1
|
Chen Q, Gu S, Lan Y, Xu J, Lin W, Qin Y, Ren Y. Study on the developmental, behavioral toxicity, and toxicological mechanism of the antidepressant drug venlafaxine and its active metabolites in zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:552-562. [PMID: 39805073 DOI: 10.1093/etojnl/vgae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025]
Abstract
As a representative agent of bicyclic antidepressants, venlafaxine (VEN) has become widely used worldwide and is frequently detected in surface waters with concentrations ranging from ng/L to µg/L. To evaluate the toxicological effects of such medications on aquatic species, studies on environmentally relevant concentrations are essential. Zebrafish were used as a model organism to assess growth and development in larvae and examine tissue accumulation, oxidative stress, and DNA methylation in adults. The results showed adverse effects, including an 18.5% decrease in embryo hatching rate and an increase in mortality by 18.5%. There was also a reduction in body length (4.5%) and eye area (12.2%) in the larvae, along with abnormal developmental issues, such as pericardial edema, yolk sac edema, and spinal curvature. Venlafaxine and its metabolites induced oxidative stress, leading to observable toxic effects. In adult zebrafish, VEN and O-desmethylvenlafaxine (ODV) accumulated primarily in the liver, followed by the brain and intestines, and caused a reduction in DNA methyltransferase activity, leading to DNA hypomethylation. VEN had the most significant impact on DNA methyltransferase 1 and altered its conformation more than ODV. Overall, venlafaxine was found to be more toxic than its metabolites, providing a scientific basis for evaluating the toxic effects and ecological risks of antidepressant residues on aquatic organisms.
Collapse
Affiliation(s)
- Qian Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Siying Gu
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Yufen Lan
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Jiaming Xu
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, PR China
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, PR China
| |
Collapse
|
2
|
Lievanos-Ruiz FJ, Fenton-Navarro B. Enzymatic biomarkers of oxidative stress in patients with depressive disorders. A systematic review. Clin Biochem 2024; 130:110788. [PMID: 38969053 DOI: 10.1016/j.clinbiochem.2024.110788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Oxidative stress (OS) results from the imbalance between the production of reactive oxygen species and the body's antioxidant mechanisms and is associated with various diseases, including depression. Antioxidants protect cells by neutralizing free radicals and include enzymatic components such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione S-transferase (GST). The concentration of these biomarkers can quantify OS. This research aimed to gather available information published in the last ten years about the concentration of enzymatic OS biomarkers in samples from patients with depressive disorders. METHOD A systematic review was conducted following the PRISMA guidelines, including original scientific articles that evaluated enzymatic OS biomarkers in participants with depressive disorders, using the keywords and boolean operators "superoxide dismutase" OR "catalase" OR "glutathione" AND "depress*" in the databases PubMed, SAGE Journals, DOAJ, Scielo, Dialnet, and Redalyc. RESULTS The initial search showed 614 results, with only 28 articles meeting the selection criteria. It was observed that all evaluated oxidative stress enzymatic markers showed a significant increase or decrease in patients with depressive disorders, due to a wide variability in the depressive disorders studied, the type of biological sample analyzed, and the techniques used. CONCLUSION There is evidence of the relationship between enzymatic OS biomarkers and depressive disorders, but additional studies are needed to clarify the nature of this relationship, particularly considering the different types of depressive disorders.
Collapse
Affiliation(s)
- F J Lievanos-Ruiz
- Laboratorio de Glicobiología y Farmacognosia, División de estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Mexico.
| | - B Fenton-Navarro
- Laboratorio de Glicobiología y Farmacognosia, División de estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Mexico.
| |
Collapse
|
3
|
Sommerfeld-Klatta K, Jiers W, Rzepczyk S, Nowicki F, Łukasik-Głębocka M, Świderski P, Zielińska-Psuja B, Żaba Z, Żaba C. The Effect of Neuropsychiatric Drugs on the Oxidation-Reduction Balance in Therapy. Int J Mol Sci 2024; 25:7304. [PMID: 39000411 PMCID: PMC11242277 DOI: 10.3390/ijms25137304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
The effectiveness of available neuropsychiatric drugs in the era of an increasing number of patients is not sufficient, and the complexity of neuropsychiatric disease entities that are difficult to diagnose and therapeutically is increasing. Also, discoveries about the pathophysiology of neuropsychiatric diseases are promising, including those initiating a new round of innovations in the role of oxidative stress in the etiology of neuropsychiatric diseases. Oxidative stress is highly related to mental disorders, in the treatment of which the most frequently used are first- and second-generation antipsychotics, mood stabilizers, and antidepressants. Literature reports on the effect of neuropsychiatric drugs on oxidative stress are divergent. They are starting with those proving their protective effect and ending with those confirming disturbances in the oxidation-reduction balance. The presented publication reviews the state of knowledge on the role of oxidative stress in the most frequently used therapies for neuropsychiatric diseases using first- and second-generation antipsychotic drugs, i.e., haloperidol, clozapine, risperidone, olanzapine, quetiapine, or aripiprazole, mood stabilizers: lithium, carbamazepine, valproic acid, oxcarbazepine, and antidepressants: citalopram, sertraline, and venlafaxine, along with a brief pharmacological characteristic, preclinical and clinical studies effects.
