1
|
Shi G, Wei J, Rahemu S, Zhou J, Li X. Study on the regulatory mechanism of luteolin inhibiting WDR72 on the proliferation and metastasis of non small cell lung cancer. Sci Rep 2025; 15:12398. [PMID: 40216870 PMCID: PMC11992086 DOI: 10.1038/s41598-025-96666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a major cause of cancer-related mortality worldwide. Understanding molecular mechanisms and identifying potential therapeutic targets are crucial for improving treatment outcomes. This study aims to explore the effect of luteolin on NSCLC progression by regulating WDR72 and to investigate the related molecular mechanisms using cellular and animal models. The study employed a comprehensive set of experiments to evaluate the impact of luteolin and WDR72 on NSCLC cell proliferation and metastasis. Techniques included the CCK- 8 assay, colony formation assay, scratch test, and Transwell assay. Molecular docking experiments were performed to validate the binding interaction between luteolin and WDR72. Experimental groups included OE-WDR72, OE-WDR72 + Luteolin, Control, Control + Luteolin, and sh-WDR72. Western blot analysis was used to examine protein expression related to apoptosis, epithelial-mesenchymal transition (EMT), AKT signaling, and other markers. Additionally, a nude mouse subcutaneous tumor model was established to assess the in vivo tumor-forming ability of NSCLC cells under different treatments. Luteolin significantly inhibited the proliferation, invasion, and migration of NSCLC cell lines (H1299 and A549) and reduced tumor formation in nude mice. Molecular docking demonstrated strong binding affinity between luteolin and WDR72. Overexpression of WDR72 promoted NSCLC cell proliferation and migration, while WDR72 silencing showed the opposite effects. Western blot analysis revealed that WDR72 overexpression increased phosphorylated AKT and Bcl- 2 levels while decreasing caspase- 3. In contrast, silencing WDR72 reduced these protein levels. Luteolin treatment in WDR72-overexpressing cells resulted in decreased phosphorylated AKT, increased apoptosis, and suppressed EMT. Tumor transplantation experiments indicated that tumors in the OE-WDR72 group exhibited the fastest growth, while the sh-WDR72 group showed the slowest growth. Luteolin treatment significantly reduced WDR72 expression, suggesting a regulatory role in NSCLC progression. Luteolin effectively inhibits EMT, invasion, and migration of NSCLC cells by modulating WDR72. WDR72 plays a pivotal role in stimulating the proliferation and metastasis of NSCLC cells. By downregulating WDR72, luteolin suppresses NSCLC progression, potentially through modulation of the PI3 K/AKT/EMT signaling pathway. These findings highlight luteolin as a promising therapeutic agent for NSCLC treatment.
Collapse
Affiliation(s)
- Guanglin Shi
- Department of Respiratory Diseases, Affiliated Nantong Hospital of Shanghai University (the Sixth People'S Hospital of Nantong), Nantong, 226011, Jiangsu, PR China
| | - Jiashuai Wei
- Department of Respiratory Diseases, Affiliated Nantong Hospital of Shanghai University (the Sixth People'S Hospital of Nantong), Nantong, 226011, Jiangsu, PR China
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Subi Rahemu
- Department of Respiratory Diseases, Yining County People's Hospital, Kazakh Autonomous Prefecture, Xinjiang Uyghur Autonomous Region, Beijing, 835000, PR China
| | - Jiujian Zhou
- Department of Emergency, Affiliated Nantong Hospital of Shanghai University (the Sixth People'S Hospital of Nantong), Nantong, 226011, Jiangsu, PR China.
| | - Xia Li
- Department of General Medicine, Yancheng Third People's Hospital, Affiliated Hospital 6 of Nantong University, Yancheng, 224000, PR China.
