1
|
Yan C, Bai L, Du J, Chong Z, Xu G, Yang X. Severe anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor encephalitis with prolonged hyperammonemia: a case report. BMC Neurol 2025; 25:43. [PMID: 39891080 PMCID: PMC11783855 DOI: 10.1186/s12883-025-04040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor encephalitis (Anti-AMPAR-E) is a very rare subtype of autoimmune encephalitis, typically presenting with memory decline, seizures, and changes in psychosis and behavior. Anti-AMPAR-E is often associated with the presence of neoplasms and generally has a poor prognosis. Currently, cases of severe anti-AMPAR-E, particularly those accompanied by hyperammonemia, are exceedingly rare. CASE PRESENTATION A 66-year-old man was admitted to the hospital, complaining of deterioration in memory and confusion for at least 10 days and worsening for 3 days. The patient's condition rapidly progressed to coma, which persisted for 2 months, manifesting as a fulminant course. At that time, his Glasgow Coma Scale (GCS) score was 6, and AMPAR antibodies were strongly positive in both serum and cerebrospinal fluid (CSF). Additionally, his serum ammonia levels consistently exceeded reference values during his hospital stay. Consequently, he was diagnosed with severe anti-AMPAR-E with prolonged hyperammonemia and treated with intravenous methylprednisolone pulse (IVMP) therapy, intravenous immunoglobulin (IVIG), and rituximab therapy until he regained consciousness. However, 10 months after discharge, he was readmitted to the hospital due to seizures and subsequently diagnosed with lung cancer. The patient eventually passed away at home. CONCLUSIONS Even if the short-term prognosis is good, regular tumor-related screening is essential for patients with severe anti-AMPAR-E to detect potential tumors early and improve long-term outcomes. Moreover, it is necessary to perform repeated ammonia level assessments and to adequately treat hyperammonemia.
Collapse
Affiliation(s)
- Chunxia Yan
- Department of Neurology, Liaocheng People ' s Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China
| | - Lingling Bai
- Department of Neurology, Liaocheng People ' s Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China
| | - Jingwei Du
- Department of Neurology, Liaocheng People ' s Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China
| | - Zonglei Chong
- Department of Neurosurgery, Liaocheng People's Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China
| | - Guangjun Xu
- Department of Neurology, Liaocheng People ' s Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China.
| | - Xiaoqian Yang
- Department of Neurology, Liaocheng People ' s Hospital, No. 45 Huashan Road, Economic Development Zone, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
2
|
Zhang Y, Wang Z, Xu F, Liu Z, Zhao Y, Yang LZ, Fang W. Progress of Astrocyte-Neuron Crosstalk in Central Nervous System Diseases. Neurochem Res 2024; 49:3187-3207. [PMID: 39292330 DOI: 10.1007/s11064-024-04241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Neurons are the primary cells responsible for information processing in the central nervous system (CNS). However, they are vulnerable to damage and insult in a variety of neurological disorders. As the most abundant glial cells in the brain, astrocytes provide crucial support to neurons and participate in synapse formation, synaptic transmission, neurotransmitter recycling, regulation of metabolic processes, and the maintenance of the blood-brain barrier integrity. Though astrocytes play a significant role in the manifestation of injury and disease, they do not work in isolation. Cellular interactions between astrocytes and neurons are essential for maintaining the homeostasis of the CNS under both physiological and pathological conditions. In this review, we explore the diverse interactions between astrocytes and neurons under physiological conditions, including the exchange of neurotrophic factors, gliotransmitters, and energy substrates, and different CNS diseases such as Alzheimer's disease, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. This review sheds light on the contribution of astrocyte-neuron crosstalk to the progression of neurological diseases to provide potential therapeutic targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Zijun Liu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Yu Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China
| | - Lele Zixin Yang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, PA, 19107, USA
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, 210009, P. R. China.
| |
Collapse
|
3
|
Gallego-Durán R, Hadjihambi A, Ampuero J, Rose CF, Jalan R, Romero-Gómez M. Ammonia-induced stress response in liver disease progression and hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 2024; 21:774-791. [PMID: 39251708 DOI: 10.1038/s41575-024-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Javier Ampuero
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
4
|
Bhattacharyya A, Ayele GM, Zinabu SW, Atalay RT, Mohammed A, Siraga M, Gao L, Adithya Sateesh B, Gasmelseed H, Michael MB. Dual Dialysis for Post-bilateral Orthotopic Lung Transplantation Hyperammonemia. Cureus 2024; 16:e63607. [PMID: 39092390 PMCID: PMC11292152 DOI: 10.7759/cureus.63607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/30/2024] [Indexed: 08/04/2024] Open
Abstract
Hyperammonemia is a metabolic disorder characterized by supraphysiologic ammonia (NH3) concentrations in the blood. Although usually seen in adults with liver disease, hyperammonemia is a notable complication in 4.1% of lung transplants. It is associated with cerebral edema and neurological dysfunction and carries up to 75% mortality in critically ill patients. Opportunistic infections caused by Mycoplasma and Ureaplasma species have been implicated as the cause of this metabolic disturbance. Literature in neonates has shown that renal replacement therapy (RRT) is the best choice for treating patients with neurologic manifestations of hyperammonemia, in cases of NH3 clearance than continuous renal replacement therapy (CRRT). In contrast, continuous venovenous hemodialysis (CVVHD) is usually better tolerated for patients with hemodynamic instability for NH3 clearance. NH3 is a small molecule whose clearance mirrors urea in dialysis. Even though RRT can be a treatment modality for hyperammonemia in adults and neonates, there is very little literature on adults. We present a unique case demonstrating improvement in neurologic manifestations of hyperammonemia by using both IHD and CVVHD in an adult patient.
Collapse
Affiliation(s)
| | - Girma M Ayele
- Internal Medicine, Howard University Hospital, Washington, D.C., USA
| | - Samrawit W Zinabu
- Internal Medicine, Howard University Hospital, Washington, D.C., USA
| | | | - Ahmad Mohammed
- Internal Medicine, Howard University Hospital, Washington, D.C., USA
| | - Mahlet Siraga
- Internal Medicine, Howard University Hospital, Washington, D.C., USA
| | - Lucia Gao
- Internal Medicine, Howard University Hospital, Washington, D.C., USA
| | - Bharadwaj Adithya Sateesh
- Medicine, University of Maryland, Baltimore, USA
- Medicine, American University of Antigua, St John's, ATG
| | - Huda Gasmelseed
- Internal Medicine, Howard University Hospital, Washington, D.C., USA
| | - Miriam B Michael
- Internal Medicine, Howard University Hospital, Washington, D.C., USA
- Internal Medicine, University of Maryland, Baltimore, USA
| |
Collapse
|
5
|
Anand AC, Acharya SK. The Story of Ammonia in Liver Disease: An Unraveling Continuum. J Clin Exp Hepatol 2024; 14:101361. [PMID: 38444405 PMCID: PMC10910335 DOI: 10.1016/j.jceh.2024.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024] Open
Abstract
Hyperammonemia and liver disease are closely linked. Most of the ammonia in our body is produced by transamination and deamination activities involving amino acid, purine, pyrimidines, and biogenic amines, and from the intestine by bacterial splitting of urea. The only way of excretion from the body is by hepatic conversion of ammonia to urea. Hyperammonemia is associated with widespread toxicities such as cerebral edema, hepatic encephalopathy, immune dysfunction, promoting fibrosis, and carcinogenesis. Over the past two decades, it has been increasingly utilized for prognostication of cirrhosis, acute liver failure as well as acute on chronic liver failure. The laboratory assessment of hyperammonemia has certain limitations, despite which its value in the assessment of various forms of liver disease cannot be negated. It may soon become an important tool to make therapeutic decisions about the use of prophylactic and definitive treatment in various forms of liver disease.
Collapse
|
6
|
Roy A, Trigun SK. The restoration of hippocampal nerve de-myelination by methylcobalamin relates with the enzymatic regulation of homocysteine level in a rat model of moderate grade hepatic encephalopathy. J Biochem Mol Toxicol 2024; 38:e23695. [PMID: 38511258 DOI: 10.1002/jbt.23695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
This article describes how methylcobalamin (MeCbl) restores nerve myelination in a moderate- grade hepatic encephalopathy (MoHE) model of ammonia neurotoxicity. The comparative profiles of myelin basic protein (MBP), homocysteine (Hcy) and methionine synthase (MS: a MeCbl- dependent enzyme) activity versus nerve myelination status were studied in the hippocampus of the control, the MoHE (developed by administering 100 mg/kg bw thioacetamide i.p. for 10 days) and the MoHE rats treated with MeCbl (500 µg/kg BW i.p.) for 7 days. Compared to those of control rats, the hippocampal CA1 and CA3 regions of the MoHE rats showed significantly lower myelinated areas and MBP immunostaining. This coincided with the deranged myelin layering in TEM images, decreased MBP protein and its transcript levels in hippocampus of MoHE rats. However, all these parameters recovered to normal levels after MeCbl treatment. MeCbl is a cofactor of MS that catalyzes the conversion of Hcy to methionine as a feeder step of methylation reactions. We observed significantly increased serum and hippocampal Hcy levels in MoHE rats, however, these levels were restored to control values with a concordant activation of MS due to MeCbl treatment. A significant recovery in neurobehavioral impairments in the MoHE rats due to MeCbl treatment was also observed. These findings suggest that MoHE pathogenesis is associated with deranged nerve myelination in the hippocampus and that MeCbl treatment is able to restore it mainly by activating MS, a MeCbl-dependent Hcy-metabolizing enzyme.