Collapse
Affiliation(s)
- Karina Sommerfeld-Klatta
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Wiktoria Jiers
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Szymon Rzepczyk
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Filip Nowicki
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Magdalena Łukasik-Głębocka
- Department of Emergency Medicine, Poznań University of Medical Sciences, 7 Rokietnicka Street, 60-806 Poznań, Poland
| | - Paweł Świderski
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Barbara Zielińska-Psuja
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Zbigniew Żaba
- Department of Emergency Medicine, Poznań University of Medical Sciences, 7 Rokietnicka Street, 60-806 Poznań, Poland
| | - Czesław Żaba
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
4
|
Althagafy HS, Harakeh S, Azhari SA, Farsi RM, Al-Abbas NS, Shaer NA, Sharawi ZW, Almohaimeed HM, Hassanein EHM. Quetiapine attenuates cadmium neurotoxicity by suppressing oxidative stress, inflammation, and pyroptosis. Mol Biol Rep 2024; 51:660. [PMID: 38750264 DOI: 10.1007/s11033-024-09558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied. METHODS QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg. RESULTS In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and β-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1β and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels. CONCLUSION In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sheren A Azhari
- Department of Biological Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Reem M Farsi
- Department of Biological Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Nouf S Al-Abbas
- Jamoum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Nehad A Shaer
- Department of Chemistry, Al Lieth University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Zeina W Sharawi
- Department of Biological Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
5
|
Dey R, Bishayi B. Microglial Inflammatory Responses to SARS-CoV-2 Infection: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:2. [PMID: 38099973 PMCID: PMC11407175 DOI: 10.1007/s10571-023-01444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is primarily a respiratory disease causing a worldwide pandemic in the year of 2019. SARS-CoV-2 is an enveloped, positive-stranded RNA virus that could invade the host through spike protein and exhibits multi-organ effects. The Brain was considered to be a potential target for SARS-CoV-2 infection. Although neuropsychiatric symptoms and cognitive impairments were observed in COVID-19 patients even after recovery the mechanism of action is not well documented. In this review, the contribution of microglia in response to SARS-CoV-2 infection was discussed aiming to design a therapeutic regimen for the management of neuroinflammation and psycho-behavioral alterations. Priming of microglia facilitates the hyper-activation state when it interacts with SARS-CoV-2 known as the 'second hit'. Moreover, the microgliosis produces reactive free radicals and pro-inflammatory cytokines like IL-1β, IFN-γ, and IL-6 which ultimately contribute to a 'cytokine storm', thereby increasing the occurrence of cognitive and neurological dysfunction. It was reported that elevated CCL11 may be responsible for psychiatric disorders and ROS/RNS-induced oxidative stress could promote major depressive disorder (MDD) and phenotypic switching. Additionally, during SARS-CoV-2 infection microglia-CD8+ T cell interaction may have a significant role in neuronal cell death. This cytokine-mediated cellular cross-talking plays a crucial role in pro-inflammatory and anti-inflammatory balance within the COVID-19 patient's brain. Therefore, all these aspects will be taken into consideration for developing novel therapeutic strategies to combat SARS-CoV-2-induced neuroinflammation.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Telinipara, Barasat-Barrackpore Rd, Bara Kanthalia, West Bengal, 700121, India.
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| |
Collapse
|
6
|
Mani V, Alshammeri BS. Quetiapine Moderates Doxorubicin-Induced Cognitive Deficits: Influence of Oxidative Stress, Neuroinflammation, and Cellular Apoptosis. Int J Mol Sci 2023; 24:11525. [PMID: 37511284 PMCID: PMC10380642 DOI: 10.3390/ijms241411525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Chemotherapy is considered a major choice in cancer treatment. Unfortunately, several cognitive deficiencies and psychiatric complications have been reported in patients with cancer during treatment and for the rest of their lives. Doxorubicin (DOX) plays an important role in chemotherapy regimens but affects both the central and peripheral nervous systems. Antipsychotic drugs alleviate the behavioral symptoms of aging-related dementia, and the atypical class, quetiapine (QUET), has been shown to have beneficial effects on various cognitive impairments. The present investigation aimed to determine the possible mechanism underlying the effect of thirty-day administrations of QUET (10 or 20 mg/kg, p.o.) on DOX-induced cognitive deficits (DICDs). DICDs were achieved through four doses of DOX (2 mg/kg, i.p.) at an interval of seven days during drug treatment. Elevated plus maze (EPM), novel object recognition (NOR), and Y-maze tasks were performed to confirm the DICDs and find the impact of QUET on them. The ELISA tests were executed with oxidative [malondialdehyde (MDA), catalase, and reduced glutathione (GSH)], inflammatory [cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), and tumor necrosis factor-alpha (TNF-α)], and apoptosis [B-cell lymphoma 2 (Bcl2), Bcl2 associated X protein (Bax), and Caspase-3] markers were assessed in the brain homogenate to explore the related mechanisms. DICD lengthened the transfer latency time in EPM, shortened the exploration time of the novel object, reduced the discrimination ability of the objects in NOR, and lowered the number of arm entries and time spent in the novel arm. QUET alleviated DICD-related symptoms. In addition, QUET reduced neuronal oxidative stress by reducing MDA and elevating GSH levels in the rat brain. Moreover, it reduced neuronal inflammation by controlling the levels of COX-2, NF-κB, and TNF-α. By improving the Bcl-2 level and reducing both Bax and Caspase-3 levels, it protected against neuronal apoptosis. Collectively, our results supported that QUET may protect against DICD, which could be explained by the inhibition of neuronal inflammation and the attenuation of cellular apoptosis protecting against oxidative stress.
