antidepressants and psychotropic drugs have the characteristics of negative effects and high rate of relapse. Therefore, researchers continue to seek suitable interventions. cAMP response element binding protein (CREB) belongs to a protein family and is widely distributed in the majority of brain cells that function as a transcription factor. It has been demonstrated that CREB plays an important role in neurogenesis, synaptic plasticity, and neuronal growth. This review provides a 10-year update of the 2013 systematic review on the multidimensional roles of CREB-mediated transcriptional signaling in psychiatric disorders. We also summarize the classification of psychiatric disorders and elucidate the involvement of CREB and related downstream signalling pathways in psychiatric disorders. Importantly, we analyse the CREB-related signal pathways involving antidepressants and antipsychotics to relieve the pathological process of psychiatric disorders. This review emphasizes that CREB signalling may have a vast potential to treat psychiatric disorders like depression. Furthermore, it would be helpful for the development of potential medicine to make up for the imperfection of current antidepressants and antipsychotics.
Collapse
Affiliation(s)
- Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| | - Mei-Xin Ni
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Hai-Juan Gu
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Yang Yang
- Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| |
Collapse
|
9
|
Bhatt S, Singh AP, Kumar S. Phosphodiesterase Inhibitors: A Therapeutic Approach for Arsenic- Induced Neurotoxicity. DRUG METABOLISM AND BIOANALYSIS LETTERS 2024; 17:67-75. [PMID: 40296489 DOI: 10.2174/0118723128343703250103063848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 04/30/2025]
Abstract
INTRODUCTION One of the world's most serious health issues is arsenic toxicity. Prolonged consumption of Arsenic contaminated water causes cognitive damage in the developing and adult brain. The present research investigated how sodium arsenite-induced neurotoxicity in SD rats was affected by rolipram, a PDE4 inhibitor, and vinpocetine, a PDE1 inhibitor. METHODS The arsenic concentration was determined, which indicates the accumulation of arsenic in blood. The low weight of the brain indicates the adverse effects on the brain, which was significantly improved by rolipram and vinpocetine. Biochemical markers (MDA, GSH, CAT, and SOD) and protein expression of CREB and P-CREB were studied in the hippocampal region of the brain. RESULTS The reduced antioxidant activity and elevated levels of inflammation were significantly improved by rolipram and vinpocetine administration. Additionally, rolipram and vinpocetine significantly increased the CREB and P-CREB expression in the hippocampi of rat brains. CONCLUSION PDE4 and PDE1 inhibition in arsenic-induced neurotoxicity could be a novel approach and a new drug therapy for arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Sonia Bhatt
- School of Pharmacy, Lingaya's Vidyapeeth, Nachauli, Faridabad, India
| | - Ajay Pal Singh
- School of Pharmacy, Lingaya's Vidyapeeth, Nachauli, Faridabad, India
| | - Sokindra Kumar
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, India
| |
Collapse
|
10
|
Shukla S, Jhamtani RC, Agarwal R. Biochemical and gene expression alterations due to individual exposure of atrazine, dichlorvos, and imidacloprid and their combination in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118291-118303. [PMID: 37821735 DOI: 10.1007/s11356-023-30160-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
In environmental toxicology, combined toxicity has emerged as an important concern. Atrazine (ATZ), dichlorvos (DIC), and imidacloprid (IMD) are the major pesticides, extensively used to control insect, flies, mosquitoes, and weed. Here, we investigate whether the exposure to three different types of pesticides individually and in combination for 24 h alters antioxidant enzyme responses in zebrafish (Danio rerio). Oxidative stress parameters (biochemical and mRNA expression), acetylcholinesterase (AChE) activity, and Metallothionein-II (MT-II) mRNA expression levels were measured. Present work includes toxicological assessment of individual and combined (CMD) exposure of ATZ (185.4 µM), DIC (181 µM), IMD (97.8 µ), and CMD (ATZ 92.7 µM + DIC 90.5 µM + IMD 48.9 µM), in the liver, kidney, and brain of adult zebrafish. Lipid peroxidation (LPO), glutathione (GSH) content, AChE, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity along with mRNA expression of SOD, CAT, GPx, and MT-II were evaluated. Briefly, LPO, GSH content, the activity of AChE, and all antioxidant enzymes enhanced significantly in individual exposure, which was further altered in the CMD group. The mRNA expression of SOD, CAT, GPx, and MT-II in the liver and kidney showed significant down-regulation in all exposed groups. In the brain, significant upregulation in mRNA expression of SOD, CAT, GPx, and MT-II was observed in DIC and IMD groups, while ATZ and CMD showed significant downregulation except for GPx. Findings postulate that the CMD group exhibits synergistic toxic manifestation. The present study provides the baseline data on the combined toxic effects of pesticides and suggests regulating the use of pesticides.
