1
|
Zhai S, Chen Y, Jiang T, Wu F, Cheng X, Wang Q, Wang M. Traditional Chinese medicine provides candidates for mutiple seclorsis: A review based on the progress of MS and potent treatment medicine. Mult Scler Relat Disord 2025; 95:106319. [PMID: 39951915 DOI: 10.1016/j.msard.2025.106319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/18/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Multiple Sclerosis(MS) is a chronic inflammatory and degenerative autoimmune neurological disease, characterized by immune cells infiltration, demyelination, axonal loss and neuron degeneration. At present, the precise mechanism of the disease is still not very clear. Latest studies clarified that immune imbalance, microglia polarization, oxidative stress, the destruction of blood-brain barrier(BBB) and blood-spinal cord barrier(BSCB), and intestinal flora imbalance may participate in the pathogenesis and promote the progress of the disease. Traditional Chinese medicine(TCM) and their bioeffective components were found to have capacity to regulate these mechanisms, and have the advantages of multi-target activity, low toxicity and side effects, making TCM promising therapy candidates. In this review, we summarized the progress of TCM in treating MS or its animal model in recent five years, in order to further demonstrate the mechanism of MS and provide more potential effective drug choice.
Collapse
Affiliation(s)
- Shaopeng Zhai
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yan Chen
- Department of Rehabilitation, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Taotao Jiang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Fengjuan Wu
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiaorong Cheng
- Department of Rehabilitation, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qi Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
2
|
Guan D, Li Y, Cui Y, Zhao H, Dong N, Wang K, Ren D, Song T, Wang X, Jin S, Gao Y, Wang M. 5-HMF attenuates inflammation and demyelination in experimental autoimmune encephalomyelitis mice by inhibiting the MIF-CD74 interaction. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1222-1233. [PMID: 37431183 PMCID: PMC10448060 DOI: 10.3724/abbs.2023105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/10/2023] [Indexed: 07/12/2023] Open
Abstract
The neuroprotective role of 5-hydroxymethyl-2-furfural (5-HMF) has been demonstrated in a variety of neurological diseases. The aim of this study is to investigate the effect of 5-HMF on multiple sclerosis (MS). IFN-γ-stimulated murine microglia (BV2 cells) are considered a cell model of MS. With 5-HMF treatment, microglial M1/2 polarization and cytokine levels are detected. The interaction of 5-HMF with migration inhibitory factor (MIF) is predicted using online databases. The experimental autoimmune encephalomyelitis (EAE) mouse model is established, followed by a 5-HMF injection. The results show that 5-HMF facilitates IFN-γ-stimulated microglial M2 polarization and attenuates the inflammatory response. According to the network pharmacology and molecular docking results, 5-HMF has a binding site for MIF. Further results show that blocking MIF activity or silencing CD74 enhances microglial M2 polarization, reduces inflammatory activity, and prevents ERK1/2 phosphorylation. 5-HMF inhibits the MIF-CD74 interaction by binding to MIF, thereby inhibiting microglial M1 polarization and enhancing the anti-inflammatory response. 5-HMF ameliorates EAE, inflammation, and demyelination in vivo. In conclusion, our research indicates that 5-HMF promotes microglial M2 polarization by inhibiting the MIF-CD74 interaction, thereby attenuating inflammation and demyelination in EAE mice.
