1
|
Zhang F, Liu L, Li W. Correlation of sarcopenia with progression of liver fibrosis in patients with metabolic dysfunction-associated steatotic liver disease: a study from two cohorts in China and the United States. Nutr J 2025; 24:6. [PMID: 39810142 PMCID: PMC11730808 DOI: 10.1186/s12937-025-01081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVE The objective of this study was to investigate the association between sarcopenia and liver fibrosis in patients aged 18-59 years with metabolic dysfunction-associated steatotic liver disease (MASLD) and to assess the potential of sarcopenia as a risk factor for the progression of liver fibrosis. METHODS The study included 821 patients with MASLD in the US cohort and 3,405 patients with MASLD in the Chinese cohort. Liver controlled attenuation parameters (CAP) and liver stiffness measurements (LSM) were assessed by vibration-controlled transient elastography (VCTE) to evaluate the extent of hepatic steatosis and fibrosis. Sarcopenia was assessed by measuring appendicular skeletal muscle mass (ASM) and calculating ASMI. To analyze the relationship between sarcopenia, ASMI, and liver fibrosis, logistic regression models, multivariate-adjusted models, and restricted cubic spline (RCS) models were employed, with stratification and interaction analyses. RESULTS The results demonstrated that patients with sarcopenia exhibited a markedly elevated risk of significant liver fibrosis, advanced liver fibrosis, and cirrhosis compared to those without sarcopenia in both cohorts. After adjusting for confounding variables, sarcopenia was identified as an independent risk factor for the progression of liver fibrosis in patients with MASLD. A significant negative correlation was observed between ASMI and the severity of liver fibrosis, with a progressive reduction in the risk of liver fibrosis associated with increasing ASMI. Additionally, a non-linear feature was evident in some liver fibrosis indicators. Subgroup analysis further corroborated the finding that the harmful effect of sarcopenia on liver fibrosis was consistent across all identified subgroups. CONCLUSION Sarcopenia may be associated with the progression of liver fibrosis in patients with MASLD. Monitoring ASMI may assist in identifying individuals at an elevated risk of liver fibrosis in MASLD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, 213001, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou, 213001, China
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China
| | - Longgen Liu
- Department of Liver Diseases, Changzhou Third People's Hospital, Changzhou, 213001, China
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China
| | - Wenjian Li
- Department of Urology, Changzhou Third People's Hospital, Changzhou, 213001, China.
- Changzhou Clinical College, Xuzhou Medical University, Changzhou, 213001, China.
| |
Collapse
|
2
|
Shima T, Onishi H, Terashima C. Possible Involvement of Hippocampal miR-539-3p/Lrp6/Igf1r Axis for Diminished Working Memory in Mice Fed a Low-Carbohydrate and High-Protein Diet. Mol Nutr Food Res 2025; 69:e202400648. [PMID: 39707649 PMCID: PMC11744036 DOI: 10.1002/mnfr.202400648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
A low-carbohydrate and high-protein (LC-HP) diet demonstrates favorable impacts on metabolic parameters, albeit it leads to a decline in hippocampal function with the decreased expression of hippocampal insulin-like growth factor-1 receptor (IGF-1R) among healthy mice. However, the precise mechanisms underlying this phenomenon remain unexplored. Eight-week-old male C57BL/6 mice were divided into the LC-HP diet-fed group (25.1% carbohydrate, 57.2% protein, and 17.7% fat as percentages of calories; n = 10) and the control diet-fed group (58.9% carbohydrate, 24.0% protein, and 17.1% fat; n = 10). After 4 weeks, all mice underwent the Y-maze test, followed by analyses of hippocampal mRNA and miRNA expressions. We revealed that feeding the LC-HP diet suppressed working memory function and hippocampal Igf1r mRNA levels in mice. Sequencing of hippocampal miRNA demonstrated 17 upregulated and 27 downregulated miRNAs in the LC-HP diet-fed mice. Notably, we found decreased hippocampal mRNA levels of low-density lipoprotein receptor-related protein 6 (Lrp6), a gene modulated by miR-539-3p, in mice fed the LC-HP diet. Furthermore, a significant positive correlation was observed between Lrp6 and Igf1r mRNA levels in the hippocampus. These findings suggest that LC-HP diets may suppress hippocampal function via the miR-539-3p/Lrp6/Igf1r axis.