Collapse
Affiliation(s)
- Anima Roy
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Sancho-Alonso M, Arenas YM, Izquierdo-Altarejos P, Martinez-Garcia M, Llansola M, Felipo V. Enhanced Activation of the S1PR2-IL-1β-Src-BDNF-TrkB Pathway Mediates Neuroinflammation in the Hippocampus and Cognitive Impairment in Hyperammonemic Rats. Int J Mol Sci 2023; 24:17251. [PMID: 38139078 PMCID: PMC10744193 DOI: 10.3390/ijms242417251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperammonemia contributes to hepatic encephalopathy. In hyperammonemic rats, cognitive function is impaired by altered glutamatergic neurotransmission induced by neuroinflammation. The underlying mechanisms remain unclear. Enhanced sphingosine-1-phosphate receptor 2 (S1PR2) activation in the cerebellum of hyperammonemic rats contributes to neuroinflammation. in In hyperammonemic rats, we assessed if blocking S1PR2 reduced hippocampal neuroinflammation and reversed cognitive impairment and if the signaling pathways were involved. S1PR2 was blocked with intracerebral JTE-013, and cognitive function was evaluated. The signaling pathways inducing neuroinflammation and altered glutamate receptors were analyzed in hippocampal slices. JTE-013 improved cognitive function in the hyperammonemic rats, and hyperammonemia increased S1P. This increased IL-1β, which enhanced Src activity, increased CCL2, activated microglia and increased the membrane expression of the NMDA receptor subunit GLUN2B. This increased p38-MAPK activity, which altered the membrane expression of AMPA receptor subunits and increased BDNF, which activated the TrkB → PI3K → Akt → CREB pathway, inducing sustained neuroinflammation. This report unveils key pathways involved in the induction and maintenance of neuroinflammation in the hippocampus of hyperammonemic rats and supports S1PR2 as a therapeutic target for cognitive impairment.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
- Systems Neuropharmacology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Yaiza M. Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Paula Izquierdo-Altarejos
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Mar Martinez-Garcia
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (M.S.-A.); (Y.M.A.); (P.I.-A.); (M.M.-G.); (V.F.)
| |
Collapse
|
8
|
Ommati MM, Mobasheri A, Niknahad H, Rezaei M, Alidaee S, Arjmand A, Mazloomi S, Abdoli N, Sadeghian I, Sabouri S, Saeed M, Mousavi K, Najibi A, Heidari R. Low-dose ketamine improves animals' locomotor activity and decreases brain oxidative stress and inflammation in ammonia-induced neurotoxicity. J Biochem Mol Toxicol 2023; 37:e23468. [PMID: 37491939 DOI: 10.1002/jbt.23468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 06/10/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Ammonium ion (NH4 + ) is the major suspected molecule responsible for neurological complications of hepatic encephalopathy (HE). No specific pharmacological action for NH4 + -induced brain injury exists so far. Excitotoxicity is a well-known phenomenon in the brain of hyperammonemic cases. The hyperactivation of the N-Methyl- d-aspartate (NMDA) receptors by agents such as glutamate, an NH4 + metabolite, could cause excitotoxicity. Excitotoxicity is connected with events such as oxidative stress and neuroinflammation. Hence, utilizing NMDA receptor antagonists could prevent neurological complications of NH4 + neurotoxicity. In the current study, C57BL6/J mice received acetaminophen (APAP; 800 mg/kg, i.p) to induce HE. Hyperammonemic animals were treated with ketamine (0.25, 0.5, and 1 mg/kg, s.c) as an NMDA receptor antagonist. Animals' brain and plasma levels of NH4 + were dramatically high, and animals' locomotor activities were disturbed. Moreover, several markers of oxidative stress were significantly increased in the brain. A significant increase in brain tissue levels of TNF-α, IL-6, and IL-1β was also detected in hyperammonemic animals. It was found that ketamine significantly normalized animals' locomotor activity, improved biomarkers of oxidative stress, and decreased proinflammatory cytokines. The effects of ketamine on oxidative stress biomarkers and inflammation seem to play a key role in its neuroprotective mechanisms in the current study.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Alidaee
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Arjmand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mohsen Saeed
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Granados-Fuentes D, Cho K, Patti GJ, Costa R, Herzog ED, Montagnese S. Hyperammonaemia disrupts daily rhythms reversibly by elevating glutamate in the central circadian pacemaker. Liver Int 2023; 43:673-683. [PMID: 36367321 PMCID: PMC9974605 DOI: 10.1111/liv.15476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Patients with cirrhosis exhibit features of circadian disruption. Hyperammonaemia has been suggested to impair both homeostatic and circadian sleep regulation. Here, we tested if hyperammonaemia directly disrupts circadian rhythm generation in the central pacemaker, the suprachiasmatic nuclei (SCN) of the hypothalamus. Wheel-running activity was recorded from mice fed with a hyperammonaemic or normal diet for ~35 days in a 12:12 light-dark (LD) cycle followed by ~15 days in constant darkness (DD). The expression of the clock protein PERIOD2 (PER2) was recorded from SCN explants before, during and after ammonia exposure, ±glutamate receptor antagonists. In LD, hyperammonaemic mice advanced their daily activity onset time by ~1 h (16.8 ± 0.3 vs. 18.1 ± 0.04 h, p = .009) and decreased their total activity, concentrating it during the first half of the night. In DD, hyperammonaemia reduced the amplitude of daily activity (551.5 ± 27.7 vs. 724.9 ± 59 counts, p = .007), with no changes in circadian period. Ammonia (≥0.01 mM) rapidly and significantly reduced PER2 amplitude, and slightly increased circadian period. The decrease in PER2 amplitude correlated with decreased synchrony among circadian cells in the SCN and increased extracellular glutamate, which was rescued by AMPA glutamate receptor antagonists. These data suggest that hyperammonaemia affects circadian regulation of rest-activity behaviour by increasing extracellular glutamate in the SCN.
Collapse
Affiliation(s)
| | - Kevin Cho
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, USA
| | - Gary J. Patti
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, USA
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
- Institute of Neuroscience, National Research Council of Italy (CNR), Padova, Italy
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Erik D. Herzog
- Biology Department, Washington University in St. Louis, USA
| | - Sara Montagnese
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Department of Medicine, University of Padova, Italy
| |
Collapse
|
10
|
Zarante Bahamón AM, Navarro Marroquin S, Suarez-Obando F, Ramón Gómez JL. Recomendaciones de manejo de la hiperamonemia en neonatos. UNIVERSITAS MÉDICA 2023. [DOI: 10.11144/javeriana.umed63-4.rmhn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
La hiperamonemia se define como el aumento de las concentraciones de amonio en el plasma, de forma aguda o crónica. Frecuentemente, se presenta en diversos tipos de errores innatos del metabolismo, enfermedades que deben diagnosticarse y manejarse de manera inmediata y adecuada, debido a que el retraso en su manejo genera secuelas neurológicas graves y permanentes, así como desenlaces fatales. El objetivo del artículo es aportar herramientas al clínico para la sospecha, el abordaje diagnóstico y el manejo del recién nacido con hiperamonemia primaria, teniendo en cuenta la correlación entre fisiopatología, etiología, aproximación clínica y de laboratorio, así como recomendaciones de manejo farmacológico y no farmacológico.
Collapse
|
11
|
Undifferentiated non-hepatic hyperammonemia in the ICU: Diagnosis and management. J Crit Care 2022. [DOI: 10.1016/j.jcrc.2022.154042
expr 979693480 + 932749582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
12
|
Häussinger D, Dhiman RK, Felipo V, Görg B, Jalan R, Kircheis G, Merli M, Montagnese S, Romero-Gomez M, Schnitzler A, Taylor-Robinson SD, Vilstrup H. Hepatic encephalopathy. Nat Rev Dis Primers 2022; 8:43. [PMID: 35739133 DOI: 10.1038/s41572-022-00366-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 01/18/2023]
Abstract
Hepatic encephalopathy (HE) is a prognostically relevant neuropsychiatric syndrome that occurs in the course of acute or chronic liver disease. Besides ascites and variceal bleeding, it is the most serious complication of decompensated liver cirrhosis. Ammonia and inflammation are major triggers for the appearance of HE, which in patients with liver cirrhosis involves pathophysiologically low-grade cerebral oedema with oxidative/nitrosative stress, inflammation and disturbances of oscillatory networks in the brain. Severity classification and diagnostic approaches regarding mild forms of HE are still a matter of debate. Current medical treatment predominantly involves lactulose and rifaximin following rigorous treatment of so-called known HE precipitating factors. New treatments based on an improved pathophysiological understanding are emerging.
