1
|
Wan N, Hong Z, Parson MAH, Korfhage JL, Burke JE, Melia TJ, Reinisch KM. Spartin-mediated lipid transfer facilitates lipid droplet turnover. Proc Natl Acad Sci U S A 2024; 121:e2314093121. [PMID: 38190532 PMCID: PMC10801920 DOI: 10.1073/pnas.2314093121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin copurifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.
Collapse
Affiliation(s)
- Neng Wan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Zhouping Hong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Matthew A. H. Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W2Y2, Canada
| | - Justin L. Korfhage
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BCV8W2Y2, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
2
|
Rudenskaya GE, Guseva DM, Shatokhina OL, Kadnikova VA, Filatova AY, Skoblov MY, Ryzhkova OP. [Developmental and epileptic encephalopathy produced by the ATP1A2 mutation]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:133-138. [PMID: 39072579 DOI: 10.17116/jnevro2024124061133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A case of DEE98, a rare developmental and epileptic encephalopathy related to previously reported the de novo missense mutation p.Arg908Gln in the ATP1A2 gene, is described. A girl examined first time in 11 months had microcephaly, severe mental and motor delay, strabismus, spastic paraparesis and pachypolymicrogyria on brain MRI that is atypical for DEE98. Epilepsy with polymorphic seizures started at the age of 15 months. There was a remission lasting 9 months, after which seizures renewed. DEE98 was diagnosed at the age of 2 years 9 months by exome sequencing verified by trio Sanger sequencing. Another finding from high-throughput exome sequencing were two previously undescribed heterozygous variants of uncertain pathogenicity in the SPART gene, which causes autosomal recessive spastic paraplegia type 20 (SPG20); Sanger sequencing confirmed the trans position of the variants. The common clinical sign with typical SPG20 was early spastic paraparesis with contractures; other symptoms did not coincide. Considering the phenotypic diversity of SPG20 and the possibility of a combination of two independent diseases, we performed an additional study of the pathogenicity of SPART variants at the mRNA level: pathogenicity was not confirmed, and there were no grounds to diagnose SPG20.
Collapse
Affiliation(s)
- G E Rudenskaya
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - D M Guseva
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - O L Shatokhina
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - V A Kadnikova
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - A Yu Filatova
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - M Yu Skoblov
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
| | - O P Ryzhkova
- Bochkov Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
3
|
Zhong Y, Levine TP. Spartin is a Lipid Transfer Protein That Facilitates Lipid Droplet Turnover. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241255782. [PMID: 38808280 PMCID: PMC11131387 DOI: 10.1177/25152564241255782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
One means by which cells reutilize neutral lipids stored in lipid droplets is to degrade them by autophagy. This process involves spartin, mutations of which cause the rare inherited disorder Troyer syndrome (or spastic paraplegia-20, SPG20). A recently published paper from the team led by Karin Reinsich (Yale) suggests that the molecular function of spartin and its unique highly conserved "senescence" domain is as a lipid transfer protein. Spartin binds to and transfers all lipid species found in lipid droplets, from phospholipids to triglycerides and sterol esters. This lipid transfer activity correlates with spartin's ability to sustain lipid droplet turnover. The senescence domain poses an intriguing question around the wide range of its cargoes, but intriguingly it has yet to yield up its secrets because attempts at crystallization failed and AlphaFold's prediction is unconvincing.
Collapse
Affiliation(s)
- Yaoyang Zhong
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Tim P. Levine
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
4
|
Wan N, Hong Z, Parson MAH, Korfhage J, Burke JE, Melia TJ, Reinisch KM. Spartin-mediated lipid transfer facilitates lipid droplet turnover. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569220. [PMID: 38076959 PMCID: PMC10705495 DOI: 10.1101/2023.11.29.569220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin co-purifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.