Collapse
Affiliation(s)
- Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Bander Shehail Alshammeri
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
7
|
Grolli RE, Bertollo AG, Behenck JP, de Araujo Borba L, Plissari ME, Soares SJB, Manica A, da Silva Joaquim L, Petronilho F, Quevedo J, Bagatini MD, Réus GZ, Ignácio ZM. Quetiapine effect on depressive-like behaviors, oxidative balance, and inflammation in serum of rats submitted to chronic stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02406-8. [PMID: 36735044 DOI: 10.1007/s00210-023-02406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Major depressive disorder (MDD) etiology is still not completely understood, and many individuals resist the traditional treatments. Chronic exposure to stressful events can contribute to development and progression and be involved in biological changes underlying MDD. Among the biological mechanisms involved, inflammatory changes and oxidative balance are associated with MDD pathophysiology. Quetiapine, a second-generation antipsychotic, induces a better therapeutic response in individuals refractory to traditional treatments. The main objectives of this research were as follows: to evaluate the effect of chronic mild stress (CMS) on depressive-like behaviors, oxidative stress, and inflammation in adult rats; to evaluate the possible antidepressant, antioxidant, and anti-inflammatory effects of quetiapine. The animals were submitted to CMS protocols. At the end of the CMS, the animals were submitted to a chronic treatment for 14 days with the following drugs: quetiapine (20 mg/kg), imipramine (30 mg/kg), and escitalopram (10 mg/kg). At the end of the treatments, the animals were evaluated in the open field tests, anhedonia (splash test), and forced swimming. The animals were euthanized after the behavioral tests, and serum samples were collected. Myeloperoxidase (MPO) activity and interleukin-6 (IL-6) levels were analyzed. CMS induced an increase in depressive-like behaviors, and quetiapine significantly reduced these behaviors. MPO activity and IL-6 levels increased in the serum of animals submitted to CMS. Quetiapine significantly reduced MPO activity and IL-6 levels. These results corroborate other evidence, indicating that chronic stress is a relevant phenomenon in the etiology of depression and suggesting that quetiapine induces an antidepressant effect because it reduces oxidative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Roberta Eduarda Grolli
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Amanda Gollo Bertollo
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - João Paulo Behenck
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Laura de Araujo Borba
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Marcos Eduardo Plissari
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Silvio José Batista Soares
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Aline Manica
- Graduate Program in Health Sciences - Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Larissa da Silva Joaquim
- Neurobiology of Metabolic and Inflammatory Processes Laboratory, Graduate Program in Health Sciences, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - João Quevedo
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.,Center of Excellence On Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Margarete Dulce Bagatini
- Laboratory of Cell Culture, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Gislaine Zilli Réus
- Laboratory of Translational Psychiatry, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
8
|
Rashid MH, Babu D, Tran N, Reiz B, Siraki AG. Neutrophil Myeloperoxidase-Mediated N-Demethylation of Quetiapine Leads to N-Desalkylquetiapine, a Pharmacologically Active Cytochrome P450 Metabolite. Chem Res Toxicol 2022; 35:1001-1010. [PMID: 35575633 DOI: 10.1021/acs.chemrestox.2c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The atypical antipsychotic drugs, quetiapine and clozapine, are associated with idiosyncratic drug reactions (such as agranulocytosis or neutropenia) that are thought to involve reactive metabolites. Neutrophil myeloperoxidase (MPO) metabolism of quetiapine is not well-studied, but is metabolized by cytochrome P450. Based on structural similarity to clozapine, we hypothesized that quetiapine can be metabolized by MPO and that there is overlap between cytochrome P450 and MPO metabolism of quetiapine. The interaction of quetiapine and clozapine with MPO and MPO chlorination activity was studied using UV-vis spectrophotometry. The metabolites were characterized using liquid chromatography-mass spectrometry (LC-MS), and electron paramagnetic resonance (EPR) spectroscopy was used for detecting drug-catalyzed glutathione oxidation. In the presence of quetiapine, MPO compound II accumulated for about 7.5 min, whereas in the presence of clozapine, MPO compound II was not observed as it was rapidly reduced back to the resting state. Increasing quetiapine concentrations resulted in a decrease in MPO chlorination