Collapse
Affiliation(s)
- Takeru Shima
- Department of Health and Physical EducationCooperative Faculty of EducationGunma UniversityMaebashiGunmaJapan
| | - Hayate Onishi
- Course of Biomedical Sciences in Graduate School of MedicineGunma UniversityMaebashiGunmaJapan
| | - Chiho Terashima
- Department of Health and Physical EducationCooperative Faculty of EducationGunma UniversityMaebashiGunmaJapan
| |
Collapse
|
3
|
Zhang Y, Deng Y, Yang Y, Yang Z, Yin Y, Xie J, Ding J, Shang Y, Zha Y, Yuan J. Polysaccharides from Dendrobium officinale delay diabetic kidney disease interstitial fibrosis through LncRNA XIST/TGF-β1. Biomed Pharmacother 2024; 175:116636. [PMID: 38677245 DOI: 10.1016/j.biopha.2024.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
PURPOSE Renal interstitial fibrosis is a pathological manifestation of the progression of diabetic kidney disease (DKD). Dendrobium officinale polysaccharides (DOP), one of the major active components of Dendrobium officinale, have hypoglycemic and hypolipidemic effects and are used clinically to treat diabetes. However, the role of DOP in delaying DKD progression remains unclear. This study aimed to explore the potential mechanisms by which DOP delays DKD renal interstitial fibrosis. METHODS Using db/db mice as a model of DKD, we administered DOP by gavage and observed its therapeutic effectiveness. Employing ASO technology, we knocked down lncRNA XIST expression in kidney tissues and detected the expression of lncRNA XIST, TGF-β1, and renal interstitial fibrosis-related molecules. RESULTS DOP was primarily composed of monosaccharides, with 91.57% glucose and 1.41% mannose, forming a spheroid-like structure. It has a high polydispersity index with an Mw/Mn of 6.146, and the polysaccharides are mainly connected by 4-Man(p) and 4-Glc(p) linkages. In the kidneys of db/db mice, lncRNA XIST and TGF-β1 are highly expressed; however, their expression is significantly reduced after gastric infusion with DOP, and upon knockdown of lncRNA XIST, it might delay the progression of renal interstitial fibrosis in DKD. CONCLUSION DOP may delay the progression of DKD renal interstitial fibrosis through the regulation of the LncRNA XIST/TGF-β1 related fibrotic pathway. This provides a new perspective for clinical strategies to delay the progression of DKD renal interstitial fibrosis.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China; Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yiyao Deng
- Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Centre for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Yuqi Yang
- Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Zhi Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China; Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yangyang Yin
- Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Jia Xie
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China; Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Jie Ding
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China; Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yu Shang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China; Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yan Zha
- Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China.
| | - Jing Yuan
- Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China; NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China.
| |
Collapse
|
4
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
5
|
Yu CH, Hsieh PL, Chao SC, Chen SH, Liao YW, Yu CC. XIST/let-7i/HMGA1 axis maintains myofibroblasts activities in oral submucous fibrosis. Int J Biol Macromol 2023; 232:123400. [PMID: 36702230 DOI: 10.1016/j.ijbiomac.2023.123400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Long non-coding RNA XIST promotes the development of various types of head and neck cancers, but its role in the progression of precancerous oral submucous fibrosis (OSF) has not been determined yet. As such, we aimed to examine whether XIST implicates in the regulation of myofibroblast activation. Our results showed that the expression of XIST was upregulated in OSF tissues and fibrotic buccal mucosal fibroblasts (fBMFs), and the silencing of XIST downregulated several myofibroblasts features. We demonstrated that elevation of let-7i after inhibition of XIST may lead to reduced myofibroblast activation. On the contrary, overexpression of high mobility group AT-Hook 1 (HMGA1) following the suppression of let-7i may result in enhanced myofibroblast activities. Moreover, we showed that the suppressive effect of silencing of XIST on myofibroblasts hallmarks was reversed by let-7i inhibition or HMGA1 overexpression, suggesting the pro-fibrotic property of XIST was mediated by downregulation of let-7i and upregulation of HMGA1. These findings revealed that myofibroblast activation of fBMFs may attribute to the alteration of the XIST/let-7i/HMGA1 axis. Therapeutic approaches to target this axis may serve as a promising direction to ameliorate the malignant progression of OSF.