Collapse
Affiliation(s)
- Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Radha K Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, (Uttar Pradesh), India
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Boris Görg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rajiv Jalan
- Liver Failure Group ILDH, Division of Medicine, UCL Medical School, Royal Free Campus, London, UK.,European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Gerald Kircheis
- Department of Gastroenterology, Diabetology and Hepatology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, Brandenburg an der Havel, Germany
| | - Manuela Merli
- Department of Translational and Precision Medicine, Universita' degli Studi di Roma - Sapienza, Roma, Italy
| | | | - Manuel Romero-Gomez
- UCM Digestive Diseases, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon D Taylor-Robinson
- Department of Surgery and Cancer, St. Mary's Hospital Campus, Imperial College London, London, UK
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites 2022; 12:metabo12060527. [PMID: 35736461 PMCID: PMC9231173 DOI: 10.3390/metabo12060527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
In inborn errors of metabolism, such as amino acid breakdown disorders, loss of function mutations in metabolic enzymes within the catabolism pathway lead to an accumulation of the catabolic intermediate that is the substrate of the mutated enzyme. In patients of such disorders, dietarily restricting the amino acid(s) to prevent the formation of these catabolic intermediates has a therapeutic or even entirely preventative effect. This demonstrates that the pathology is due to a toxic accumulation of enzyme substrates rather than the loss of downstream products. Here, we provide an overview of amino acid metabolic disorders from the perspective of the ‘toxic metabolites’ themselves, including their mechanism of toxicity and whether they are involved in the pathology of other disease contexts as well. In the research literature, there is often evidence that such metabolites play a contributing role in multiple other nonhereditary (and more common) disease conditions, and these studies can provide important mechanistic insights into understanding the metabolite-induced pathology of the inborn disorder. Furthermore, therapeutic strategies developed for the inborn disorder may be applicable to these nonhereditary disease conditions, as they involve the same toxic metabolite. We provide an in-depth illustration of this cross-informing concept in two metabolic disorders, methylmalonic acidemia and hyperammonemia, where the pathological metabolites methylmalonic acid and ammonia are implicated in other disease contexts, such as aging, neurodegeneration, and cancer, and thus there are opportunities to apply mechanistic or therapeutic insights from one disease context towards the other. Additionally, we expand our scope to other metabolic disorders, such as homocystinuria and nonketotic hyperglycinemia, to propose how these concepts can be applied broadly across different inborn errors of metabolism and various nonhereditary disease conditions.
Collapse
|
14
|
Undifferentiated non-hepatic hyperammonemia in the ICU: Diagnosis and management. J Crit Care 2022; 70:154042. [PMID: 35447602 DOI: 10.1016/j.jcrc.2022.154042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022]
Abstract
Hyperammonemia occurs frequently in the critically ill but is largely confined to patients with hepatic dysfunction or failure. Non-hepatic hyperammonemia (NHHA) is far less common but can be a harbinger of life-threatening diagnoses that warrant timely identification and, sometimes, empiric therapy to prevent seizures, status epilepticus, cerebral edema, coma and death; in children, permanent cognitive impairment can result. Subsets of patients are at particular risk for developing NHHA, including the organ transplant recipient. Unique etiologies include rare infections, such as with Ureaplasma species, and unmasked inborn errors of metabolism, like urea cycle disorders, must be considered in the critically ill. Early recognition and empiric therapy, including directed therapies towards these rare etiologies, is crucial to prevent catastrophic demise. We review the etiologies of NHHA and highlight the first presentation of it associated with a concurrent Ureaplasma urealyticum and Mycoplasma hominis infection in a previously healthy individual with polytrauma. Based on this clinical review, a diagnostic and treatment algorithm to identify and manage NHHA is proposed.
Collapse
|
15
|
Sancho-Alonso M, Taoro-Gonzalez L, Cabrera-Pastor A, Felipo V, Teruel-Martí V. Hyperammonemia Alters the Function of AMPA and NMDA Receptors in Hippocampus: Extracellular cGMP Reverses Some of These Alterations. Neurochem Res 2022; 47:2016-2031. [PMID: 35386048 DOI: 10.1007/s11064-022-03588-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/25/2022]
Abstract
Chronic hyperammonemia alters membrane expression of AMPA and NMDA receptors subunits in hippocampus leading to impaired memory and learning. Increasing extracellular cGMP normalizes these alterations. However, it has not been studied whether hyperammonemia alters the function of AMPA and NMDA receptors. The aims of this work were: (1) assess if hyperammonemia alters AMPA and NMDA receptors function; (2) analyze if extracellular cGMP reverses these alterations. A multielectrode array device was used to stimulate Schäffer collaterals and record postsynaptic currents in the CA1 region in hippocampal slices from control and hyperammonemic rats and analyze different features of the excitatory postsynaptic potentials. Hyperammonemia reduces the amplitude and delays appearance of AMPA EPSPs, whereas increases amplitude, hyperpolarization, depolarization and desensitization area of the NMDA EPSPs. These alterations in AMPA and NMDA function are accentuated as the stimulation intensity increases. Adding extracellular cGMP reverses the alteration in amplitude in both, AMPA and NMDA EPSPs. In control slices extracellular cGMP decreases the AMPA and NMDA EPSPs amplitude and delays the response of neurons and the return to the resting potential at all stimulation intensities. In conclusion, hyperammonemia decreases the AMPA response, whereas increases the NMDA response and extracellular cGMP reverses these alterations.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain.,Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria (INCLIVA), 46010, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain.
| | - Vicent Teruel-Martí
- Anatomy and Human Embryology Department, Faculty of Medicine, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
16
|
Verma R, Chakraborty R. An Intractable Case of Anti-N-methyl-D-aspartate Receptor Encephalitis with Prolonged Hyperammonemia. J Neurosci Rural Pract 2022; 13:354-356. [PMID: 35694073 PMCID: PMC9187407 DOI: 10.1055/s-0042-1744124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Rajesh Verma
- Department of Neurology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rajarshi Chakraborty
- Department of Neurology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Abstract
The brain is a highly energy-demanding organ and requires bioenergetic adaptability to balance normal activity with pathophysiological fuelling of spontaneous recurrent seizures, the hallmark feature of the epilepsies. Recurrent or prolonged seizures have long been known to permanently alter neuronal circuitry and to cause excitotoxic injury and aberrant inflammation. Furthermore, pathological changes in bioenergetics and metabolism are considered downstream consequences of epileptic seizures that begin at the synaptic level. However, as we highlight in this Review, evidence is also emerging that primary derangements in cellular or mitochondrial metabolism can result in seizure genesis and lead to spontaneous recurrent seizures. Basic and translational research indicates that the relationships between brain metabolism and epileptic seizures are complex and bidirectional, producing a vicious cycle that compounds the deleterious consequences of seizures. Metabolism-based treatments such as the high-fat, antiseizure ketogenic diet have become mainstream, and metabolic substrates and enzymes have become attractive molecular targets for seizure prevention and recovery. Moreover, given that metabolism is crucial for epigenetic as well as inflammatory changes, the idea that epileptogenesis can be both negatively and positively influenced by metabolic changes is rapidly gaining ground. Here, we review evidence that supports both pathophysiological and therapeutic roles for brain metabolism in epilepsy.
Collapse
|
18
|
Devabhaktuni S, Patkar P, Pooja V, Dhamija S, Gupta N, Chaudhury S, Saldanha D. Differentiation of hepatic encephalopathy from delirium tremens: A case series and review. Ind Psychiatry J 2021; 30:S214-S220. [PMID: 34908693 PMCID: PMC8611582 DOI: 10.4103/0972-6748.328865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/18/2021] [Accepted: 06/03/2021] [Indexed: 11/04/2022] Open
Abstract
Hepatic encephalopathy (HE) is an important and potentially life threatening complication in alcoholic patients with decompensated liver function that develop even as they continue drinking. Delirium tremens, on the other hand, is an acute condition resulting from alcohol abstinence in a person dependent on alcohol, making it a life threatening diagnosis that requires intensive care and successful management of the withdrawal. Often in medical wards, these two conditions are mistaken and so is the management plan confused with each other. Making the right diagnosis early on during the hospital course is extremely important in these critical conditions so as to make an appropriate schedule for treatment and a better outcome for the same. A case series of patients who presented with a diagnostic dilemma is reported. Clinical examinations, diagnostic tools to measure the levels of ammonia and liver function tests and hemogram, West Haven criteria and Child-Pugh grading, and clinical scales of these patients are reported. Increased levels of ammonia were present in all the cases. The subtle similarities in the presentation of the two conditions often make it confusing for the clinician to distinguish between them. Using a simple test of measuring ammonia levels in the blood helps in such situations. The detection of raised levels of ammonia in cases of chronic liver disease helps in not just the diagnosis but also is an important prognostic indicator for development of HE.
Collapse
Affiliation(s)
- Spandana Devabhaktuni
- Department of Psychiatry, Dr. D. Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Prajakta Patkar
- Department of Psychiatry, Dr. D. Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - V Pooja
- Department of Psychiatry, Dr. D. Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sana Dhamija
- Department of Psychiatry, Dr. D. Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Nishtha Gupta
- Department of Psychiatry, Dr. D. Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Suprakash Chaudhury
- Department of Psychiatry, Dr. D. Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Daniel Saldanha
- Department of Psychiatry, Dr. D. Y. Patil Medical College, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
19
|
Altered motor cortical plasticity in patients with hepatic encephalopathy: A paired associative stimulation study. Clin Neurophysiol 2021; 132:2332-2341. [PMID: 34454259 DOI: 10.1016/j.clinph.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatic encephalopathy (HE) is a potentially reversible brain dysfunction caused by liver failure. Altered synaptic plasticity is supposed to play a major role in the pathophysiology of HE. Here, we used paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), a transcranial magnetic stimulation (TMS) protocol, to test synaptic plasticity of the motor cortex in patients with manifest HE. METHODS 23 HE-patients and 23 healthy controls were enrolled in the study. Motor evoked potential (MEP) amplitudes were assessed as measure for cortical excitability. Time courses of MEP amplitude changes after the PAS25 intervention were compared between both groups. RESULTS MEP-amplitudes increased after PAS25 in the control group, indicating PAS25-induced synaptic plasticity in healthy controls, as expected. In contrast, MEP-amplitudes within the HE group did not change and were lower than in the control group, indicating no induction of plasticity. CONCLUSIONS Our study revealed reduced synaptic plasticity of the primary motor cortex in HE. SIGNIFICANCE Reduced synaptic plasticity in HE provides a link between pathological changes on the molecular level and early clinical symptoms of the disease. This decrease may be caused by disturbances in the glutamatergic neurotransmission due to the known hyperammonemia in HE patients.