activity, while the opposite result was found in the case of clozapine. UV-vis spectral studies showed no change when quetiapine was oxidized in the absence and presence of chloride anion (Cl-, to catalyze chlorination reactions). Significant changes, however, were observed in the same assay with clozapine, where Cl- appeared to hinder the rate of clozapine metabolism. The MPO-catalyzed hydroxylated and dealkylated metabolites of quetiapine and hydroxylated metabolites of clozapine were observed from the LC-MS analyses, particularly when Cl- was included in the reaction. In addition, hydroxylated, dealkylated, and a proposed sulfoxide metabolite of quetiapine were also observed in the reaction catalyzed by human microsomes/NADPH. Lastly, compared to quetiapine, clozapine metabolism by MPO/H2O2 and glutathione produced more glutathionyl radicals using EPR spin trapping. In conclusion, MPO/H2O2/Cl- was shown to metabolize quetiapine to S-oxidation and P450-like dealkylation products, and quetiapine metabolites were generally less reactive than clozapine.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,Institute of Food and Radiation Biology, Bangladesh Atomic Energy Commission, 1207 Dhaka, Bangladesh
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Newton Tran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Béla Reiz
- Department of Chemistry, Faculty of Sciences, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
9
|
COVID-19, Oxidative Stress, and Neuroinflammation in the Depression Route. J Mol Neurosci 2022; 72:1166-1181. [PMID: 35322375 PMCID: PMC8942178 DOI: 10.1007/s12031-022-02004-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 02/08/2023]
Abstract
COVID-19 is associated with oxidative stress, peripheral hyper inflammation, and neuroinflammation, especially in individuals with a more severe form of the disease. Some studies provide evidence on the onset or exacerbation of major depressive disorder (MDD), among other psychiatric disorders due to COVID-19. Oxidative stress and neuroinflammation are associated conditions, especially in the more severe form of MDD and in refractoriness to available therapeutic strategies. Inflammatory cytokines in the COVID-19 hyper inflammation process can activate the hypothalamic–pituitary–adrenal (HPA) axis and the indoleamine-2,3-dioxygenase (IDO) enzyme. IDO activation can reduce tryptophan and increase toxic metabolites of the kynurenine pathway, which increases glial activation, neuroinflammation, toxicity, and neuronal death. This review surveyed a number of studies and analyzed the mechanisms of oxidative stress, inflammation, and neuroinflammation involved in COVID-19 and depression. Finally, the importance of more protocols that can help elucidate the interaction between these mechanisms underlying COVID-19 and MDD and the possible therapeutic strategies involved in the interaction of these mechanisms are highlighted.
Collapse
|
10
|
Korkut Celikates B, Kilic V, Atli-Eklioglu O, Baysal M, Aydogan-Kılıc G, Ucarcan S, Ilgin S. Effects of quetiapine administration on sperm quality and testicular histology. Drug Chem Toxicol 2021; 45:2379-2387. [PMID: 34229556 DOI: 10.1080/01480545.2021.1946558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quetiapine is one of the most commonly prescribed antipsychotics to treat schizophrenia in adults, in particular. In this study, quetiapine's effects were assessed on healthy sperm production in rats at repeated-pharmacological doses. Additionally, the effects of quetiapine on oxidative status and hormonal balance were also evaluated in rats. Quetiapine was administered to rats orally at 10, 20, and 40 mg/kg body weight doses for 28 days. At the end of this period, body and organ weights were measured, sperm concentration, motility, and morphology were determined, sperm damage was assessed, and histopathological analysis of testicular tissue was performed. Additionally, serum FSH, LH, and testosterone levels as male reproductive hormones were measured. Catalase, superoxide dismutase, glutathione, and malondialdehyde levels were determined for evaluating the oxidative status of testicular tissue. The findings obtained in this study showed that relative epididymis weights and sperm concentration decreased and abnormal sperm morphology increased in quetiapine-administered rats. Irregularity of typical architecture of the seminiferous tubules and germinal cell disorganization was observed in testicular sections of 20 and 40 mg/kg quetiapine-administered rats. Further, serum LH and testosterone levels decreased in 20 and 40 mg/kg quetiapine-administered rats. Additionally, decreased catalase and superoxide dismutase activities in testicular tissue of quetiapine-administered rats and increased malondialdehyde levels in testicular tissue of 40 mg/kg quetiapine-administered rats were measured. In conclusion, quetiapine treatment decreased sperm quality, altered hormone levels, and induced oxidative stress may be considered potential contributors to this adverse effect.