Collapse
Affiliation(s)
- Chuan-Hang Yu
- School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan.; Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 265, Taiwan
| | - Szu-Han Chen
- School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan.; Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan..
| |
Collapse
|
6
|
Li QY, Gong T, Huang YK, Kang L, Warner CA, Xie H, Chen LM, Duan XQ. Role of noncoding RNAs in liver fibrosis. World J Gastroenterol 2023; 29:1446-1459. [PMID: 36998425 PMCID: PMC10044853 DOI: 10.3748/wjg.v29.i9.1446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/27/2022] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Liver fibrosis is a wound-healing response following chronic liver injury caused by hepatitis virus infection, obesity, or excessive alcohol. It is a dynamic and reversible process characterized by the activation of hepatic stellate cells and excess accumulation of extracellular matrix. Advanced fibrosis could lead to cirrhosis and even liver cancer, which has become a significant health burden worldwide. Many studies have revealed that noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs and circular RNAs, are involved in the pathogenesis and development of liver fibrosis by regulating signaling pathways including transforming growth factor-β pathway, phosphatidylinositol 3-kinase/protein kinase B pathway, and Wnt/β-catenin pathway. NcRNAs in serum or exosomes have been reported to tentatively applied in the diagnosis and staging of liver fibrosis and combined with elastography to improve the accuracy of diagnosis. NcRNAs mimics, ncRNAs in mesenchymal stem cell-derived exosomes, and lipid nanoparticles-encapsulated ncRNAs have become promising therapeutic approaches for the treatment of liver fibrosis. In this review, we update the latest knowledge on ncRNAs in the pathogenesis and progression of liver fibrosis, and discuss the potentials and challenges to use these ncRNAs for diagnosis, staging and treatment of liver fibrosis. All these will help us to develop a comprehensive understanding of the role of ncRNAs in liver fibrosis.
Collapse
Affiliation(s)
- Qing-Yuan Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Tao Gong
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Yi-Ke Huang
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| | - Lan Kang
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| | - Charlotte A Warner
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - He Xie
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xi’an 710077, Shaanxi Province, China
| | - Li-Min Chen
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xi’an 710077, Shaanxi Province, China
| | - Xiao-Qiong Duan
- Center for Transfusion-transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, Sichuan Province, China
| |
Collapse
|
7
|
c-Myc-Regulated lncRNA-IGFBP4 Suppresses Autophagy in Cervical Cancer-Originated HeLa Cells. DISEASE MARKERS 2022; 2022:7240646. [PMID: 36072894 PMCID: PMC9444448 DOI: 10.1155/2022/7240646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
LncRNAs are known to regulate a plethora of key events of cellular processes; however, little is known about the function of lncRNAs in autophagy. Here in the current study, we report lncRNA-IGFBP4 which has previously been known to regulate the proliferation and reprogramming of cancer cells, but its role in autophagy is not yet known. We found that serum starvation provokes autophagy-induced downregulation of lncRNA-IGFBP4 levels. Next, we determined that c-Myc can negatively regulate lncRNA-IGFBP4 in HeLa cells. Phenotypically, we found that upon depletion of lncRNA-IGFBP4, the HeLa cells undergo autophagy through ULK1/Beclin1 signaling. Furthermore, through TCGA data analysis, we found lncRNA-IGFB4 overexpressed in most cancers including cervical cancer. Based on these findings, we conclude that c-Myc maintains cellular homeostasis through negatively regulating lncRNA-IGFBP4 in cervical cancer cells.
Collapse
|