Collapse
|
20
|
Milewski K, Czarnecka AM, Albrecht J, Zielińska M. Decreased Expression and Uncoupling of Endothelial Nitric Oxide Synthase in the Cerebral Cortex of Rats with Thioacetamide-Induced Acute Liver Failure. Int J Mol Sci 2021; 22:6662. [PMID: 34206365 PMCID: PMC8268495 DOI: 10.3390/ijms22136662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/04/2023] Open
Abstract
Acute liver failure (ALF) is associated with deregulated nitric oxide (NO) signaling in the brain, which is one of the key molecular abnormalities leading to the neuropsychiatric disorder called hepatic encephalopathy (HE). This study focuses on the effect of ALF on the relatively unexplored endothelial NOS isoform (eNOS). The cerebral prefrontal cortices of rats with thioacetamide (TAA)-induced ALF showed decreased eNOS expression, which resulted in an overall reduction of NOS activity. ALF also decreased the content of the NOS cofactor, tetrahydro-L-biopterin (BH4), and evoked eNOS uncoupling (reduction of the eNOS dimer/monomer ratio). The addition of the NO precursor L-arginine in the absence of BH4 potentiated ROS accumulation, whereas nonspecific NOS inhibitor L-NAME or EDTA attenuated ROS increase. The ALF-induced decrease of eNOS content and its uncoupling concurred with, and was likely causally related to, both increased brain content of reactive oxidative species (ROS) and decreased cerebral cortical blood flow (CBF) in the same model.
Collapse
Affiliation(s)
| | | | | | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str, 02-106 Warsaw, Poland; (K.M.); (A.M.C.); (J.A.)
| |
Collapse
|
21
|
Yakupova EI, Bobyleva LG, Shumeyko SA, Vikhlyantsev IM, Bobylev AG. Amyloids: The History of Toxicity and Functionality. BIOLOGY 2021; 10:biology10050394. [PMID: 34062910 PMCID: PMC8147320 DOI: 10.3390/biology10050394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Proteins can perform their specific function due to their molecular structure. Partial or complete unfolding of the polypeptide chain may lead to the misfolding and aggregation of proteins in turn, resulting in the formation of different structures such as amyloid aggregates. Amyloids are rigid protein aggregates with the cross-β structure, resistant to most solvents and proteases. Because of their resistance to proteolysis, amyloid aggregates formed in the organism accumulate in tissues, promoting the development of various diseases called amyloidosis, for instance Alzheimer's diseases (AD). According to the main hypothesis, it is considered that the cause of AD is the formation and accumulation of amyloid plaques of Aβ. That is why Aβ-amyloid is the most studied representative of amyloids. Therefore, in this review, special attention is paid to the history of Aβ-amyloid toxicity. We note the main problems with anti-amyloid therapy and write about new views on amyloids that can play positive roles in the different organisms including humans.
Collapse
Affiliation(s)
- Elmira I. Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(985)687-77-27
| | - Liya G. Bobyleva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Sergey A. Shumeyko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Ivan M. Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| |
Collapse
|
22
|
Costa R, Montagnese S. The role of astrocytes in generating circadian rhythmicity in health and disease. J Neurochem 2021; 157:42-52. [PMID: 33539604 DOI: 10.1111/jnc.15312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 01/26/2023]
Abstract
Evidence is accumulating that the mammalian circadian clock system is considerably more complex than previously believed, also in terms of the cell types that actually contribute to generating the oscillation within the master clock, in the suprachiasmatic nuclei of the hypothalamus. Here we review the evidence that has lead to the identification of a bona fide astrocytic circadian clock, and that of the potential contribution of such clock to the generation of circadian and seasonal rhythmicity in health and in neurodegenerative disorders. Finally, we speculate on the role of the astrocytic clock in determining some of the clinical features of hepatic encephalopathy, a reversible neuropsychiatric syndrome associated with advanced liver disease, which is characterized by transient, profound morphological and functional astrocytic abnormalities, in the absence of significant, structural neuronal changes.
Collapse
Affiliation(s)
- Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
23
|
Errasti-Murugarren E, Palacín M. Heteromeric Amino Acid Transporters in Brain: from Physiology to Pathology. Neurochem Res 2021; 47:23-36. [PMID: 33606172 DOI: 10.1007/s11064-021-03261-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
In humans, more than 50 transporters are responsible for the traffic and balance of amino acids within and between cells and tissues, and half of them have been associated with disease [1]. Covering all common amino acids, Heteromeric Amino acid Transporters (HATs) are one class of such transporters. This review first highlights structural and functional studies that solved the atomic structure of HATs and revealed molecular clues on substrate interaction. Moreover, this review focuses on HATs that have a role in the central nervous system (CNS) and that are related to neurological diseases, including: (i) LAT1/CD98hc and its role in the uptake of branched chain amino acids trough the blood brain barrier and autism. (ii) LAT2/CD98hc and its potential role in the transport of glutamine between plasma and cerebrospinal fluid. (iii) y+LAT2/CD98hc that is emerging as a key player in hepatic encephalopathy. xCT/CD98hc as a potential therapeutic target in glioblastoma, and (iv) Asc-1/CD98hc as a potential therapeutic target in pathologies with alterations in NMDA glutamate receptors.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine. Institute of Science and Technology (BIST), 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028, Barcelona, Spain.
| | - Manuel Palacín
- Institute for Research in Biomedicine. Institute of Science and Technology (BIST), 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028, Barcelona, Spain. .,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
24
|
Limón ID, Angulo-Cruz I, Sánchez-Abdon L, Patricio-Martínez A. Disturbance of the Glutamate-Glutamine Cycle, Secondary to Hepatic Damage, Compromises Memory Function. Front Neurosci 2021; 15:578922. [PMID: 33584185 PMCID: PMC7873464 DOI: 10.3389/fnins.2021.578922] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Glutamate fulfils many vital functions both at a peripheral level and in the central nervous system (CNS). However, hyperammonemia and hepatic failure induce alterations in glutamatergic neurotransmission, which may be the main cause of hepatic encephalopathy (HE), an imbalance which may explain damage to both learning and memory. Cognitive and motor alterations in hyperammonemia may be caused by a deregulation of the glutamate-glutamine cycle, particularly in astrocytes, due to the blocking of the glutamate excitatory amino-acid transporters 1 and 2 (EAAT1, EAAT2). Excess extracellular glutamate triggers mechanisms involving astrocyte-mediated inflammation, including the release of Ca2+-dependent glutamate from astrocytes, the appearance of excitotoxicity, the formation of reactive oxygen species (ROS), and cell damage. Glutamate re-uptake not only prevents excitotoxicity, but also acts as a vital component in synaptic plasticity and function. The present review outlines the evidence of the relationship between hepatic damage, such as that occurring in HE and hyperammonemia, and changes in glutamine synthetase function, which increase glutamate concentrations in the CNS. These conditions produce dysfunction in neuronal communication. The present review also includes data indicating that hyperammonemia is related to the release of a high level of pro-inflammatory factors, such as interleukin-6, by astrocytes. This neuroinflammatory condition alters the function of the membrane receptors, such as N-methyl-D-aspartate (NMDA), (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) AMPA, and γ-aminobutyric acid (GABA), thus affecting learning and spatial memory. Data indicates that learning and spatial memory, as well as discriminatory or other information acquisition processes in the CNS, are damaged by the appearance of hyperammonemia and, moreover, are associated with a reduction in the production of cyclic guanosine monophosphate (cGMP). Therefore, increased levels of pharmacologically controlled cGMP may be used as a therapeutic tool for improving learning and memory in patients with HE, hyperammonemia, cerebral oedema, or reduced intellectual capacity.
Collapse
Affiliation(s)
| | - Isael Angulo-Cruz
- Laboratorio de Neurofarmacología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lesli Sánchez-Abdon
- Laboratorio de Neurofarmacología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
25
|
Gaidin SG, Zinchenko VP, Kosenkov AM. Mechanisms of ammonium-induced neurotoxicity. Neuroprotective effect of alpha-2 adrenergic agonists. Arch Biochem Biophys 2020; 693:108593. [PMID: 32971034 DOI: 10.1016/j.abb.2020.108593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 01/09/2023]
Abstract
Here we report the effects of ammonium on the main biophysical features of neurons and astrocytes during the first minutes of exposure. We found that ammonium causes the depolarization of neurons, which leads to the generation of high-frequency action potentials (APs). The initial alkalization and subsequent acidification of the intracellular medium in neurons occur along with the generation of calcium oscillations. Moreover, although the kinetics of calcium response of neurons and astrocytes is different, the dynamics of changes in the intracellular pH (pHi) is similar. The rate of superoxide production and mitochondrial membrane potential do not change in most neurons and astrocytes during ammonium exposure. At the same time, we observed an increased superoxide production and a decrease in the mitochondrial potential in some neurons in response to ammonium application. However, in both cases, the amplitude of the calcium response in these neurons is significantly higher compared to other neurons. Application of UK 14,304, an agonist of alpha-2 adrenergic receptors (A-2ARs), decreased the frequency of APs upon ammonium-induced high-frequency spike activity. Moreover, we also observed periods of hyperpolarization occurred in individual neurons. We suppose that this hyperpolarization contributes to the suppression of activity and can be mediated by astrocytic GABA release, which is stimulated upon activation of A-2ARs. Thus, our findings reveal a new possible mechanism of the protective action of alpha-2 adrenergic agonists against ammonium-induced hyperexcitation and demonstrate the correlation between intracellular calcium concentration, mitochondrial membrane potential, pHi, the intensity of superoxide production in hippocampal cells under acute hyperammonemia.