| |
Collapse
|
2
|
Yuan J, Yang L, Li Z, Zhang H, Wang Q, Wang B, Chinnathambi A, Govindasamy C, Basappa S, Nagaraja O, Madegowda M, Beeraka NM, Nikolenko VN, Wang M, Wang G, Rangappa KS, Basappa B. Pyrimidine-triazole-tethered tert-butyl-piperazine-carboxylate suppresses breast cancer by targeting estrogen receptor signaling and β-catenin activation. IUBMB Life 2024; 76:1309-1324. [PMID: 39275910 DOI: 10.1002/iub.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 09/16/2024]
Abstract
Several chemotherapeutics against breast cancer are constrained by their adverse effects and chemoresistance. The development of novel chemotherapeutics to target metastatic breast cancer can bring effective clinical outcomes. Many breast cancer patients present with tumors that are positive for estrogen receptors (ERs), highlighting the importance of targeting the ER pathway in this particular subtype. Although selective estrogen receptor modulators (SERMs) are commonly used, their side effects and resistance issues necessitate the development of new ER-targeting agents. In this study, we report that a newly synthesized compound, TTP-5, a hybrid of pyrimidine, triazole, and tert-butyl-piperazine-carboxylate, effectively binds to estrogen receptor alpha (ERα) and suppresses breast cancer cell growth. We assessed the impact of TTP-5 on cell proliferation using MTT and colony formation assays and evaluated its effect on cell motility through wound healing and invasion assays. We further explored the mechanism of action of this novel compound by detecting protein expression changes using Western blotting. Molecular docking was used to confirm the interaction of TTP-5 with ERα. The results indicated that TTP-5 significantly reduced the proliferation of MCF-7 cells by blocking the ERα signaling pathway. Conversely, although it did not influence the growth of MDA-MB-231 cells, TTP-5 hindered their motility by modulating the expression of proteins associated with epithelial-mesenchymal transition (EMT), possibly via the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi Li
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bei Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Medchal, India
| | | | | | - Narasimha M Beeraka
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, India
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | | | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, India
| |
Collapse
|
3
|
Huang WS, Wu KL, Chen CN, Chang SF, Lee DY, Lee KC. Amphiregulin Upregulation in Visfatin-Stimulated Colorectal Cancer Cells Reduces Sensitivity to 5-Fluororacil Cytotoxicity. BIOLOGY 2024; 13:821. [PMID: 39452130 PMCID: PMC11505234 DOI: 10.3390/biology13100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Colorectal cancer (CRC) has become a prevalent and deadly malignancy over the years. Drug resistance remains a major challenge in CRC treatment, significantly affecting patient survival rates. Obesity is a key risk factor for CRC development, and accumulating evidence indicates that increased secretion of adipokines, including Visfatin, under obese conditions contributes to the development of resistance in CRC to various therapeutic methods. Amphiregulin (AREG) is a member of the epidermal growth factor (EGF) family, which activates the EGF receptor (EGFR), influencing multiple tumorigenic characteristics of cancers. Abnormal expression levels of AREG in cancer cells have been associated with resistance to anti-EGFR therapy in patients. However, it remains unclear whether this abnormal expression also impacts CRC resistance to other chemotherapeutic drugs. The aim of this study is to examine whether AREG expression levels could be affected in CRC cells under Visfatin stimulation, thereby initiating the development of resistance to 5-fluororacil (5-FU). Through our results, we found that Visfatin indeed increases AREG expression, reducing the sensitivity of HCT-116 CRC cells to 5-FU cytotoxicity. Moreover, AREG upregulation is regulated by STAT3-CREB transcription factors activated by JNK1/2 and p38 signaling. This study highlights the significant role of AREG upregulation in CRC cells in initiating chemotherapeutic resistance to 5-FU under Visfatin stimulation. These findings provide a deeper understanding of drug resistance development in CRC under obese conditions and offer new insights into the correlation between an abnormal increase in AREG levels and the development of 5-FU-resistance in CRC cells, which should be considered in future clinical applications.