Collapse
Affiliation(s)
- Busra Korkut Celikates
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Anadolu University, Eskisehir, Turkey
| | - Volkan Kilic
- Faculty of Science, Department of Biology, Eskisehir Technical University, Eskisehir, Turkey
| | - Ozlem Atli-Eklioglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Anadolu University, Eskisehir, Turkey
| | - Merve Baysal
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Anadolu University, Eskisehir, Turkey
| | - Gozde Aydogan-Kılıc
- Faculty of Science, Department of Biology, Eskisehir Technical University, Eskisehir, Turkey
| | - Seyda Ucarcan
- Faculty of Science, Department of Biology, Eskisehir Technical University, Eskisehir, Turkey
| | - Sinem Ilgin
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
11
|
Behavior and oxidative stress parameters in rats subjected to the animal's models induced by chronic mild stress and 6-hydroxydopamine. Behav Brain Res 2021; 406:113226. [PMID: 33684423 DOI: 10.1016/j.bbr.2021.113226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent forms of mental illness also affecting older adults. Recent evidence suggests a relationship between MDD and neurodegenerative diseases, including Parkinson's disease (PD). Individuals with PD have a predisposition to developing MDD, and both neurobiological conditions are associated with oxidative stress. Thus, we conducted this study to investigate depressive-like behavior and oxidative stress parameters using both animal models of PD and stress. Adult Wistar rats were subjected to chronic mild stress (CMS) protocol by 40 days and then it was used 6-hydroxydopamine (6-OHDA) as a model of PD, into the striatum. The experimental groups were: Control + Sham, Stress + Sham, Control+6-OHDA, and Stress+6-OHDA. Depressive like-behavior was evaluated by the forced swimming test (FST) and spontaneous locomotor activity by open-field test. Oxidative stress parameters were measured in the striatum, hippocampus, and prefrontal cortex (PFC). The results showed effects to increase immobility and decrease climbing times in the FST in Stress + Sham, Control+6-OHDA, and Stress+6-OHDA groups. The number of crossings and rearings were decreased in the Stress+6-OHDA group. The lipid peroxidation was increased in the PFC of Stress + Sham, and the hippocampus and striatum of Stress + Sham and Control+6-OHDA groups. Carbonyl protein levels increased in the PFC of Stress + Sham and striatum in Control+6-OHDA. Nitrite/Nitrate concentration was elevated in the PFC of Stress + Sham, in the hippocampus of Control+6-OHDA, the striatum of Stress + Sham, and Control+6-OHDA groups. Myeloperoxidase (MPO) activity was increased in the PFC and hippocampus of Stress + Sham and Control+6-OHDA groups. The activity of catalase decreased in the PFC of the Stress + Sham group. The activity of the superoxide dismutase (SOD) was decreased in the PFC of the Stress + Sham group, in the hippocampus of Stress + Sham and Control+6-OHDA groups, and the striatum of Control+6-OHDA group. These findings suggest that both stress and 6-OHDA induce depressive-like behavior and oxidative stress in the brain. The joining models have little evidence of the effects. Thus these findings suggest that other pathways are involved in the common point of the pathophysiology of PD and MDD.
Collapse
|
12
|
Tayab MA, Chowdhury KAA, Jabed M, Mohammed Tareq S, Kamal ATMM, Islam MN, Uddin AMK, Hossain MA, Emran TB, Simal-Gandara J. Antioxidant-Rich Woodfordia fruticosa Leaf Extract Alleviates Depressive-Like Behaviors and Impede Hyperglycemia. PLANTS (BASEL, SWITZERLAND) 2021; 10:287. [PMID: 33546288 PMCID: PMC7913287 DOI: 10.3390/plants10020287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
Dhaiphul (Woodfordia fruticosa) is a frequently demanded plant in South-East Asian regions for its diverse medicinal values. This study was proposed to examine antioxidant, antidiabetic, and antidepressant potentials of methanol extract of W. fruticosa leaves (MEWF) and its derived n-hexane (NHFMEWF) and ethyl acetate (EAFMEWF) fractions through in vitro, in vivo, and computational models. Among test samples, MEWF and EAFMEWF contained the highest phenolic content and showed maximal antioxidant activity in DPPH radical scavenging and ferric reducing power assays. In comparison, NHFMEWF possessed maximum flavonoid content and a significantly potent α-amylase inhibitory profile comparable with positive control acarbose. In animal models of depression (forced swimming and tail suspension test), EAFMEWF and NHFMEWF demonstrated a dose-dependent antidepressant-like effect; explicitly, the depressive-like behaviors significantly declined in EAFMEWF-treated dosing groups in contrast to the control group. In the computational analysis, previously isolated flavonoid compounds from Dhaiphul leaves manifested potent binding affinity against several key therapeutic target proteins of diabetes and depressive disorders including α-amylase, serotonin transporter, dopamine transporter, and neuronal nitric oxide synthase with varying pharmacokinetics and toxicity profiles. This research's outcomes may provide potential dietary supplements for mitigating hyperglycemia, cellular toxicity, and depressive disorder.
Collapse
Affiliation(s)
- Mohammed Abu Tayab
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.A.T.); (K.A.A.C.); (M.J.); (S.M.T.); (A.T.M.M.K.); (A.M.K.U.); (M.A.H.)
| | - Kazi Ashfak Ahmed Chowdhury
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.A.T.); (K.A.A.C.); (M.J.); (S.M.T.); (A.T.M.M.K.); (A.M.K.U.); (M.A.H.)
| | - Md. Jabed
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.A.T.); (K.A.A.C.); (M.J.); (S.M.T.); (A.T.M.M.K.); (A.M.K.U.); (M.A.H.)
| | - Syed Mohammed Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.A.T.); (K.A.A.C.); (M.J.); (S.M.T.); (A.T.M.M.K.); (A.M.K.U.); (M.A.H.)
| | - A. T. M. Mostafa Kamal
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.A.T.); (K.A.A.C.); (M.J.); (S.M.T.); (A.T.M.M.K.); (A.M.K.U.); (M.A.H.)