Collapse
Affiliation(s)
- Sergei G Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| | - Valery P Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Artem M Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| |
Collapse
|
26
|
Kerbert AJC, Jalan R. Recent advances in understanding and managing hepatic encephalopathy in chronic liver disease. F1000Res 2020; 9. [PMID: 32399191 PMCID: PMC7194462 DOI: 10.12688/f1000research.22183.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) is a common, severe complication of advanced chronic liver disease (CLD) and has a devastating impact on the patient’s quality of life and prognosis. The neurotoxin ammonia and the presence of systemic and neurological inflammation are considered the key drivers of this neuropsychiatric syndrome. Treatment options available in routine clinical practice are limited, and the development of novel therapies is hampered owing to the complexity and heterogeneity of HE. This review article aims to outline the current understanding of the pathomechanisms of HE and the recent advances in the identification and development of novel therapeutic targets.
Collapse
Affiliation(s)
- Annarein J C Kerbert
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
27
|
Kwon KW, Nam Y, Choi WS, Kim TW, Kim GM, Sohn UD. Hepatoprotective effect of sodium hydrosulfide on hepatic encephalopathy in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:263-270. [PMID: 31297010 PMCID: PMC6609266 DOI: 10.4196/kjpp.2019.23.4.263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/17/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide is well-known to exhibit anti-inflammatory and cytoprotective activities, and also has protective effects in the liver. This study aimed to examine the protective effect of hydrogen sulfide in rats with hepatic encephalopathy, which was induced by mild bile duct ligation. In this rat model, bile ducts were mildly ligated for 26 days. Rats were treated for the final 5 days with sodium hydrosulfide (NaHS). NaHS (25 µmol/kg), 0.5% sodium carboxymethyl cellulose, or silymarin (100 mg/kg) was administered intraperitoneally once per day for 5 consecutive days. Mild bile duct ligation caused hepatotoxicity and inflammation in rats. Intraperitoneal NaHS administration reduced levels of aspartate aminotransferase and alanine aminotransferase, which are indicators of liver disease, compared to levels in the control mild bile duct ligation group. Levels of ammonia, a major causative factor of hepatic encephalopathy, were also significantly decreased. Malondialdehyde, myeloperoxidase, catalase, and tumor necrosis factor-α levels were measured to confirm antioxidative and anti-inflammatory effects. N-Methyl-D-aspartic acid (NMDA) receptors with neurotoxic activity were assessed for subunit NMDA receptor subtype 2B. Based on these data, NaHS is suggested to exhibit hepatoprotective effects and guard against neurotoxicity through antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Kyoung Wan Kwon
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Yoonjin Nam
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Won Seok Choi
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Tae Wook Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Geon Min Kim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Uy Dong Sohn
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
28
|
Exchange-mode glutamine transport across CNS cell membranes. Neuropharmacology 2019; 161:107560. [PMID: 30853601 DOI: 10.1016/j.neuropharm.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
CNS cell membranes possess four transporters capable of exchanging Lglutamine (Gln) for other amino acids: the large neutral amino acid (LNAA) transporters LAT1 and LAT2, the hybrid basic amino acid (L-arginine (Arg), L-leucine (Leu)/LNAA transporter y+LAT2, and the L-alanine/L-serine/L-cysteine transporter 2 (ASCT2). LAT1/LAT2 and y+LAT2 are present in astrocytes, neurons and the blood brain barrier (BBB) - forming cerebral vascular endothelial cells (CVEC), while the location of ASCT2 in the individual cell types is a matter of debate. In the healthy brain, contribution of the exchangers to Gln shuttling from astrocytes to neurons and thus their role in controlling the conversion of Gln to the amino acid neurotransmitters l-glutamate (Glu) and γ-aminobutyric acid (GABA) and Gln flux across the BBB appears negligible as compared to the system A and system N uniporters. Insofar, except for the contribution of LAT1 to the maintenance of Gln homeostasis in the interstitial fluid (ISF), no well-defined CNS-specific function has been established for either of the three transporters in the healthy brain. The Gln-accepting amino acid exchangers appear to gain significance under conditions of excessive brain Gln load (glutaminosis). Excess Gln efflux across the BBB enhances influx into the brain of L-tryptophan (Trp). Excess of Trp is responsible for overloading the brain with neuroactive compounds: serotonin, kynurenic acid, quinolinic acid and/or oxindole, which contribute to neurotransmission imbalance accompanying hyperammonemia. In turn, alterations of y+LAT2-mediated Gln/Arg exchange and Arg uptake in astrocyte, modulate astrocytic nitric oxide synthesis and oxidative/nitrosative stress in ammonia-overexposed brain. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
|
29
|
Heidari R. Brain mitochondria as potential therapeutic targets for managing hepatic encephalopathy. Life Sci 2019; 218:65-80. [PMID: 30578865 DOI: 10.1016/j.lfs.2018.12.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/08/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE) is a critical clinical complication. There is a consensus that ammonia plays a pivotal role in the pathogenesis of HE. Ammonia is a neurotoxin which induces a wide range of functional disturbances in the central nervous system (CNS). On the other hand, HE is associated with the increased free radical formation, tissue inflammation, disturbed neurotransmission, astrocytes swelling, brain edema, and brain herniation. In view of the severe CNS complications ensued HE, potential therapeutic points of intervention need to be vigorously investigated. A role for CNS mitochondrial damage and energy crisis has been considered in HE. It has been found that ammonia induces mitochondrial impairment as a result of a multifaceted interaction of different signaling molecules. Hence, ammonia-induced mitochondrial injury and compromised brain energy metabolism might play a vital role in the pathogenesis of ammonia neurotoxicity. This review focuses on the concept that mitochondrial dysfunction and cellular energy crisis indeed plays a critical role in the pathogenesis of hyperammonemia-induced brain injury. Further, it will highlight the potential therapeutic value of mitochondrial protecting agents and energy providers in the management of HE. The data collected in this review might provide clues to new therapeutic interventions aimed at minimizing HE-associated complications.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Sheikh MF, Unni N, Agarwal B. Neurological Monitoring in Acute Liver Failure. J Clin Exp Hepatol 2018; 8:441-447. [PMID: 30568346 PMCID: PMC6286879 DOI: 10.1016/j.jceh.2018.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
Cerebral oedema and Intracranial Hypertension (ICH) are serious complications of acute liver failure affecting approximately 30% of patients, resulting in neurological injury or death. Multiple pathogenetic mechanisms contribute to the pathogenesis of HE including circulating neurotoxins such as ammonia, systemic and neuro-inflammation, infection and cerebral hyperaemia due to loss of cerebral vascular autoregulation. Early recognition and diagnosis is often difficult as clinical signs of elevated Intracranial Pressure (ICP) are not uniformly present and maybe masked by other organ support. ICP monitoring provides early diagnosis and monitoring of ICH, allowing targeted therapeutic interventions for prevention and treatment. ICP monitoring is the subject of much debate and there exists significant heterogeneity of clinical practice regarding its use. The procedure is associated with risks of haemorrhage but may be considered in highly selected patients such as those with highest risk for ICH awaiting transplant to allow for patient selection and optimisation. There is limited evidence that ICP monitoring confers a survival benefit which may explain why in the context of risk benefit analysis there is reduced utilisation in clinical practice. Less or non-invasive techniques of neurological monitoring such as measurement of jugular venous oxygen saturation to assess cerebral oxygen utilisation, and transcranial Doppler CNS to measure cerebral blood flow can provide important clinical information. They should be considered in combination as part of a multi-modal platform utilising specific roles of each system and incorporated within locally agreed algorithms. Other tools such as near-infrared spectrophotometry, optic nerve ultrasound and serum biomarkers of brain injury are being evaluated but are not used routinely in current practice.
Collapse
Affiliation(s)
- Mohammed F. Sheikh
- Liver Failure Group, UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, NW3 2PF London, UK
| | - Nazri Unni
- Intensive Care Unit, Royal Free Hospital, Rowland Hill Street, NW3 2PF London, UK
| | - Banwari Agarwal
- Liver Failure Group, UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, Rowland Hill Street, NW3 2PF London, UK
- Intensive Care Unit, Royal Free Hospital, Rowland Hill Street, NW3 2PF London, UK
| |
Collapse
|
31
|
Kosenkov AM, Gaidin SG, Sergeev AI, Teplov IY, Zinchenko VP. Fast changes of NMDA and AMPA receptor activity under acute hyperammonemia in vitro. Neurosci Lett 2018; 686:80-86. [PMID: 30195972 DOI: 10.1016/j.neulet.2018.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/18/2018] [Indexed: 12/14/2022]
Abstract
It was established in experiments on cell cultures of neurons and astrocytes that ammonium ions at concentrations of 4-8 mM cause hyperexcitation of the neuronal network, as a result of which there is a disturbance of calcium homeostasis, which can lead to the death of neurons. In the present study, we investigated the effect of toxic doses of ammonium (8 mM NH4Cl) on the activity of NMDA and AMPA receptors and the role of these receptors in spontaneous synchronous activity (SSA). In a control experiment in the absence of NH4Cl, SSA is not suppressed by NMDA receptor inhibitors, but is suppressed by AMPA receptor antagonists. In the presence of toxic doses of NH4Cl, SSA is completely inhibited by NMDA receptor inhibitors in 63% of neurons and by AMPA receptor inhibitors in 33% of neurons. After short-term applications of toxic doses of ammonium, the amplitude of the Ca2+ response to 10 μM NMDA increases, and decreases in response to 500 nM FW (agonist of AMPA receptors). NMDA receptor blocker MK-801 (20 μM), competitive antagonist D-AP5 (10 μM) and competitive AMPA receptor antagonist NBQX (2 μM) abolished the activating ammonium mediated effect on the NMDA receptors while only MK-801, but not NBQX, abolished the inhibiting ammonium mediated effect on AMPA receptors. These data indicate that under acute hyperammonemia, the activity of NMDA receptors increases, while the activity of AMPA receptors decreases. This phenomenon could explain such a wide range of toxic effects of ammonium ions mediated by NMDA receptors.