Collapse
Affiliation(s)
- Wen-Shih Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Colon and Rectal Surgery, Department of Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Kuen-Lin Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung Medical Center, Kaohsiung 833, Taiwan;
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan;
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
- Center for General Education, Chiayi Chang Gung University of Science and Technology, Chiayi 613, Taiwan
| | - Ding-Yu Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung Medical Center, Kaohsiung 833, Taiwan;
| |
Collapse
|
4
|
Sergi D, Melloni M, Passaro A, Neri LM. Influence of Type 2 Diabetes and Adipose Tissue Dysfunction on Breast Cancer and Potential Benefits from Nutraceuticals Inducible in Microalgae. Nutrients 2024; 16:3243. [PMID: 39408212 PMCID: PMC11478231 DOI: 10.3390/nu16193243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer (BC) represents the most prevalent cancer in women at any age after puberty. From a pathogenetic prospective, despite a wide array of risk factors being identified thus far, poor metabolic health is emerging as a putative risk factor for BC. In particular, type 2 diabetes mellitus (T2DM) provides a perfect example bridging the gap between poor metabolic health and BC risk. Indeed, T2DM is preceded by a status of hyperinsulinemia and is characterised by hyperglycaemia, with both factors representing potential contributors to BC onset and progression. Additionally, the aberrant secretome of the dysfunctional, hypertrophic adipocytes, typical of obesity, characterised by pro-inflammatory mediators, is a shared pathogenetic factor between T2DM and BC. In this review, we provide an overview on the effects of hyperglycaemia and hyperinsulinemia, hallmarks of type 2 diabetes mellitus, on breast cancer risk, progression, treatment and prognosis. Furthermore, we dissect the role of the adipose-tissue-secreted adipokines as additional players in the pathogenesis of BC. Finally, we focus on microalgae as a novel superfood and a source of nutraceuticals able to mitigate BC risk by improving metabolic health and targeting cellular pathways, which are disrupted in the context of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Zhao YC, Li YF, Qiu L, Jin SZ, Shen YN, Zhang CH, Cui J, Wang TJ. SQLE-a promising prognostic biomarker in cervical cancer: implications for tumor malignant behavior, cholesterol synthesis, epithelial-mesenchymal transition, and immune infiltration. BMC Cancer 2024; 24:1133. [PMID: 39261819 PMCID: PMC11389260 DOI: 10.1186/s12885-024-12897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Cervical cancer, encompassing squamous cell carcinoma and endocervical adenocarcinoma (CESC), presents a considerable risk to the well-being of women. Recent studies have reported that squalene epoxidase (SQLE) is overexpressed in several cancers, which contributes to cancer development. METHODS RNA sequencing data for SQLE were obtained from The Cancer Genome Atlas. In vitro experiments, including colorimetry, colony formation, Transwell, RT-qPCR, and Western blotting were performed. Furthermore, a transplanted CESC nude mouse model was constructed to validate the tumorigenic activity of SQLE in vivo. Associations among the SQLE expression profiles, differentially expressed genes (DEGs), immune infiltration, and chemosensitivity were examined. The prognostic value of genetic changes and DNA methylation in SQLE were also assessed. RESULTS SQLE mRNA expression was significantly increased in CESC. ROC analysis revealed the strong diagnostic ability of SQLE toward CESC. Patients with high SQLE expression experienced shorter overall survival. The promotional effects of SQLE on cancer cell proliferation, metastasis, cholesterol synthesis, and EMT were emphasized. DEGs functional enrichment analysis revealed the signaling pathways and biological processes. Notably, a connection existed between the SQLE expression and the presence of immune cells as well as the activation of immune checkpoints. Increased SQLE expressions exhibited increased chemotherapeutic responses. SQLE methylation status was significantly associated with CESC prognosis. CONCLUSION SQLE significantly affects CESC prognosis, malignant behavior, cholesterol synthesis, EMT, and immune infiltration; thereby offering diagnostic and indicator roles in CESC. Thus, SQLE can be a novel therapeutic target in CESC treatment.