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.A.T.); (K.A.A.C.); (M.J.); (S.M.T.); (A.T.M.M.K.); (A.M.K.U.); (M.A.H.)
| | - A. M. Kafil Uddin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.A.T.); (K.A.A.C.); (M.J.); (S.M.T.); (A.T.M.M.K.); (A.M.K.U.); (M.A.H.)
| | - Mohammad Adil Hossain
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh; (M.A.T.); (K.A.A.C.); (M.J.); (S.M.T.); (A.T.M.M.K.); (A.M.K.U.); (M.A.H.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
13
|
Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, Pacchiarotti I, Vieta E, Berk M. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry 2021; 12:546801. [PMID: 34295268 PMCID: PMC8291901 DOI: 10.3389/fpsyt.2021.546801] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Seetal Dodd
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Anmella
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Isabella Pacchiarotti
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Eduard Vieta
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- School of Medicine, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Wigner P, Synowiec E, Czarny P, Bijak M, Jóźwiak P, Szemraj J, Gruca P, Papp M, Śliwiński T. Effects of venlafaxine on the expression level and methylation status of genes involved in oxidative stress in rats exposed to a chronic mild stress. J Cell Mol Med 2020; 24:5675-5694. [PMID: 32281745 PMCID: PMC7214168 DOI: 10.1111/jcmm.15231] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022] Open
Abstract
Recent human and animal studies indicate that oxidative and nitrosative stress may play a role in the aetiology and pathogenesis of depression. This study investigates the effect of chronic administration of the serotonin‐norepinephrine reuptake inhibitor, venlafaxine, on the expression and methylation status of SOD1, SOD2, GPx1, GPx4, CAT, NOS1 and NOS2 in the brain and blood of rats exposed to a chronic mild stress (CMS) model of depression. Separate groups of animals were exposed to CMS for 2 or 7 weeks; the second group received saline or venlafaxine (10 mg/kg/d, IP) for 5 weeks. After completion of both stress conditions and drug administration, the mRNA and protein expression of selected genes and the methylation status of their promoters were measured in peripheral mononuclear blood cells (PBMCs) and in brain structures (hippocampus, amygdala, hypothalamus, midbrain, cortex, basal ganglia) with the use of TaqMan Gene Expression Assay, Western blot and methylation‐sensitive high‐resolution melting techniques. CMS caused a decrease in sucrose consumption, and this effect was normalized by fluoxetine. In PBMCs, SOD1, SOD2 and NOS2 mRNA expression changed only after venlafaxine administration. In brain, CAT, Gpx1, Gpx4 and NOS1 gene expression changed following CMS or venlafaxine exposure, most prominently in the hippocampus, midbrain and basal ganglia. CMS increased the methylation of the Gpx1 promoter in PBMCs, the second Gpx4 promoter in midbrain and basal ganglia, and SOD1 and SOD2 in hippocampus. The CMS animals treated with venlafaxine displayed a significantly higher CAT level in midbrain and cerebral cortex. CMS caused an elevation of Gpx4 in the hippocampus, which was lowered in cerebral cortex by venlafaxine. The results indicate that CMS and venlafaxine administration affect the methylation of promoters of genes involved in oxidative and nitrosative stress. They also indicate that peripheral and central tissue differ in their response to stress or antidepressant treatments. It is possible that that apart from DNA methylation, a crucial role of expression level of genes may be played by other forms of epigenetic regulation, such as histone modification or microRNA interference. These findings provide strong evidence for thesis that analysis of the level of mRNA and protein expression as well as the status of promoter methylation can help in understanding the pathomechanisms of mental diseases, including depression, and the mechanisms of action of drugs effective in their therapy.
Collapse
Affiliation(s)
- Paulina Wigner
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Piotr Gruca
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Mariusz Papp
- Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacol Ther 2020; 210:107520. [PMID: 32165136 DOI: 10.1016/j.pharmthera.2020.107520] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
While neurotransmitter dysfunction represents a key component in mental illnesses, there is now a wide agreement for a central pathophysiological hub that includes hormones, neuroinflammation, redox mechanisms as well as oxidative stress. With respect to oxidation-reduction (redox) mechanisms, preclinical and clinical evidence suggests that an imbalance in the pro/anti-oxidative homeostasis toward the increased production of substances with oxidizing potential may contribute to the etiology and manifestation of different psychiatric disorders. The substantial and continous demand for energy renders the brain highly susceptible to disturbances in its energy supply, especially following exposure to stressful events, which may lead to overproduction of reactive oxygen and nitrogen species under conditions of perturbed antioxidant defenses. This will eventually induce different molecular alterations, including extensive protein and lipid peroxidation, increased blood-brain barrier permeability and neuroinflammation, which may contribute to the changes in brain function and morphology observed in mental illnesses. This view may also reconcile different key concepts for psychiatric disorders, such as the neurodevelopmental origin of these diseases, as well as the vulnerability of selective cellular populations that are critical for specific functional abnormalities. The possibility to pharmacologically modulate the redox system is receiving increasing interest as a novel therapeutic strategy to counteract the detrimental effects of the unbalance in brain oxidative mechanisms. This review will describe the main mechanisms and mediators of the redox system and will examine the alterations of oxidative stress found in animal models of psychiatric disorders as well as in patients suffering from mental illnesses, such as schizophrenia and major depressive disorder. In addition, it will discuss studies that examined the effects of psychotropic drugs, including antipsychotics and antidepressants, on the oxidative balance as well as studies that investigated the effectiveness of a direct modulation of oxidative mechanisms in counteracting the behavioral and functional alterations associated with psychiatric disorders, which supports the promising role of the redox system as a novel therapeutic target for the improved treatment of brain disorders.