Collapse
Affiliation(s)
- Dongsheng Guan
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Yingxia Li
- The College of Basic MedicineHenan University of Traditional Chinese MedicineZhengzhou450046China
| | - Yinglin Cui
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Huanghong Zhao
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Ning Dong
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Kun Wang
- Department of Pharmacythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Deqi Ren
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Tiantian Song
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Xiaojing Wang
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Shijie Jin
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Yinghe Gao
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| | - Mengmeng Wang
- Department of Neurologythe Second Clinical Medical CollegeHenan University of Traditional Chinese MedicineZhengzhou450002China
| |
Collapse
|
3
|
Immunogenicity and Safety of a Combined Intramuscular/Intranasal Recombinant Spike Protein COVID-19 Vaccine (RCP) in Healthy Adults Aged 18 to 55 Years Old: A Randomized, Double-Blind, Placebo-Controlled, Phase I Trial. Vaccines (Basel) 2023; 11:vaccines11020455. [PMID: 36851334 PMCID: PMC9961243 DOI: 10.3390/vaccines11020455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Objectives: This study aimed to determine the safety and immunogenicity of a combined intramuscular/intranasal recombinant spike protein COVID-19 vaccine (RCP). Methods: We conducted a randomized, double-blind, placebo-controlled, phase I trial. Three vaccine strengths were compared with an adjuvant-only preparation. It included two intramuscular and a third intranasal dose. Eligible participants were followed for adverse reactions. Specific IgG, secretory IgA, neutralizing antibodies, and cell-mediated immunity were assessed. Results: A total of 153 participants were enrolled (13 sentinels, 120 randomized, 20 non-randomized open-labeled for IgA assessment). No related serious adverse event was observed. The geometric mean ratios (GMRs) and 95% CI for serum neutralizing antibodies compared with placebo two weeks after the second injection were 5.82 (1.46-23.13), 11.12 (2.74-45.09), and 20.70 (5.05-84.76) in 5, 10, and 20 µg vaccine groups, respectively. The GMR for anti-RBD IgA in mucosal fluid two weeks after the intranasal dose was 23.27 (21.27-25.45) in the 10 µg vaccine group. The humoral responses were sustained for up to five months. All vaccine strengths indicated a strong T-helper 1 response. Conclusion: RCP is safe and creates strong and durable humoral and cellular immunity and good mucosal immune response in its 10 µg /200 µL vaccine strengths. Trial registration: IRCT20201214049709N1.
Collapse
|
4
|
Banihashemi SR, Es-haghi A, Fallah Mehrabadi MH, Nofeli M, Mokarram AR, Ranjbar A, Salman M, Hajimoradi M, Razaz SH, Taghdiri M, Bagheri M, Dadar M, Hassan ZM, Eslampanah M, Salehi Najafabadi Z, Lotfi M, Khorasani A, Rahmani F. Safety and Efficacy of Combined Intramuscular/Intranasal RAZI-COV PARS Vaccine Candidate Against SARS-CoV-2: A Preclinical Study in Several Animal Models. Front Immunol 2022; 13:836745. [PMID: 35693788 PMCID: PMC9179012 DOI: 10.3389/fimmu.2022.836745] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
Several vaccine candidates for COVID-19 have been developed, and few vaccines received emergency approval with an acceptable level of efficacy and safety. We herein report the development of the first recombinant protein-based vaccine in Iran based on the recombinant SARS-CoV-2 spike protein in its monomeric (encompassing amino acid 1-674 for S1 and 685-1211 for S2 subunits) and trimer form (S-Trimer) formulated in the oil-in-water adjuvant system RAS-01 (Razi Adjuvant System-01). The safety and immunity of the candidate vaccine, referred to as RAZI-COV PARS, were evaluated in Syrian hamster, BALB/c mice, Pirbright guinea pig, and New Zeeland white (NZW) rabbit. All vaccinated animals received two intramuscular (IM) and one intranasal (IN) candidate vaccine at 3-week intervals (days 0, 21, and 51). The challenge study was performed intranasally with 5×106 pfu of SARS-CoV-2 35 days post-vaccination. None of the vaccinated mice, hamsters, guinea pigs, or rabbits showed any changes in general clinical observations; body weight and food intake, clinical indicators, hematology examination, blood chemistry, and pathological examination of vital organs. Safety of vaccine after the administration of single and repeated dose was also established. Three different doses of candidate vaccine stimulated remarkable titers of neutralizing antibodies, S1, Receptor-Binding Domain (RBD), and N-terminal domain (NTD) specific IgG antibodies as well as IgA antibodies compared to placebo and control groups (P<0.01). Middle and high doses of RAZI-COV PARS vaccine significantly induced a robust and quick immune response from the third-week post-immunization. Histopathological studies on vaccinated hamsters showed that the challenge with SARS-CoV-2 did not induce any modifications in the lungs. The protection of the hamster was documented by the absence of lung pathology, the decreased virus load in the lung, rapid clearance of the virus from the lung, and strong humoral and cellular immune response. These findings confirm the immunogenicity and efficacy of the RAZI-COV PARS vaccine. Of the three tested vaccine regimens, the middle dose of the vaccine showed the best protective immune parameters. This vaccine with heterologous prime-boost vaccination method can be a good candidate to control the viral infection and its spread by stimulating central and mucosal immunity.