Collapse
MESH Headings
- Humans
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/pathology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/mortality
- Female
- Epithelial-Mesenchymal Transition/genetics
- Animals
- Prognosis
- Squalene Monooxygenase/genetics
- Squalene Monooxygenase/metabolism
- Mice
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cholesterol/metabolism
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- DNA Methylation
- Cell Line, Tumor
- Cell Proliferation
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/immunology
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adenocarcinoma/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
Collapse
Affiliation(s)
- Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, 218 Zi-qiang Street, Nan-guan District, Changchun, Jilin, 130041, PR China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yun-Feng Li
- Department of Radiation Oncology, The Second Hospital of Jilin University, 218 Zi-qiang Street, Nan-guan District, Changchun, Jilin, 130041, PR China
| | - Ling Qiu
- Department of Radiation Oncology, The Second Hospital of Jilin University, 218 Zi-qiang Street, Nan-guan District, Changchun, Jilin, 130041, PR China
| | - Shun-Zi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yan-Nan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China
| | - Chao-He Zhang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, PR China
| | - Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin University, 218 Zi-qiang Street, Nan-guan District, Changchun, Jilin, 130041, PR China
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, 218 Zi-qiang Street, Nan-guan District, Changchun, Jilin, 130041, PR China.
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
6
|
Tian Y, Tang L, Wang X, Ji Y, Tu Y. Nrf2 in human cancers: biological significance and therapeutic potential. Am J Cancer Res 2024; 14:3935-3961. [PMID: 39267682 PMCID: PMC11387866 DOI: 10.62347/lzvo6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear factor-erythroid 2-related factor 2 (Nrf2) is able to control the redox balance in the cells responding to oxidative damage and other stress signals. The Nrf2 upregulation can elevate the levels of antioxidant enzymes to support against damage and death. In spite of protective function of Nrf2 in the physiological conditions, the stimulation of Nrf2 in the cancer has been in favour of tumorigenesis. Since the dysregulation of molecular pathways and mutations/deletions are common in tumors, Nrf2 can be a promising therapeutic target. The Nrf2 overexpression can prevent cell death in tumor and by increasing the survival rate of cancer cells, ensures the carcinogenesis. Moreover, the induction of Nrf2 can promote the invasion and metastasis of tumor cells. The Nrf2 upregulation stimulates EMT to increase cancer metastasis. Furthermore, regarding the protective function of Nrf2, its stimulation triggers chemoresistance. The natural products can regulate Nrf2 in the cancer therapy and reverse drug resistance. Moreover, nanostructures can specifically target Nrf2 signaling in cancer therapy. The current review discusses the potential function of Nrf2 in the proliferation, metastasis and drug resistance. Then, the capacity of natural products and nanostructures for suppressing Nrf2-mediated cancer progression is discussed.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
- School of Public Health, Benedictine University Lisle, Illinois, USA
| | - Lixin Tang
- Department of Respiratory, Chongqing Public Health Medical Center Chongqing, China
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts, USA
| | - Yanqin Ji
- Department of Administration, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University Huizhou, Guangdong, China
| |
Collapse
|
7
|