Collapse
Affiliation(s)
- Neng Wan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhouping Hong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Matthew A. H. Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W2Y2
| | - Justin Korfhage
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W2Y2
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Bryson L, Anderson L, Pagan J, Hamzollari R, Hamilton MJ. The perinatal phenotype of Troyer syndrome: Case report and literature review. Am J Med Genet A 2022; 188:3558-3562. [PMID: 36135318 DOI: 10.1002/ajmg.a.62970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Lisa Bryson
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Laurie Anderson
- Fetal Medicine Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Judith Pagan
- South East Scotland Clinical Genetics, Western General Hospital, Edinburgh, UK
| | - Rossella Hamzollari
- Glasgow City Health and Social Care Partnership, Children and Families, Drumchapel Health Centre, Glasgow, UK
| | - Mark J Hamilton
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
6
|
Krull F, Hirschfeld M, Wemheuer WE, Brenig B. Frameshift Variant in Novel Adenosine-A1-Receptor Homolog Associated With Bovine Spastic Syndrome/Late-Onset Bovine Spastic Paresis in Holstein Sires. Front Genet 2020; 11:591794. [PMID: 33329738 PMCID: PMC7734149 DOI: 10.3389/fgene.2020.591794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Since their first description almost 100 years ago, bovine spastic paresis (BSP) and bovine spastic syndrome (BSS) are assumed to be inherited neuronal-progressive diseases in cattle. Affected animals are characterized by (frequent) spasms primarily located in the hind limbs, accompanied by severe pain symptoms and reduced vigor, thus initiating premature slaughter or euthanasia. Due to the late onset of BSP and BSS and the massively decreased lifespan of modern cattle, the importance of these diseases is underestimated. In the present study, BSP/BSS-affected German Holstein breeding sires from artificial insemination centers were collected and pedigree analysis, genome-wide association studies, whole genome resequencing, protein-protein interaction network analysis, and protein-homology modeling were performed to elucidate the genetic background. The analysis of 46 affected and 213 control cattle revealed four significantly associated positions on chromosome 15 (BTA15), i.e., AC_000172.1:g.83465449A>G (-log10P = 19.17), AC_000172.1:g.81871849C>T (-log10P = 8.31), AC_000172.1:g.81872621A>T (-log10P = 6.81), and AC_000172.1:g.81872661G>C (-log10P = 6.42). Two additional loci were significantly associated located on BTA8 and BTA19, i.e., AC_000165.1:g.71177788T>C and AC_000176.1:g.30140977T>G, respectively. Whole genome resequencing of five affected individuals and six unaffected relatives (two fathers, two mothers, a half sibling, and a full sibling) belonging to three different not directly related families was performed. After filtering, a homozygous loss of function variant was identified in the affected cattle, causing a frameshift in the so far unknown gene locus LOC100848076 encoding an adenosine-A1-receptor homolog. An allele frequency of the variant of 0.74 was determined in 3,093 samples of the 1000 Bull Genomes Project.
Collapse
Affiliation(s)
- Frederik Krull
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Marc Hirschfeld
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Wilhelm Ewald Wemheuer
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Bertram Brenig
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Rickman OJ, Baple EL, Crosby AH. Lipid metabolic pathways converge in motor neuron degenerative diseases. Brain 2020; 143:1073-1087. [PMID: 31848577 PMCID: PMC7174042 DOI: 10.1093/brain/awz382] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) encompass an extensive and heterogeneous group of upper and/or lower motor neuron degenerative disorders, in which the particular clinical outcomes stem from the specific neuronal component involved in each condition. While mutations in a large number of molecules associated with lipid metabolism are known to be implicated in MNDs, there remains a lack of clarity regarding the key functional pathways involved, and their inter-relationships. This review highlights evidence that defines defects within two specific lipid (cholesterol/oxysterol and phosphatidylethanolamine) biosynthetic cascades as being centrally involved in MND, particularly hereditary spastic paraplegia. We also identify how other MND-associated molecules may impact these cascades, in particular through impaired organellar interfacing, to propose ‘subcellular lipidome imbalance’ as a likely common pathomolecular theme in MND. Further exploration of this mechanism has the potential to identify new therapeutic targets and management strategies for modulation of disease progression in hereditary spastic paraplegias and other MNDs.
Collapse
Affiliation(s)
- Olivia J Rickman
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Emma L Baple
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| |
Collapse
|
8
|
Liang H, Miao H, Yang H, Gong F, Chen S, Wang L, Zhu H, Pan H. Dwarfism in Troyer syndrome: a family with SPG20 compound heterozygous mutations and a literature review. Ann N Y Acad Sci 2019; 1462:118-127. [PMID: 31535723 DOI: 10.1111/nyas.14229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 01/16/2023]
Abstract
Troyer syndrome is an autosomal recessive disease characterized by spastic paralysis, dysarthria, distal amyotrophy, and short stature. Recently, two siblings (an older brother and a younger sister) were admitted to our hospital for the chief complaints of "short stature and intellectual disability." Through whole exome sequencing of the sister, who is the proband, it was found that her SPG20 gene had compound heterozygous mutations: c.364_365delAT (p.Met122Valfs* 2) and c.892delA (p.Thr298Glnfs* 30). Target testing revealed that the brother had the same genotype as the sister, and the former mutation originated from the father, while the latter mutation originated from the mother. In summary, this is the first report of Troyer syndrome in a family caused by SPG20 compound heterozygous mutations. A novel SPG20 mutation was found, namely c.892delA (p.Thr298Glnfs* 30). In addition, we also summarize these Troyer syndrome patients' heights and their clinical characteristics, and provide a brief review of all known pathogenic mutations of SPG20.