Collapse
Affiliation(s)
- Artem M Kosenkov
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia.
| | - Sergei G Gaidin
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia
| | | | - Ilia Y Teplov
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia
| | - Valery P Zinchenko
- Institute of Cell Biophysics, RAS, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
32
|
Kosenko EA, Tikhonova LA, Montoliu C, Barreto GE, Aliev G, Kaminsky YG. Metabolic Abnormalities of Erythrocytes as a Risk Factor for Alzheimer's Disease. Front Neurosci 2018; 11:728. [PMID: 29354027 PMCID: PMC5760569 DOI: 10.3389/fnins.2017.00728] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is a slowly progressive, neurodegenerative disorder of uncertain etiology. According to the amyloid cascade hypothesis, accumulation of non-soluble amyloid β peptides (Aβ) in the Central Nervous System (CNS) is the primary cause initiating a pathogenic cascade leading to the complex multilayered pathology and clinical manifestation of the disease. It is, therefore, not surprising that the search for mechanisms underlying cognitive changes observed in AD has focused exclusively on the brain and Aβ-inducing synaptic and dendritic loss, oxidative stress, and neuronal death. However, since Aβ depositions were found in normal non-demented elderly people and in many other pathological conditions, the amyloid cascade hypothesis was modified to claim that intraneuronal accumulation of soluble Aβ oligomers, rather than monomer or insoluble amyloid fibrils, is the first step of a fatal cascade in AD. Since a characteristic reduction of cerebral perfusion and energy metabolism occurs in patients with AD it is suggested that capillary distortions commonly found in AD brain elicit hemodynamic changes that alter the delivery and transport of essential nutrients, particularly glucose and oxygen to neuronal and glial cells. Another important factor in tissue oxygenation is the ability of erythrocytes (red blood cells, RBC) to transport and deliver oxygen to tissues, which are first of all dependent on the RBC antioxidant and energy metabolism, which finally regulates the oxygen affinity of hemoglobin. In the present review, we consider the possibility that metabolic and antioxidant defense alterations in the circulating erythrocyte population can influence oxygen delivery to the brain, and that these changes might be a primary mechanism triggering the glucose metabolism disturbance resulting in neurobiological changes observed in the AD brain, possibly related to impaired cognitive function. We also discuss the possibility of using erythrocyte biochemical aberrations as potential tools that will help identify a risk factor for AD.
Collapse
Affiliation(s)
- Elena A Kosenko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Lyudmila A Tikhonova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico, INCLIVA Instituto Investigación Sanitaria, Valencia, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gjumrakch Aliev
- GALLY International Biomedical Research Institute Inc., San Antonio, TX, United States
| | - Yury G Kaminsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
33
|
Milewski K, Bogacińska-Karaś M, Fręśko I, Hilgier W, Jaźwiec R, Albrecht J, Zielińska M. Ammonia Reduces Intracellular Asymmetric Dimethylarginine in Cultured Astrocytes Stimulating Its y⁺LAT2 Carrier-Mediated Loss. Int J Mol Sci 2017; 18:ijms18112308. [PMID: 29099056 PMCID: PMC5713277 DOI: 10.3390/ijms18112308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 01/24/2023] Open
Abstract
Previously we had shown that ammonia stimulates nitric oxide (NO) synthesis in astrocytes by increasing the uptake of the precursor amino acid, arginine via the heteromeric arginine/glutamine transporter y+LAT2. Ammonia also increases the concentration in the brain of the endogenous inhibitor of nitric oxide synthases (NOS), asymmetric dimethylarginine (ADMA), but distribution of ADMA surplus between the intraastrocytic and extracellular compartments of the brain has not been studied. Here we tested the hypothesis that ammonia modulates the distribution of ADMA and its analog symmetric dimethylarginine (SDMA) between the two compartments of the brain by competition with arginine for the y+LAT2 transporter. In extension of the hypothesis we analyzed the ADMA/Arg interaction in endothelial cells forming the blood-brain barrier. We measured by high-performance liquid chromatography (HPLC) and mass spectrometry (MS) technique the concentration of arginine, ADMA and SDMA in cultured cortical astrocytes and in a rat brain endothelial cell line (RBE-4) treated with ammonia and the effect of silencing the expression of a gene coding y+LAT2. We also tested the expression of ADMA metabolism enzymes: protein arginine methyltransferase (PRMT) and dimethylarginine dimethyl aminohydrolase (DDAH) and arginine uptake to astrocytes. Treatment for 48 h with 5 mM ammonia led to an almost 50% reduction of ADMA and SDMA concentration in both cell types, and the effect in astrocytes was substantially attenuated by silencing of the Slc7a6 gene. Moreover, the y+LAT2-dependent component of ammonia-evoked arginine uptake in astrocytes was reduced in the presence of ADMA in the medium. Our results suggest that increased ADMA efflux mediated by upregulated y+LAT2 may be a mechanism by which ammonia interferes with intra-astrocytic (and possibly intra-endothelial cell) ADMA content and subsequently, NO synthesis in both cell types.
Collapse
Affiliation(s)
- Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Małgorzata Bogacińska-Karaś
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Inez Fręśko
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Wojciech Hilgier
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Radosław Jaźwiec
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
34
|
Glutamine triggers long-lasting increase in striatal network activity in vitro. Exp Neurol 2017; 290:41-52. [DOI: 10.1016/j.expneurol.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 01/04/2023]
|
35
|
Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington's disease. Biochem Biophys Res Commun 2015; 468:161-6. [PMID: 26522227 DOI: 10.1016/j.bbrc.2015.10.140] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein through the lengthening of a polyglutamine tract and initiates a cascade that ultimately leads to dementia and premature death. However, neurodegeneration typically manifests in HD only in middle age, and processes linking the causative mutation to brain disease are poorly understood. Here, our objective was to elucidate further the processes that cause neurodegeneration in HD, by measuring levels of metabolites in brain regions known to undergo varying degrees of damage. We applied gas-chromatography/mass spectrometry-based metabolomics in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine controls. Unexpectedly, a single major abnormality was evident in all eleven brain regions studied across the forebrain, midbrain and hindbrain, namely marked elevation of urea, a metabolite formed in the urea cycle by arginase-mediated cleavage of arginine. Urea cycle activity localizes primarily in the liver, where it functions to incorporate protein-derived amine-nitrogen into urea for recycling or urinary excretion. It also occurs in other cell-types, but systemic over-production of urea is not known in HD. These findings are consistent with impaired local urea regulation in brain, by up-regulation of synthesis and/or defective clearance. We hypothesize that defective brain urea metabolism could play a substantive role in the pathogenesis of neurodegeneration, perhaps via defects in osmoregulation or nitrogen metabolism. Brain urea metabolism is therefore a target for generating novel monitoring/imaging strategies and/or therapeutic interventions aimed at ameliorating the impact of HD in patients.
Collapse
|
36
|
Mondal P, Trigun SK. Bacopa monnieri Extract (CDRI-08) Modulates the NMDA Receptor Subunits and nNOS-Apoptosis Axis in Cerebellum of Hepatic Encephalopathy Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:535013. [PMID: 26413124 PMCID: PMC4564645 DOI: 10.1155/2015/535013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE), characterized by impaired cerebellar functions during chronic liver failure (CLF), involves N-methyl-D-aspartate receptor (NMDAR) overactivation in the brain cells. Bacopa monnieri (BM) extract is a known neuroprotectant. The present paper evaluates whether BM extract is able to modulate the two NMDAR subunits (NR2A and NR2B) and its downstream mediators in cerebellum of rats with chronic liver failure (CLF), induced by administration of 50 mg/kg bw thioacetamide (TAA) i.p. for 14 days, and in the TAA group rats orally treated with 200 mg/kg bw BM extract from days 8 to 14. NR2A is known to impart neuroprotection and that of NR2B induces neuronal death during NMDAR activation. Neuronal nitric oxide synthase- (nNOS-) apoptosis pathway is known to mediate NMDAR led excitotoxicity. The level of NR2A was found to be significantly reduced with a concomitant increase of NR2B in cerebellum of the CLF rats. This was consistent with significantly enhanced nNOS expression, nitric oxide level, and reduced Bcl2/Bax ratio. Moreover, treatment with BM extract reversed the NR2A/NR2B ratio and also normalized the levels of nNOS-apoptotic factors in cerebellum of those rats. The findings suggest modulation of NR2A and NR2B expression by BM extract to prevent neurochemical alterations associated with HE.