Collapse
Affiliation(s)
- Seyed Reza Banihashemi
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Es-haghi
- Department of Physico Chemistry, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Hossein Fallah Mehrabadi
- Department of Epidemiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mojtaba Nofeli
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Rezaei Mokarram
- Department of Quality Assurance, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Alireza Ranjbar
- Clinic of Pediatrics, Institute of Interventional Allergology and Immunology, Bonn, Germany
| | - Mo Salman
- Animal Population Health Institute of College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Monireh Hajimoradi
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyad Hossein Razaz
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maryam Taghdiri
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Bagheri
- Department of Physico Chemistry, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maryam Dadar
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Eslampanah
- Department of Pathology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Zahra Salehi Najafabadi
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Lotfi
- Department of Quality Control, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akbar Khorasani
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Fereidoon Rahmani
- Department of Physico Chemistry, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
5
|
Lu J, Xie L, Liu K, Zhang X, Wang X, Dai X, Liang Y, Cao Y, Li X. Bilobalide: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother Res 2021; 35:6114-6130. [PMID: 34342079 DOI: 10.1002/ptr.7220] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022]
Abstract
Bilobalide is a natural sesquiterpene trilactone from Ginkgo biloba leaves. It has good water solubility and is widely used in food and pharmaceutical fields. In the last decade, a plethora of studies on the pharmacological activities of bilobalide has been conducted and demonstrated that bilobalide possessed an extensive range of pharmacological activities such as neuroprotective, antioxidative, antiinflammatory, anti-ischemic, and cardiovascular protective activities. Pharmacokinetic studies indicated that bilobalide may have the characteristics of rapid absorption, good bioavailability, wide distribution, and slow elimination. This review aims to summarize the advances in pharmacological, pharmacokinetics, toxicity, and safety studies of bilobalide in the last decade with an emphasis on its neuroprotective and antiinflammatory activities, to provide researchers with the latest information and point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Wei W, Ma D, Li L, Zhang L. Progress in the Application of Drugs for the Treatment of Multiple Sclerosis. Front Pharmacol 2021; 12:724718. [PMID: 34326775 PMCID: PMC8313804 DOI: 10.3389/fphar.2021.724718] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and chronic inflammatory demyelinating disease of the central nervous system (CNS), which gives rise to focal lesion in CNS and cause physical disorders. Although environmental factors and susceptibility genes are reported to play a role in the pathogenesis of MS, its etiology still remains unclear. At present, there is no complete cure, but there are drugs that decelerate the progression of MS. Traditional therapies are disease-modifying drugs that control disease severity. MS drugs that are currently marketed mainly aim at the immune system; however, increasing attention is being paid to the development of new treatment strategies targeting the CNS. Further, the number of neuroprotective drugs is presently undergoing clinical trials and may prove useful for the improvement of neuronal function and survival. In this review, we have summarized the recent application of drugs used in MS treatment, mainly introducing new drugs with immunomodulatory, neuroprotective, or regenerative properties and their possible treatment strategies for MS. Additionally, we have presented Food and Drug Administration-approved MS treatment drugs and their administration methods, mechanisms of action, safety, and effectiveness, thereby evaluating their treatment efficacy.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|