Liu Y, Ding L, Chen G, Wang P, Wang X. A thermo-sensitive hydrogel with prominent hemostatic effect prevents tumor recurrence via anti-anoikis-resistance. J Nanobiotechnology 2024; 22:496. [PMID: 39164723 PMCID: PMC11334358 DOI: 10.1186/s12951-024-02739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Tumor cells can survive when detached from the extracellular matrix (ECM) or lose cell-cell connections, a phenomenon known as anoikis-resistance (AR). AR is closely associated with tumor cell metastasis and recurrence, enabling tumor cells to disseminate, migrate, and invade after detachment. To address this issue, a novel intervention method combining intraoperative hemostasis with multifunctional nanozyme driven-enhanced chemodynamic therapy (ECDT) has been proposed, which holds the potential to weaken the AR capability of tumor cells and suppress tumor recurrence. Here, a nanocomposite containing a dendritic mesoporous nanoframework with Cu2+ was developed using an anion-assisted approach after surface PEG grafting and glucose oxidase (GOx) anchoring (DMSN-Cu@GOx/PEG). DMSN-Cu@GOx/PEG was further encapsulated in a thermal-sensitive hydrogel (H@DMSN-Cu@GOx/PEG). DMSN-Cu@GOx/PEG utilizes its high peroxidase (POD) activity to elevate intracellular ROS levels, thereby weakening the AR capability of bladder cancer cells. Additionally, through its excellent catalase (CAT) activity, DMSN-Cu@GOx/PEG converts the high level of hydrogen peroxide (H2O2) catalyzed by intracellular GOx into oxygen (O2), effectively alleviating tumor hypoxia, downregulating hypoxia-inducible factor-1α (HIF-1α) expression, inhibiting epithelial-mesenchymal transition (EMT) processes, and ultimately suppressing the migration and invasion of bladder cancer cells. Interestingly, in vivo results showed that the thermosensitive hydrogel H@DMSN-Cu@GOx/PEG could rapidly gel at body temperature, forming a gel film on wounds to eliminate residual tumor tissue after tumor resection surgery. Importantly, H@DMSN-Cu@GOx/PEG exhibited excellent hemostatic capabilities, effectively enhancing tissue coagulation during post-tumor resection surgery and mitigating the risk of cancer cell dissemination and recurrence due to surgical bleeding. Such hydrogels undoubtedly possess strong surgical application. Our developed novel nanosystem and hydrogel can inhibit the AR capability of tumor cells and prevent recurrence post-surgery. This study represents the first report of using dendritic mesoporous silica-based nanoreactors for inhibiting the AR capability of bladder cancer cells and suppressing tumor recurrence post-surgery, providing a new avenue for developing strategies to impede tumor recurrence after surgery.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Key Laboratory of Urological Diseases, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Lei Ding
- School of Rare Earths, University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
| | - Gaojie Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Key Laboratory of Urological Diseases, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research On the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
- Hubei Key Laboratory of Urological Diseases, Wuhan University, Wuhan, 430071, People's Republic of China.
- Medical Research Institute, Wuhan University, Wuhan, 430071, People's Republic of China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
8
|
Bevanda M, Kelam N, Racetin A, Filipović N, Bevanda Glibo D, Bevanda I, Vukojević K. Expression Pattern of PDE4B, PDE4D, and SFRP5 Markers in Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1202. [PMID: 39202484 PMCID: PMC11356070 DOI: 10.3390/medicina60081202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Colorectal cancer (CRC) is the most frequently diagnosed malignant disease of the gastrointestinal system, and new diagnostic and prognostic markers are needed to elucidate the complete tumor profile. Materials and Methods: We used CRC tumor tissues (Dukes' A-D) and adjacent noncancerous tissues of 43 patients. Immunohistochemistry was used to examine the expression of phosphodiesterase 4B (PDE4B), phosphodiesterase 4D (PDE4D), and secreted frizzled related protein 5 (SFRP5) markers. We also analyzed the expression levels of PDE4B, PDE4D, and SFRP5 in CRC tissues compared to control tissues using RNA-sequencing data from the UCSC Xena browser. Results: In CRC stages, the distribution of PDE4B-positive cells varied, with differing percentages between epithelium and lamina propria. Statistically significant differences were found in the number of PDE4B-positive epithelial cells between healthy controls and all CRC stages, as well as between different CRC stages. Similarly, significant differences were observed in the number of PDE4B-positive cells in the lamina propria between healthy controls and all CRC stages, as well as between different CRC stages. CRC stage Dukes' C exhibited a significantly higher number of PDE4B-positive cells in the lamina propria compared to CRC stage Dukes' B. Significant differences were noted in