Collapse
Affiliation(s)
- Papia Mondal
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
37
|
Dastgheib M, Dehpour AR, Heidari M, Moezi L. The effects of intra-dorsal hippocampus infusion of pregnenolone sulfate on memory function and hippocampal BDNF mRNA expression of biliary cirrhosis-induced memory impairment in rats. Neuroscience 2015; 306:1-9. [PMID: 26272534 DOI: 10.1016/j.neuroscience.2015.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/22/2015] [Accepted: 08/07/2015] [Indexed: 11/24/2022]
Abstract
Learning and memory impairment is one of the most challenging complications of cirrhosis and present treatments are unsatisfactory. The exact mechanism of cirrhosis cognitive dysfunction is unknown. Pregnenolone sulfate (PREGS) is an excitatory neurosteroid that acts as a N-methyl-D-aspartate (NMDA) receptor agonist and GABAA receptor antagonist. In this study we evaluated the effect of intra CA1 infusion of PREGS on cirrhotic rats' memory function using the Y-maze test. Hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression was also evaluated. Three weeks after bile duct ligation (BDL) surgery, rats were under stereotaxic surgery for insertion of two guide cannulas in the CA1 region of the hippocampus. After 1-week of recovery, PREGS was administered through CA1 cannulas in cirrhotic rats, while control or sham groups received vehicle. For evaluation of NMDA receptor role in memory-enhancing effects of PREGS, DL-2-Amino-5-phosphonopentanoic acid (AP5) which is a potent and competitive antagonist of NMDA receptor, co-administered with PREGS and for assessment of hippocampal BDNF mRNA expression, quantitative Real-time reverse transcriptase-PCR (RT-PCR) was used. Results showed that 28 days after BDL, cirrhotic animals' memory significantly decreased in comparison with control and sham groups, while PREGS infusion could restore memory impairment (P<0.05). PREGS effects on memory of cirrhotic rats were antagonized by DAP5. RT-PCR findings have shown that hippocampal relative BDNF mRNA expression was up-regulated in PREGS-treated groups in comparison with the BDL group (P<0.001). Our findings suggest that PREGS has a memory-enhancing effect in cirrhosis memory deficit in acute therapy and this effect may be through NMDA (glutamate) receptor involvement and BDNF mRNA expression.
Collapse
Affiliation(s)
- M Dastgheib
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A R Dehpour
- Experimental research center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M Heidari
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - L Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
Activation of NMDA receptor by elevated homocysteine in chronic liver disease contributes to encephalopathy. Med Hypotheses 2015; 85:64-7. [DOI: 10.1016/j.mehy.2015.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/23/2015] [Accepted: 03/28/2015] [Indexed: 11/18/2022]
|
39
|
Tapper EB, Jiang ZG, Patwardhan VR. Refining the ammonia hypothesis: a physiology-driven approach to the treatment of hepatic encephalopathy. Mayo Clin Proc 2015; 90:646-58. [PMID: 25865476 DOI: 10.1016/j.mayocp.2015.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 12/12/2022]
Abstract
Hepatic encephalopathy (HE) is one of the most important complications of cirrhosis and portal hypertension. Although the etiology is incompletely understood, it has been linked to ammonia directly and indirectly. Our goal is to review for the clinician the mechanisms behind hyperammonemia and the pathogenesis of HE to explain the rationale for its therapy. We reviewed articles collected through a search of MEDLINE/PubMed, Cochrane Database of Systematic Reviews, and Google Scholar between October 1, 1948, and December 8, 2014, and by a manual search of citations within retrieved articles. Search terms included hepatic encephalopathy, ammonia hypothesis, brain and ammonia, liver failure and ammonia, acute-on-chronic liver failure and ammonia, cirrhosis and ammonia, portosytemic shunt, ammonia and lactulose, rifaximin, zinc, and nutrition. Ammonia homeostatsis is a multiorgan process involving the liver, brain, kidneys, and muscle as well as the gastrointestinal tract. Indeed, hyperammonemia may be the first clue to poor functional reserves, malnutrition, and impending multiorgan dysfunction. Furthermore, the neuropathology of ammonia is critically linked to states of systemic inflammation and endotoxemia. Given the complex interplay among ammonia, inflammation, and other factors, ammonia levels have questionable utility in the staging of HE. The use of nonabsorbable disaccharides, antibiotics, and probiotics reduces gut ammoniagenesis and, in the case of antibiotics and probiotics, systemic inflammation. Nutritional support preserves urea cycle function and prevents wasting of skeletal muscle, a significant site of ammonia metabolism. Correction of hypokalemia, hypovolemia, and acidosis further assists in the reduction of ammonia production in the kidney. Finally, early and aggressive treatment of infection, avoidance of sedatives, and modification of portosystemic shunts are also helpful in reducing the neurocognitive effects of hyperammonemia. Refining the ammonia hypothesis to account for these other factors instructs a solid foundation for the effective treatment and prevention of hepatic encephalopathy.
Collapse
Affiliation(s)
- Elliot B Tapper
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA.
| | - Z Gordon Jiang
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Vilas R Patwardhan
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
40
|
Mondal P, Trigun SK. Pannexin1 as a novel cerebral target in pathogenesis of hepatic encephalopathy. Metab Brain Dis 2014; 29:1007-15. [PMID: 24807590 DOI: 10.1007/s11011-014-9556-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
Hepatic encephalopathy (HE) represents a nervous system disorder caused due to liver dysfunction. HE is broadly classified as acute/overt and moderate-minimal HE. Since HE syndrome severely affects quality of life of the patients and it may be life threatening, it is important to develop effective therapeutic strategy against HE. Mainly ammonia neurotoxicity is considered accountable for HE. Increased level of ammonia in the brain activates glutamate-NMDA (N-methyl-D-aspartate) receptor (NMDAR) pathway leading to Ca(2+) influx, energy deficit and oxidative stress in the post synaptic neurons. Moreover, NMDAR blockage has been found to be a poor therapeutic option, as this neurotransmitter receptor plays important role in maintaining normal neurophysiology of the brain. Thus, searching new molecular players in HE pathogenesis is of current concern. There is an evolving concept about roles of the trans-membrane channels in the pathogenesis of a number of neurological complications. Pannexin1 (Panx1) is one of them and has been described to be implicated in stroke, epilepsy and ischemia. Importantly, the pathogenesis of these complications relates to some extent with NMDAR over activation. Thus, it is speculated that HE pathogenesis might also involve Panx1. Indeed, some recent observations in the animal models of HE provide support to this argument. Since opening of Panx1 channel is mostly associated with the neuronal dysfunctions, down regulation of this channel could serve as a relevant therapeutic strategy without producing any serious side effects. In the review article an attempt has been made to summarize the current information on implication of Panx1 in the brain disorders and its prospects for being examined as pharmacological target in HE pathogenesis.
Collapse
Affiliation(s)
- Papia Mondal
- Biochemistry Section Centre of Advanced Study in Zoology, Banaras Hindu university, Varanasi, 221005, India
| | | |
Collapse
|
41
|
Paniz LG, Calcagnotto ME, Pandolfo P, Machado DG, Santos GF, Hansel G, Almeida RF, Bruch RS, Brum LM, Torres FV, de Assis AM, Rico EP, Souza DO. Neuroprotective effects of guanosine administration on behavioral, brain activity, neurochemical and redox parameters in a rat model of chronic hepatic encephalopathy. Metab Brain Dis 2014; 29:645-54. [PMID: 24788896 DOI: 10.1007/s11011-014-9548-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
It is well known that glutamatergic excitotoxicity and oxidative stress are implicated in the pathogenesis of hepatic encephalopathy (HE). The nucleoside guanosine exerts neuroprotective effects through the antagonism against glutamate neurotoxicity and antioxidant properties. In this study, we evaluated the neuroprotective effect of guanosine in an animal model of chronic HE. Rats underwent bile duct ligation (BDL) and 2 weeks later they were treated with i.p. injection of guanosine 7.5 mg/kg once a day for 1-week. We evaluated the effects of guanosine in HE studying several aspects: a) animal behavior using open field and Y-maze tasks; b) brain rhythm changes in electroencephalogram (EEG) recordings; c) purines and glutamate levels in the cerebral spinal fluid (CSF); and d) oxidative stress parameters in the brain. BDL rats presented increased levels of glutamate, purines and metabolites in the CSF, as well as increased oxidative damage. Guanosine was able not only to prevent these effects but also to attenuate the behavioral and EEG impairment induced by BDL. Our study shows the neuroprotective effects of systemic administration of guanosine in a rat model of HE and highlights the involvement of purinergic system in the physiopathology of this disease.