Collapse
Affiliation(s)
- Saurabh Shukla
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- Department of Forensic Science, School of Bioengineering and Bioscience, Lovely Professional University, Jalandhar, 144411, India
| | - Reena C Jhamtani
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- School of Forensic Science, Centurion University of Technology and Management, 752050, Bhubhaneshwar, Orrisa, India
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India.
- National Forensic Sciences University, Delhi Campus, Delhi, 110085, India.
| |
Collapse
|
11
|
Jaberi S, Fahnestock M. Mechanisms of the Beneficial Effects of Exercise on Brain-Derived Neurotrophic Factor Expression in Alzheimer's Disease. Biomolecules 2023; 13:1577. [PMID: 38002258 PMCID: PMC10669442 DOI: 10.3390/biom13111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key molecule in promoting neurogenesis, dendritic and synaptic health, neuronal survival, plasticity, and excitability, all of which are disrupted in neurological and cognitive disorders such as Alzheimer's disease (AD). Extracellular aggregates of amyloid-β (Aβ) in the form of plaques and intracellular aggregates of hyperphosphorylated tau protein have been identified as major pathological insults in the AD brain, along with immune dysfunction, oxidative stress, and other toxic stressors. Although aggregated Aβ and tau lead to decreased brain BDNF expression, early losses in BDNF prior to plaque and tangle formation may be due to other insults such as oxidative stress and contribute to early synaptic dysfunction. Physical exercise, on the other hand, protects synaptic and neuronal structure and function, with increased BDNF as a major mediator of exercise-induced enhancements in cognitive function. Here, we review recent literature on the mechanisms behind exercise-induced BDNF upregulation and its effects on improving learning and memory and on Alzheimer's disease pathology. Exercise releases into the circulation a host of hormones and factors from a variety of peripheral tissues. Mechanisms of BDNF induction discussed here are osteocalcin, FNDC5/irisin, and lactate. The fundamental mechanisms of how exercise impacts BDNF and cognition are not yet fully understood but are a prerequisite to developing new biomarkers and therapies to delay or prevent cognitive decline.
Collapse
Affiliation(s)
- Sama Jaberi
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
12
|
Zhang L, Shi W, Liu J, Chen K, Zhang G, Zhang S, Cong B, Li Y. Interleukin 6 (IL-6) Regulates GABAA Receptors in the Dorsomedial Hypothalamus Nucleus (DMH) through Activation of the JAK/STAT Pathway to Affect Heart Rate Variability in Stressed Rats. Int J Mol Sci 2023; 24:12985. [PMID: 37629166 PMCID: PMC10455568 DOI: 10.3390/ijms241612985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The dorsomedial hypothalamus nucleus (DMH) is an important component of the autonomic nervous system and plays a critical role in regulating the sympathetic outputs of the heart. Stress alters the neuronal activity of the DMH, affecting sympathetic outputs and triggering heart rate variability. However, the specific molecular mechanisms behind stress leading to abnormal DMH neuronal activity have still not been fully elucidated. Therefore, in the present study, we successfully constructed a stressed rat model and used it to investigate the potential molecular mechanisms by which IL-6 regulates GABAA receptors in the DMH through activation of the JAK/STAT pathway and thus affects heart rate variability in rats. By detecting the c-Fos expression of neurons in the DMH and electrocardiogram (ECG) changes in rats, we clarified the relationship between abnormal DMH neuronal activity and heart rate variability in stressed rats. Then, using ELISA, immunohistochemical staining, Western blotting, RT-qPCR, and RNAscope, we further explored the correlation between the IL-6/JAK/STAT signaling pathway and GABAA receptors. The data showed that an increase in IL-6 induced by stress inhibited GABAA receptors in DMH neurons by activating the JAK/STAT signaling pathway, while specific inhibition of the JAK/STAT signaling pathway using AG490 obviously reduced DMH neuronal activity and improved heart rate variability in rats. These findings suggest that IL-6 regulates the expression of GABAA receptors via the activation of the JAK/STAT pathway in the DMH, which may be an important cause of heart rate variability in stressed rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (L.Z.); (W.S.); (J.L.); (K.C.); (G.Z.); (S.Z.)
| | - Yingmin Li
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China; (L.Z.); (W.S.); (J.L.); (K.C.); (G.Z.); (S.Z.)