the number of PDE4D-positive epithelial cells between healthy controls and CRC stages Dukes' A, B, and D, as well as between CRC stage Dukes' C and stages A, B, and D. CRC stage Dukes' A had significantly more PDE4D-positive cells in the lamina propria compared to stage D. Significant differences were also observed in the number of SFRP5-positive cells in the lamina propria between healthy controls and all CRC stages, as well as between CRC stages Dukes' A and D. While the expression of PDE4D varied across CRC stages, the expression of SFRP5 remained consistently strong in both epithelium and lamina propria, with significant differences noted mainly in the lamina propria. The expression levels of PDE4B, PDE4D, and SFRP5 reveal significant differences in the expression of these genes between CRC patients and healthy controls, with notable implications for patient prognosis. Namely, our results demonstrate that PDE4B, PDE4D, and SFRP5 are significantly under-expressed in CRC tissues compared to control tissues. The Kaplan-Meier survival analysis and the log-rank (Mantel-Cox) test revealed distinct prognostic implications where patients with lower expression levels of SFRP5 exhibited significantly longer overall survival. The data align with our immunohistochemical results and might suggest a potential tumor-suppressive role for these genes in CRC. Conclusions: Considering significantly lower gene expression, aligned with our immunohistochemical data in tumor tissue in comparison to the control tissue, as well as the significantly poorer survival rate in the case of its higher expression, we can hypothesize that SFRP5 is the most promising biomarker for CRC out of the observed proteins. These findings suggest alterations in PDE4B, PDE4D, and SFRP5 expression during CRC progression, as well as between different stages of CRC, with potential implications for understanding the molecular mechanisms involved in CRC development and progression.
Collapse
Affiliation(s)
- Mateo Bevanda
- Department of Surgery, School of Medicine, University of Mostar, University Hospital Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Nela Kelam
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Anita Racetin
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Natalija Filipović
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Daniela Bevanda Glibo
- Department of Gastroenterology, School of Medicine, University of Mostar, University Hospital Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Ivana Bevanda
- Department of Endocrinology, School of Medicine, University of Mostar, University Hospital Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina;
| | - Katarina Vukojević
- Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (N.K.); (A.R.); (N.F.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| |
Collapse
|
9
|
Li J, Wu J, Xie Y, Yu X. Bone marrow adipocytes and lung cancer bone metastasis: unraveling the role of adipokines in the tumor microenvironment. Front Oncol 2024; 14:1360471. [PMID: 38571500 PMCID: PMC10987778 DOI: 10.3389/fonc.2024.1360471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Bone is a common site of metastasis for lung cancer. The "seed and soil" hypothesis suggests that the bone marrow microenvironment ("soil") may provide a conducive survival environment for metastasizing tumor cells ("seeds"). The bone marrow microenvironment, comprising a complex array of cells, includes bone marrow adipocytes (BMAs), which constitute about 70% of the adult bone marrow volume and may play a significant role in tumor bone metastasis. BMAs can directly provide energy for tumor cells, promoting their proliferation and migration. Furthermore, BMAs participate in the tumor microenvironment's osteogenesis regulation, osteoclast(OC) regulation, and immune response through the secretion of adipokines, cytokines, and inflammatory factors. However, the precise mechanisms of BMAs in lung cancer bone metastasis remain largely unclear. This review primarily explores the role of BMAs and their secreted adipokines (leptin, adiponectin, Nesfatin-1, Resistin, chemerin, visfatin) in lung cancer bone metastasis, aiming to provide new insights into the mechanisms and clinical treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Shandong Second Provincial General Hospital, Jinan, China
| | - Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Xie