Collapse
Affiliation(s)
- L G Paniz
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul-UFRGS, Rua Ramiro Barcelos 2600 Anexo, 90035-003, Porto Alegre, RS, Brazil,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Haack N, Dublin P, Rose CR. Dysbalance of astrocyte calcium under hyperammonemic conditions. PLoS One 2014; 9:e105832. [PMID: 25153709 PMCID: PMC4143319 DOI: 10.1371/journal.pone.0105832] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/28/2014] [Indexed: 12/21/2022] Open
Abstract
Increased brain ammonium (NH4+/NH3) plays a central role in the manifestation of hepatic encephalopathy (HE), a complex syndrome associated with neurological and psychiatric alterations, which is primarily a disorder of astrocytes. Here, we analysed the influence of NH4+/NH3 on the calcium concentration of astrocytes in situ and studied the underlying mechanisms of NH4+/NH3-evoked calcium changes, employing fluorescence imaging with Fura-2 in acute tissue slices derived from different regions of the mouse brain. In the hippocampal stratum radiatum, perfusion with 5 mM NH4+/NH3 for 30 minutes caused a transient calcium increase in about 40% of astrocytes lasting about 10 minutes. Furthermore, the vast majority of astrocytes (∼90%) experienced a persistent calcium increase by ∼50 nM. This persistent increase was already evoked at concentrations of 1–2 mM NH4+/NH3, developed within 10–20 minutes and was maintained as long as the NH4+/NH3 was present. Qualitatively similar changes were observed in astrocytes of different neocortical regions as well as in cerebellar Bergmann glia. Inhibition of glutamine synthetase resulted in significantly larger calcium increases in response to NH4+/NH3, indicating that glutamine accumulation was not a primary cause. Calcium increases were not mimicked by changes in intracellular pH. Pharmacological inhibition of voltage-gated sodium channels, sodium-potassium-chloride-cotransporters (NKCC), the reverse mode of sodium/calcium exchange (NCX), AMPA- or mGluR5-receptors did not dampen NH4+/NH3-induced calcium increases. They were, however, significantly reduced by inhibition of NMDA receptors and depletion of intracellular calcium stores. Taken together, our measurements show that sustained exposure to NH4+/NH3 causes a sustained increase in intracellular calcium in astrocytes in situ, which is partly dependent on NMDA receptor activation and on release of calcium from intracellular stores. Our study furthermore suggests that dysbalance of astrocyte calcium homeostasis under hyperammonemic conditions is a widespread phenomenon, which might contribute to the disturbance of neurotransmission during HE.
Collapse
Affiliation(s)
- Nicole Haack
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
| | - Pavel Dublin
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
43
|
Sturgeon JP, Shawcross DL. Recent insights into the pathogenesis of hepatic encephalopathy and treatments. Expert Rev Gastroenterol Hepatol 2014; 8:83-100. [PMID: 24236755 DOI: 10.1586/17474124.2014.858598] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatic encephalopathy (HE) encompasses a spectrum of neuropsychiatric disorders related to liver failure. The development of HE can have a profound impact on mortality as well as quality of life for patients and carers. Ammonia is central in the disease process contributing to alteration in neurotransmission, oxidative stress, and cerebral edema and astrocyte swelling in acute liver failure. Inflammation in the presence of ammonia coactively worsens HE. Inflammation can result from hyperammonemic responses, endotoxemia, innate immune dysfunction or concurrent infection. This review summarizes the current processes implicated in the pathogenesis of HE, as well as current and potential treatments. Treatments currently focus on reducing inflammation and/or blood ammonia levels and provide varying degrees of success. Optimization of current treatments and initial testing of novel therapies will provide the basis of improvement of care in the near future.
Collapse
Affiliation(s)
- Jonathan P Sturgeon
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | | |
Collapse
|
44
|
Chepkova AN, Sergeeva OA, Haas HL. Alterations of corticostriatal plasticity by ammonium and rescue by green tea polyphenols. Arch Biochem Biophys 2013; 536:176-82. [DOI: 10.1016/j.abb.2013.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/31/2013] [Accepted: 02/05/2013] [Indexed: 01/22/2023]
|
45
|
Gropman AL, Prust M, Breeden A, Fricke S, VanMeter J. Urea cycle defects and hyperammonemia: effects on functional imaging. Metab Brain Dis 2013; 28:269-75. [PMID: 23149878 PMCID: PMC3594356 DOI: 10.1007/s11011-012-9348-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/21/2012] [Indexed: 11/25/2022]
Abstract
The urea-cycle disorders (UCDs) are a group of congenital enzyme and carrier deficiencies predisposing to hyperammonemia (HA). HA causes changes in the central nervous system (CNS) including alterations of neurotransmitter function, cell volume, and energy deprivation ultimately leading to cerebral edema. Neuropathological findings of UCDs primarily reflect changes in astrocyte morphology. Neurological features accompanying acute HA include changes in behavior and consciousness in the short term, and potential for impairments in memory and executive function as long-term effects. Plasma measures of ammonia and glutamine, although useful for clinical monitoring, prove poor markers of CNS function. Multimodal neuroimaging has potential to investigate impact on cognitive function by interrogating neural networks, connectivity and biochemistry. As neuroimaging methods become increasingly sophisticated, they will play a critical role in clinical monitoring and treatment of metabolic disease. We describe our findings in UCDs; with focus on Ornithine Transcarbamylase deficiency (OTCD) the only X linked UCD.
Collapse
Affiliation(s)
- Andrea L Gropman
- Department of Neurology, Children's National Medical Center, George Washington University of Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010, USA.
| | | | | | | | | |
Collapse
|
46
|
Obara-Michlewska M, Tuszyńska P, Albrecht J. Ammonia upregulates kynurenine aminotransferase II mRNA expression in rat brain: a role for astrocytic NMDA receptors? Metab Brain Dis 2013; 28:161-5. [PMID: 23132651 DOI: 10.1007/s11011-012-9353-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022]
Abstract
Kynurenine aminotransferase II (KAT-II) is the astrocytic enzyme catalyzing the synthesis of kynurenic acid (KYNA), an endogenous inhibitor of the α7-nicotinic receptor and the NMDA receptor (NMDAr). A previous study demonstrated an increase of KYNA synthesis in the brain of rats with thioacetamide (TAA)-induced acute liver failure. Here we show that TAA administration increases KAT-II expression in the rat cerebral cortex and the effect is mimicked in cerebral cortical astrocytes in culture treated with high (5 mM) concentration of ammonia. KAT-II expression in control and TAA-treated rats was increased by NMDAr antagonist memantine, and the effects of TAA and memantine appeared additive. In astrocytes, the NMDAr antagonist MK-801 raised KAT-II expression as well, while NMDA added alone had no effect. Glutamate decreased KAT-II mRNA level, which was attenuated by MK-801. The results suggest that stimulation of KAT-II expression during hepatic encephalopathy may be associated with a partial inactivation of astrocytic NMDAr by ammonia.
Collapse
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
47
|
Häussinger D, Sies H. Hepatic encephalopathy: clinical aspects and pathogenetic concept. Arch Biochem Biophys 2013; 536:97-100. [PMID: 23643660 DOI: 10.1016/j.abb.2013.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Wen S, Schroeter A, Klöcker N. Synaptic plasticity in hepatic encephalopathy - a molecular perspective. Arch Biochem Biophys 2013; 536:183-8. [PMID: 23624147 DOI: 10.1016/j.abb.2013.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/13/2013] [Accepted: 04/15/2013] [Indexed: 01/04/2023]
Abstract
Hepatic encephalopathy (HE)(1) is a common neuropsychiatric complication of both acute and chronic liver disease. Clinical symptoms may include motor disturbances and cognitive dysfunction. Available animal models of HE mimic the deficits in cognitive performance including the impaired ability to learn and memorize information. This review explores the question how HE might affect cognitive functions at molecular levels. Both acute and chronic models of HE constrain the plasticity of glutamatergic neurotransmission. Thus, long-lasting activity-dependent changes in synaptic efficiency, known as long-term potentiation (LTP) and long-term depression (LTD) are significantly impeded. We discuss molecules and signal transduction pathways of LTP and LTD that are targeted by experimental HE, with a focus on ionotropic glutamate receptors of the AMPA-subtype. Finally, a novel strategy of functional proteomic analysis is presented, which, if applied differentially, may provide molecular insight into disease-related dysfunction of membrane protein complexes, i.e. disturbed ionotropic glutamate receptor signaling in HE.
Collapse
Affiliation(s)
- Shuping Wen
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
49
|
Paniz L, Schmidt AP, Souza DO. The modulatory effects of allopurinol onN-methyld-aspartate receptors in the central nervous system. Cell Biochem Funct 2012; 30:709-10. [DOI: 10.1002/cbf.2896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/24/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Lucas Paniz
- Department of Biochemistry, ICBS; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| | | | - Diogo O. Souza
- Department of Biochemistry, ICBS; Universidade Federal do Rio Grande do Sul; Porto Alegre; RS; Brazil
| |
Collapse
|
50
|
Arias N, Méndez M, Arias J, Arias JL. Brain metabolism and spatial memory are affected by portal hypertension. Metab Brain Dis 2012; 27:183-91. [PMID: 22314871 DOI: 10.1007/s11011-012-9276-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/19/2012] [Indexed: 11/24/2022]
Abstract
Portal hypertension is a major complication of cirrhosis that frequently leads to a neuropsychiatric disorder that affects cognition. The present study was undertaken in order to compare the performance of sham-operated rats (SHAM) and portal hypertension rats (PH) in reference memory tasks in the Morris water maze (MWM). Two groups of animals were used: SHAM group (n=12) was used as a control group and PH group (n=12) by the triple portal vein ligation method was used as an animal model of early evolutive phase of PH. The portal pressure was measured in the splenic parenchyma. Our work shows that spatial learning in the MWM is not impaired in PH group although this group showed a one-day delay in the task acquisition compared to the SHAM group. We assessed the brain metabolic activity of the animals by means of cytochrome c-oxidase (COx) histochemistry. Significant changes were found in the CA3, dentate gyrus, basolateral, medial, lateral and central amygdala, showing lower COx activity in the PH group as compared to the SHAM group in all cases. We found no changes in metabolic activity in prefrontal cortex and CA1 area between groups. In fact, different neural networks were shown according to the execution level of the subjects. The early PH evolution induced changes in brain metabolic activity without biggest alterations in spatial memory.
Collapse
Affiliation(s)
- Natalia Arias
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad de Oviedo, Asturias, Spain
| | | | | | | |
Collapse
|