Collapse
|
16
|
Cherix A, Larrieu T, Grosse J, Rodrigues J, McEwen B, Nasca C, Gruetter R, Sandi C. Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-L-carnitine. eLife 2020; 9:50631. [PMID: 31922486 PMCID: PMC6970538 DOI: 10.7554/elife.50631] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence suggests that hierarchical status provides vulnerability to develop stress-induced depression. Energy metabolic changes in the nucleus accumbens (NAc) were recently related to hierarchical status and vulnerability to develop depression-like behavior. Acetyl-L-carnitine (LAC), a mitochondria-boosting supplement, has shown promising antidepressant-like effects opening therapeutic opportunities for restoring energy balance in depressed patients. We investigated the metabolic impact in the NAc of antidepressant LAC treatment in chronically-stressed mice using 1H-magnetic resonance spectroscopy (1H-MRS). High rank, but not low rank, mice, as assessed with the tube test, showed behavioral vulnerability to stress, supporting a higher susceptibility of high social rank mice to develop depressive-like behaviors. High rank mice also showed reduced levels of several energy-related metabolites in the NAc that were counteracted by LAC treatment. Therefore, we reveal a metabolic signature in the NAc for antidepressant-like effects of LAC in vulnerable mice characterized by restoration of stress-induced neuroenergetics alterations and lipid function.
Collapse
Affiliation(s)
- Antoine Cherix
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Larrieu
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - João Rodrigues
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bruce McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, United States
| | - Carla Nasca
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, United States
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain and Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Sharma R, Rahi S, Mehan S. Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence. Toxicol Rep 2019; 6:1164-1175. [PMID: 31763180 PMCID: PMC6861559 DOI: 10.1016/j.toxrep.2019.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
Autism is the category used within the newest edition of the diagnostic and statistical manual of neurodevelopmental disorders. Autism is a spectrum of disorder where a variety of behavioural patterns observed in autistic patients, such as stereotypes and repetitive behavior, hyperexcitability, depression-like symptoms, and memory and cognitive dysfunctions. Neuropathological hallmarks that associated with autism are mitochondrial dysfunction, oxidative stress, neuroinflammation, Neuro-excitation, abnormal synapse formation, overexpression of glial cells in specific brain regions like cerebellum, cerebral cortex, amygdala, and hippocampus. ICV injection of propionic acid (PPA) (4 μl/0.26 M) mimics autistic-like behavioral and biochemical alterations in rats. Literature findings reveal that there is a link between autism neuronal mitochondrial coenzyme-Q10 (CoQ10) and ETC-complexes dysfunctions are the keys pathogenic events for autism. Therefore, in the current study, we explore the neuroprotective interventions of Solanesol (SNL) 40 and 60 mg/kg alone and in combination with standard drugs Aripiprazole (ARP) 5 mg/kg, Citalopram (CTP) 10 mg/kg, Memantine (MEM) 5 mg/kg and Donepezil (DNP) 3 mg/kg to overcome behavioral and biochemical alterations in PPA induced experimental model of Autism. Chronic treatment with SNL 60 mg/kg in combination with standard drug shows a marked improvement in locomotion, muscle coordination, long-term memory and the decrease in depressive behavior. While, chronic treatment of SNL alone and in combination with standard drug aripiprazole, citalopram, donepezil, and memantine shows the Neuroprotective potential by enhancing the cognitive deficits, biochemical alterations along with reducing the level of inflammatory mediators and oxidative stress.
Collapse
Key Words
- AChE, acetylcholinesterase acetylcholinesterase
- ARP, Aripiprazole
- ATP
- Aripiprazole
- Autism
- BBB, blood-brain barrier
- CNS, center nerves system
- CTP, Citalopram
- Citalopram
- CoQ10, coenzyme-Q10
- Coenzyme-Q10
- DNP, Donepezil
- Donepezil
- ELT, escape latency
- ETC, electron-transport chain
- ICV, Intracerebroventricular
- LDH, lactate dehydrogenase
- MAPK3, mitogen-activated protein kinase 3
- MDA, malondialdehyde
- MEM, Memantine
- Memantine
- NO, nitric oxide
- PPA, propionic acid
- Propionic acid
- SNL, Solanesol
- SOD, superoxide dismutase
- UBE3A, Ubiquitin-protein ligase E3A
- i.p., Intraperitoneal route
- mitochondrial dysfunction
- p.o., Oral
Collapse
Affiliation(s)
| | | | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
18
|
Réus GZ, de Moura AB, Borba LA, Abelaira HM, Quevedo J. Strategies for Treatment-Resistant Depression: Lessons Learned from Animal Models. MOLECULAR NEUROPSYCHIATRY 2019; 5:178-189. [PMID: 31768371 PMCID: PMC6873047 DOI: 10.1159/000500324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 12/18/2022]
Abstract
Around 300 million individuals are affected by major depressive disorder (MDD) in the world. Despite this high number of affected individuals, more than 50% of patients do not respond to antidepressants approved to treat MDD. Patients with MDD that do not respond to 2 or more first-line antidepressant treatments are considered to have treatment-resistant depression (TRD). Animal models of depression are important tools to better understand the pathophysiology of MDD as well as to help in the development of novel and fast antidepressants for TRD patients. This review will emphasize some discovery strategies for TRD from studies on animal models, including, antagonists of N-methyl-D-aspartate (NMDA) receptor (ketamine and memantine), electroconvulsive therapy (ECT), lithium, minocycline, quetiapine, and deep brain stimulation. Animal models of depression are not sufficient to represent all the traits of TRD, but they greatly aid in understanding the mechanism by which therapies that work for TRD exert antidepressant effects. Interestingly, these innovative therapies have mechanisms of action different from those of classic antidepressants. These effects are mainly related to the regulation of neurotransmitter activity, including general glutamate and increased connectivity, synaptic capacity, and neuroplasticity.