Collapse
Affiliation(s)
- Hanting Liang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Miao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Diquigiovanni C, Bergamini C, Diaz R, Liparulo I, Bianco F, Masin L, Baldassarro VA, Rizzardi N, Tranchina A, Buscherini F, Wischmeijer A, Pippucci T, Scarano E, Cordelli DM, Fato R, Seri M, Paracchini S, Bonora E. A novel mutation in SPART gene causes a severe neurodevelopmental delay due to mitochondrial dysfunction with complex I impairments and altered pyruvate metabolism. FASEB J 2019; 33:11284-11302. [PMID: 31314595 DOI: 10.1096/fj.201802722r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Loss-of-function mutations in the SPART gene cause Troyer syndrome, a recessive form of spastic paraplegia resulting in muscle weakness, short stature, and cognitive defects. SPART encodes for Spartin, a protein linked to endosomal trafficking and mitochondrial membrane potential maintenance. Here, we identified with whole exome sequencing (WES) a novel frameshift mutation in the SPART gene in 2 brothers presenting an uncharacterized developmental delay and short stature. Functional characterization in an SH-SY5Y cell model shows that this mutation is associated with increased neurite outgrowth. These cells also show a marked decrease in mitochondrial complex I (NADH dehydrogenase) activity, coupled to decreased ATP synthesis and defective mitochondrial membrane potential. The cells also presented an increase in reactive oxygen species, extracellular pyruvate, and NADH levels, consistent with impaired complex I activity. In concordance with a severe mitochondrial failure, Spartin loss also led to an altered intracellular Ca2+ homeostasis that was restored after transient expression of wild-type Spartin. Our data provide for the first time a thorough assessment of Spartin loss effects, including impaired complex I activity coupled to increased extracellular pyruvate. In summary, through a WES study we assign a diagnosis of Troyer syndrome to otherwise undiagnosed patients, and by functional characterization we show that the novel mutation in SPART leads to a profound bioenergetic imbalance.-Diquigiovanni, C., Bergamini, C., Diaz, R., Liparulo, I., Bianco, F., Masin, L., Baldassarro, V. A., Rizzardi, N., Tranchina, A., Buscherini, F., Wischmeijer, A., Pippucci, T., Scarano, E., Cordelli, D. M., Fato, R., Seri, M., Paracchini, S., Bonora, E. A novel mutation in SPART gene causes a severe neurodevelopmental delay due to mitochondrial dysfunction with complex I impairments and altered pyruvate metabolism.
Collapse
Affiliation(s)
- Chiara Diquigiovanni
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Rebeca Diaz
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Irene Liparulo
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Francesca Bianco
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Luca Masin
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | | | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Antonia Tranchina
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Francesco Buscherini
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Anita Wischmeijer
- Department of Pediatrics, Clinical Genetics Service, Regional Hospital of South Tyrol, Bolzano, Italy
| | - Tommaso Pippucci
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Emanuela Scarano
- Rare Disease Unit, Department of Pediatrics, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Duccio Maria Cordelli
- Child Neurology and Psychiatry Unit, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Marco Seri
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Silvia Paracchini
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Ring J, Rockenfeller P, Abraham C, Tadic J, Poglitsch M, Schimmel K, Westermayer J, Schauer S, Achleitner B, Schimpel C, Moitzi B, Rechberger GN, Sigrist SJ, Carmona-Gutierrez D, Kroemer G, Büttner S, Eisenberg T, Madeo F. Mitochondrial energy metabolism is required for lifespan extension by the spastic paraplegia-associated protein spartin. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:411-422. [PMID: 29234670 PMCID: PMC5722644 DOI: 10.15698/mic2017.12.603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 11/20/2017] [Indexed: 01/11/2023]
Abstract
Hereditary spastic paraplegias, a group of neurodegenerative disorders, can be caused by loss-of-function mutations in the protein spartin. However, the physiological role of spartin remains largely elusive. Here we show that heterologous expression of human or Drosophila spartin extends chronological lifespan of yeast, reducing age-associated ROS production, apoptosis, and necrosis. We demonstrate that spartin localizes to the proximity of mitochondria and physically interacts with proteins related to mitochondrial and respiratory metabolism. Interestingly, Nde1, the mitochondrial external NADH dehydrogenase, and Pda1, the core enzyme of the pyruvate dehydrogenase complex, are required for spartin-mediated cytoprotection. Furthermore, spartin interacts with the glycolysis enhancer phospo-fructo-kinase-2,6 (Pfk26) and is sufficient to complement for PFK26-deficiency at least in early aging. We conclude that mitochondria-related energy metabolism is crucial for spartin's vital function during aging and uncover a network of specific interactors required for this function.
Collapse
Affiliation(s)
- Julia Ring
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Claudia Abraham
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Katherina Schimmel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Julia Westermayer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Simon Schauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Bettina Achleitner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Christa Schimpel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioNanoNet Forschungsgesellschaft mbH, Graz, Austria
| | - Barbara Moitzi
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Gerald N. Rechberger
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Stephan J. Sigrist
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | | | - Guido Kroemer
- BioTechMed Graz, Graz, Austria
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital Stockholm, Sweden
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|