| |
Collapse
|
13
|
Buga AM, Padureanu V, Riza AL, Oancea CN, Albu CV, Nica AD. The Gut-Brain Axis as a Therapeutic Target in Multiple Sclerosis. Cells 2023; 12:1872. [PMID: 37508537 PMCID: PMC10378521 DOI: 10.3390/cells12141872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The CNS is very susceptible to oxidative stress; the gut microbiota plays an important role as a trigger of oxidative damage that promotes mitochondrial dysfunction, neuroinflammation, and neurodegeneration. In the current review, we discuss recent findings on oxidative-stress-related inflammation mediated by the gut-brain axis in multiple sclerosis (MS). Growing evidence suggests targeting gut microbiota can be a promising strategy for MS management. Intricate interaction between multiple factors leads to increased intra- and inter-individual heterogeneity, frequently painting a different picture in vivo from that obtained under controlled conditions. Following an evidence-based approach, all proposed interventions should be validated in clinical trials with cohorts large enough to reach significance. Our review summarizes existing clinical trials focused on identifying suitable interventions, the suitable combinations, and appropriate timings to target microbiota-related oxidative stress. Most studies assessed relapsing-remitting MS (RRMS); only a few studies with very limited cohorts were carried out in other MS stages (e.g., secondary progressive MS-SPMS). Future trials must consider an extended time frame, perhaps starting with the perinatal period and lasting until the young adult period, aiming to capture as many complex intersystem interactions as possible.
Collapse
Affiliation(s)
- Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.B.); (C.N.O.)
| | - Vlad Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
- Regional Center for Medical Genetics Dolj, Emergency County Hospital Craiova, 200638 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.B.); (C.N.O.)
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandru Dan Nica
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.M.B.); (C.N.O.)
| |
Collapse
|
14
|
Prathiksha J, Narasimhamurthy RK, Dsouza HS, Mumbrekar KD. Organophosphate pesticide-induced toxicity through DNA damage and DNA repair mechanisms. Mol Biol Rep 2023; 50:5465-5479. [PMID: 37155010 DOI: 10.1007/s11033-023-08424-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Organophosphate pesticides (OPs) are widely used in agriculture, healthcare, and other industries due to their ability to kill pests. However, OPs can also have genotoxic effects on humans who are exposed to them. This review summarizes the research on DNA damage caused by OPs, the mechanisms behind this damage, and the resulting cellular effects. Even at low doses, OPs have been shown to damage DNA and cause cellular dysfunction. Common phenomena seen in cells that are exposed to OPs include the formation of DNA adducts and lesions, single-strand and double-strand DNA breaks, and DNA and protein inter and intra-cross-links. The present review will aid in comprehending the extent of genetic damage and the impact on DNA repair pathways caused by acute or chronic exposure to OPs. Additionally, understanding the mechanisms of the effects of OPs will aid in correlating them with various diseases, including cancer, Alzheimer's, and Parkinson's disease. Overall, knowledge of the potential adverse effects of different OPs will help in monitoring the health complications they may cause.
Collapse
Affiliation(s)
- Joyline Prathiksha
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kamalesh D Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
15
|
N-acetyl-5-methoxykynuramine enhance object location and working memory performances via modulating CaMKII, ERK and CREB phosphorylation. Neuroreport 2023; 34:299-307. [PMID: 36881754 DOI: 10.1097/wnr.0000000000001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES Melatonin (MEL) has been reported to enhance cognitive performance. Recently, we have demonstrated that a MEL metabolite N-acetyl-5-methoxykynuramine (AMK) promoted the formation of long-term object recognition memory more potently than MEL. Here, we examined the effects of 1 mg/kg MEL and AMK on both object location memory and spatial working memory. We also investigated the effects of the same dose of these drugs on relative phosphorylation/activation levels of memory-related proteins in the hippocampus (HP), the perirhinal cortex (PRC) and the medial prefrontal cortex (mPFC). METHODS Object location memory and spatial working memory were assessed using the object location task and the Y-maze spontaneous alternation task, respectively. Relative phosphorylation/activation levels of memory-related proteins were assessed using western blot analysis. RESULTS AMK, as well as MEL, enhanced object location memory and spatial working memory. AMK increased the phosphorylation of cAMP-response element-binding protein (CREB) in both the HP and the mPFC 2 h after the treatment. AMK also increased the phosphorylation of extracellular signal-regulated kinases (ERKs) but decreased that of Ca2+/calmodulin-dependent protein kinases II (CaMKIIs) in the PRC and the mPFC 30 min after the treatment. MEL increased CREB phosphorylation in the HP 2 h after the treatment, whereas no detectable changes in the other proteins examined were observed. CONCLUSION These results suggested the possibility that AMK exerts stronger memory-enhancing effects than MEL by more remarkably altering the activation of memory-related proteins such as ERKs, CaMKIIs and CREB in broader brain regions, including the HP, mPFC and PRC, compared to MEL.
Collapse
|