Collapse
Affiliation(s)
- Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Airam Barbosa de Moura
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Laura Araújo Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Helena Mendes Abelaira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
19
|
Robertson OD, Coronado NG, Sethi R, Berk M, Dodd S. Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry 2019; 13:1032-1049. [PMID: 30690898 DOI: 10.1111/eip.12775] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
AIM Neuropsychiatric disorders including depression, bipolar and schizophrenia frequently exhibit a neuroprogressive course from prodrome to chronicity. There are a range of agents exhibiting capacity to attenuate biological mechanisms associated with neuroprogression. This review will update the evidence for putative neuroprotective agents including clinical efficacy, mechanisms of action and limitations in current assessment tools, and identify novel agents with neuroprotective potential. METHOD Data for this review were sourced from online databases PUBMED, Embase and Web of Science. Only data published since 2012 were included in this review, no data were excluded based on language or publication origin. RESULTS Each of the agents reviewed inhibit one or multiple pathways of neuroprogression including: inflammatory gene expression and cytokine release, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophin dysregulation and apoptotic signalling. Some demonstrate clinical efficacy in preventing neural damage or loss, relapse or cognitive/functional decline. Agents include: the psychotropic medications lithium, second generation antipsychotics and antidepressants; other pharmacological agents such as minocycline, aspirin, cyclooxygenase-2 inhibitors, statins, ketamine and alpha-2-delta ligands; and others such as erythropoietin, oestrogen, leptin, N-acetylcysteine, curcumin, melatonin and ebselen. CONCLUSIONS Signals of evidence of clinical neuroprotection are evident for a number of candidate agents. Adjunctive use of multiple agents may present a viable avenue to clinical realization of neuroprotection. Definitive prospective studies of neuroprotection with multimodal assessment tools are required.
Collapse
Affiliation(s)
- Oliver D Robertson
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia
| | - Nieves G Coronado
- Unidad de Gestión Clinica Salud Mental, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Rickinder Sethi
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Réus GZ, Carlessi AS, Silva RH, Ceretta LB, Quevedo J. Relationship of Oxidative Stress as a Link between Diabetes Mellitus and Major Depressive Disorder. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8637970. [PMID: 30944699 PMCID: PMC6421821 DOI: 10.1155/2019/8637970] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/21/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Both conditions, major depressive disorder (MDD) and diabetes mellitus (DM) are chronic and disabling diseases that affect a very significant percentage of the world's population. Studies have been shown that patients with DM are more susceptible to develop depression, when compared to the general population. The opposite also happens; MDD could be a risk factor for DM development. Some mechanisms have been proposed to explain the pathophysiological mechanisms involved with these conditions, such as excess of glucocorticoids, hyperglycemia, insulin resistance, and inflammation. These processes can lead to an increase in damage to biomolecules and a decrease in antioxidant defense capacity, leading to oxidative stress.
Collapse
Affiliation(s)
- Gislaine Z. Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Anelise S. Carlessi
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Ritele H. Silva
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Luciane B. Ceretta
- Programa de Pós-graduação em Saúde Coletiva, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
21
|
Chronic administration of quetiapine attenuates the phencyclidine-induced recognition memory impairment and hippocampal oxidative stress in rats. Neuroreport 2019; 29:1099-1103. [PMID: 30036204 DOI: 10.1097/wnr.0000000000001078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The underlying mechanism of atypical antipsychotics in treating cognitive impairment in schizophrenia is unclear. The aim of the present study was to evaluate the effects of quetiapine, an atypical antipsychotic drug, on object recognition memory and hippocampal oxidative stress in a phencyclidine (PCP) rat model of schizophrenia. Rats were treated with chronic quetiapine (10 mg/kg/day, intraperitoneally) for 16 days or acute quetiapine (10 mg/kg/day, intraperitoneally) on day 16. On day 16, 1 h after the administration of quetiapine, the rats were administered PCP (50 mg/kg, subcutaneously). After the last object recognition behavioral test on day 18, the rats were killed for the measurement of hippocampal protein expression of nitrotyrosine, a protein marker of oxidative stress. The results showed that chronic quetiapine significantly attenuated object recognition memory impairment and hippocampal oxidative stress in the PCP-injected rats. These suggest that the attenuating effect of chronic quetiapine on hippocampal oxidative stress may be related to quetiapine's beneficial effects on object recognition memory in PCP rats, and further suggest that neuroprotective mechanisms are involved in chronic quetiapine treatment.
Collapse
|
22
|
ω-3 and folic acid act against depressive-like behavior and oxidative damage in the brain of rats subjected to early- or late-life stress. Nutrition 2018; 53:120-133. [DOI: 10.1016/j.nut.2018.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/14/2018] [Accepted: 03/03/2018] [Indexed: 01/26/2023]
|
23
|
The use of quetiapine in the treatment of major depressive disorder: Evidence from clinical and experimental studies. Neurosci Biobehav Rev 2018; 86:36-50. [DOI: 10.1016/j.neubiorev.2017.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 12/19/2022]
|