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Capuozzo M, Celotto V, Landi L, Ferrara F, Sabbatino F, Perri F, Cascella M, Granata V, Santorsola M, Ottaiano A. Beyond Body Size: Adiponectin as a Key Player in Obesity-Driven Cancers. Nutr Cancer 2023; 75:1848-1862. [PMID: 37873648 DOI: 10.1080/01635581.2023.2272343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023]
Abstract
Obesity, a complex and multifactorial disease influenced by genetic, environmental, and psychological factors, has reached epidemic proportions globally, posing a significant health challenge. In addition to its established association with cardiovascular disease and type II diabetes, obesity has been implicated as a risk factor for various cancers. However, the precise biological mechanisms linking obesity and cancer remain largely understood. Adipose tissue, an active endocrine organ, produces numerous hormones and bioactive molecules known as adipokines, which play a crucial role in metabolism, immune responses, and systemic inflammation. Notably, adiponectin (APN), the principal adipocyte secretory protein, exhibits reduced expression levels in obesity. In this scoping review, we explore and discuss the role of APN in influencing cancer in common malignancies, including lung, breast, colorectal, prostate, gastric, and endometrial cancers. Our review aims to emphasize the critical significance of investigating this field, as it holds great potential for the development of innovative treatment strategies that specifically target obesity-related malignancies. Furthermore, the implementation of more rigorous and comprehensive prevention and treatment policies for obesity is imperative in order to effectively mitigate the risk of associated diseases, such as cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | | | | |
Collapse
|
11
|
Odarenko KV, Salomatina OV, Chernikov IV, Salakhutdinov NF, Zenkova MA, Markov AV. Soloxolone Methyl Reduces the Stimulatory Effect of Leptin on the Aggressive Phenotype of Murine Neuro2a Neuroblastoma Cells via the MAPK/ERK1/2 Pathway. Pharmaceuticals (Basel) 2023; 16:1369. [PMID: 37895840 PMCID: PMC10610011 DOI: 10.3390/ph16101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Despite the proven tumorigenic effect of leptin on epithelial-derived cancers, its impact on the aggressiveness of neural crest-derived cancers, notably neuroblastoma, remains largely unexplored. In our study, for the first time, transcriptome analysis of neuroblastoma tissue demonstrated that the level of leptin is elevated in neuroblastoma patients along with the severity of the disease and is inversely correlated with patient survival. The treatment of murine Neuro2a neuroblastoma cells with leptin significantly stimulated their proliferation and motility and reduced cell adhesion, thus rendering the phenotype of neuroblastoma cells more aggressive. Given the proven efficacy of cyanoenone-bearing semisynthetic triterpenoids in inhibiting the growth of neuroblastoma and preventing obesity in vivo, the effect of soloxolone methyl (SM) on leptin-stimulated Neuro2a cells was further investigated. We found that SM effectively abolished leptin-induced proliferation of Neuro2a cells by inducing G1/S cell cycle arrest and restored their adhesiveness to extracellular matrix (ECM) proteins to near control levels through the upregulation of vimentin, zonula occludens protein 1 (ZO-1), cell adhesion molecule L1 (L1cam), and neural cell adhesion molecule 1 (Ncam1). Moreover, SM significantly suppressed the leptin-associated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and ribosomal protein S6 kinase A1 (p90RSK), which are key kinases that ensure the survival and proliferation of cancer cells. Further molecular modeling studies demonstrated that the inhibitory effect of SM on the mitogen-activated protein kinase (MAPK)/ERK1/2 signaling pathway can be mediated by its direct interaction with ERK2 and its upstream regulators, son of sevenless homolog 1 (SOS) and mitogen-activated protein kinase kinase 1 (MEK1). Taken together, our findings in murine Neuro2a cells provide novel evidence of the stimulatory effect of leptin on the aggressiveness of neuroblastoma, which requires further detailed studies in human neuroblastoma cells and relevant animal models. The obtained results indicate that SM can be considered a promising drug candidate capable of reducing the impact of adipokines on tumor progression.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| |
Collapse
|
12
|
Bocian-Jastrzębska A, Malczewska-Herman A, Kos-Kudła B. Role of Leptin and Adiponectin in Carcinogenesis. Cancers (Basel) 2023; 15:4250. [PMID: 37686525 PMCID: PMC10486522 DOI: 10.3390/cancers15174250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hormones produced by adipocytes, leptin and adiponectin, are associated with the process of carcinogenesis. Both of these adipokines have well-proven oncologic potential and can affect many aspects of tumorigenesis, from initiation and primary tumor growth to metastatic progression. Involvement in the formation of cancer includes interactions with the tumor microenvironment and its components, such as tumor-associated macrophages, cancer-associated fibroblasts, extracellular matrix and matrix metalloproteinases. Furthermore, these adipokines participate in the epithelial-mesenchymal transition and connect to angiogenesis, which is critical for cancer invasiveness and cancer cell migration. In addition, an enormous amount of evidence has demonstrated that altered concentrations of these adipocyte-derived hormones and the expression of their receptors in tumors are associated with poor prognosis in various types of cancer. Therefore, leptin and adiponectin dysfunction play a prominent role in cancer and impact tumor invasion and metastasis in different ways. This review clearly and comprehensively summarizes the recent findings and presents the role of leptin and adiponectin in cancer initiation, promotion and progression, focusing on associations with the tumor microenvironment and its components as well as roles in the epithelial-mesenchymal transition and angiogenesis.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland; (A.M.-H.); (B.K.-K.)
| | | | | |
Collapse
|
13
|
Huang CL, Achudhan D, Liu PI, Lin YY, Liu SC, Guo JH, Liu CL, Wu CY, Wang SW, Tang CH. Visfatin upregulates VEGF-C expression and lymphangiogenesis in esophageal cancer by activating MEK1/2-ERK and NF-κB signaling. Aging (Albany NY) 2023; 15:204762. [PMID: 37286356 DOI: 10.18632/aging.204762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Lymph node metastasis is a recognized prognostic factor in esophageal cancer. Adipokines, including visfatin, and the molecule vascular endothelial growth factor (VEGF)-C, are implicated in lymphangiogenesis, but whether any association exists between esophageal cancer, adipokines and VEGF-C is unknown. We examined the relevance of adipokines and VEGF-C in esophageal squamous cell carcinoma (ESCC) in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. We found significantly higher levels of visfatin and VEGF-C expression in esophageal cancer tissue than in normal tissue. Immunohistochemistry (IHC) staining identified that higher levels of visfatin and VEGF-C expression were correlated with advanced stage ESCC. Visfatin treatment of ESCC cell lines upregulated VEGF-C expression and VEGF-C-dependent lymphangiogenesis in lymphatic endothelial cells. Visfatin induced increases in VEGF-C expression by activating the mitogen-activated protein kinase kinases1/2-extracellular signal-regulated kinase (MEK1/2-ERK) and Nuclear Factor Kappa B (NF-κB) signaling cascades. Transfecting ESCC cells with MEK1/2-ERK and NF-κB inhibitors (PD98059, FR180204, PDTC, and TPCK) and siRNAs inhibited visfatin-induced increases in VEGF-C expression. It appears that visfatin and VEGF-C are promising therapeutic targets in the inhibition of lymphangiogenesis in esophageal cancer.
Collapse
Affiliation(s)
- Chang-Lun Huang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Surgery, Division of Thoracic Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - David Achudhan
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Po-I Liu
- Department of General Thoracic Surgery, Asia University Hospital, Taichung 41354, Taiwan
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan
| | - Yen-You Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 65152, Taiwan
| | - Jeng-Hung Guo
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chun-Lin Liu
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chih-Ying Wu
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 406040, Taiwan
- Department of Neurosurgery, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan
- College of Pharmacy, Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 406040, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan
| |
Collapse
|