1
|
Mirmotahari SA, Aliomrani M, Hassanzadeh F, Sirous H, Rostami M. Hybrid derivatives containing dimethyl fumarate and benzothiazole scaffolds for the potential treatment of multiple sclerosis; in silico & in vivo study. Daru 2024; 32:599-615. [PMID: 39106020 PMCID: PMC11554962 DOI: 10.1007/s40199-024-00529-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/30/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is a chronic autoimmune, inflammatory neurological disease of the CNS. Riluzole and dimethyl fumarate (DMF) are two FDA-approved drugs to treat amyotrophic lateral sclerosis (ALS) and MS. Riluzole (a benzothiazole derivative) inhibits glutamate release from nerve terminals by antagonizing the N-Methyl-D-Aspartate (NMDA) receptor, and DMF upregulates anti-oxidative pathways. OBJECTIVES Herein, using molecular hybridization strategy, we synthesized some new hybrid structures of Riluzole and DMF through some common successive synthetic pathways for evaluating their potential activity for remyelination in MS treatment. METHODS Molecular docking experiments assessed the binding affinity of proposed structures to the NMDA active site. The designed structures were synthesized and purified based on well-known chemical synthesis procedures. Afterward, in vivo evaluation for their activity was done in the C57Bl/6 Cuprizone-induced demyelination MS model. RESULTS AND CONCLUSION The proposed derivatives were recognized to be potent enough based on docking studies (ΔGbind of all derivatives were -7.2 to -7.52 compare to the Ifenprodil (-6.98) and Riluzole (-4.42)). The correct structures of desired derivatives were confirmed using spectroscopic methods. Based on in vivo studies, D4 and D6 derivatives exhibited the best pharmacological results, although only D6 showed a statistically significant difference compared to the control. Also, for D4 and D6 derivatives, myelin staining confirmed reduced degeneration in the corpus callosum. Consequently, D4 and D6 derivatives are promising candidates for developing new NMDA antagonists with therapeutic value against MS disorders.
Collapse
Affiliation(s)
- Seyedeh Azin Mirmotahari
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran
| | - Mehdi Aliomrani
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran
| | - Mahboubeh Rostami
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R., Iran.
| |
Collapse
|
2
|
Neisiani AK, Mousavi MK, Soltani M, Aliomrani M. Perfluorooctanoic acid exposure and its neurodegenerative consequences in C57BL6/J mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2357-2367. [PMID: 36700988 DOI: 10.1007/s00210-023-02387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a member of Per- and polyfluoroalkyl substances (PFASs), an industrial pollutant that has been produced for decades and widely used in various industries. Accumulation of this compound in the environment and body of organisms led to increased concerns about this compound. The toxic effects of PFOA on the nervous system are unknown yet. We aimed to assess the myelination and neurogenesis in brain tissue. In this study, PFOA at doses of 1, 5, 10, and 20 mg/kg were injected intraperitoneally into C57BL/6 J mice for 14 days, and the myelin content, CD4 + and CD8 + cell infiltration to brain regions were evaluated. Also, bromodeoxyuridine (BrdU) labeling was performed to compare neurogenesis among the groups. Luxol Fast Blue (LFB) staining revealed a significant decrease in myelin content in both sex at high concentrations (p < 0.001). The BrdU incorporation changes were observed in both sexes especially females which was highly related to the dose of PFOA and region of the brain. The infiltration rates of CD4 + and CD8 + cells to the brain were shown to be decreased; meanwhile the lymphocyte count was not significantly changed among groups over time and vice versa for the monocyte and neutrophils. Our results showed that PFOA had a negative impact on neurogenesis and the myelination process through the specific region of the brain depending on the dose and sex. Also, PFOA could disturb the number of CD4 + and CD8 + cells infiltrating the brain, which plays a crucial role in neurogenesis, leading to toxicity and neurological abnormalities. It seems that more research is needed to determine the exact mechanisms of PFOA neurotoxicity and its long-term behavioral consequences.
Collapse
Affiliation(s)
- Azadeh Khosravi Neisiani
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mahboobeh Kafi Mousavi
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Masoud Soltani
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Basak J, Piotrzkowska D, Kucharska-Lusina A, Majsterek I. Association between the Cytosine Hydroxymethylation and the Expression of microRNA in Multiple Sclerosis in Polish Population. Int J Mol Sci 2023; 24:13923. [PMID: 37762229 PMCID: PMC10531266 DOI: 10.3390/ijms241813923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis is a chronic demyelinating disorder with an unclear etiology. A key role is thought to be played by Th17 cells and microRNAs associated with Th17, such as miR-155, miR-326 and miR-223. The present study compared the methylation and hydroxymethylation levels of CpG sites within promoters of these microRNA between MS patients and controls using PBMCs and analyzed their relationship with microRNA expression. Significant intergroup differences were found between the levels of 5-hmC within the CpG-1 miR-155 promoter and CpG within the miR-326 promoter; in addition, miR-155-5p and miR-223-3p expression was elevated in MS patients. Correlation analysis showed a positive relationship between the level of 5-hmC of CpG-2 in the miR-223 promoter and miR-223-3p level. As it is possible to pharmacologically modulate the level of epigenetic modifications, our findings cast light on the etiology of MS and support the development of more effective therapies.
Collapse
Affiliation(s)
| | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland (A.K.-L.)
| |
Collapse
|
4
|
Maciak K, Dziedzic A, Saluk J. Remyelination in multiple sclerosis from the miRNA perspective. Front Mol Neurosci 2023; 16:1199313. [PMID: 37333618 PMCID: PMC10270307 DOI: 10.3389/fnmol.2023.1199313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Remyelination relies on the repair of damaged myelin sheaths, involving microglia cells, oligodendrocyte precursor cells (OPCs), and mature oligodendrocytes. This process drives the pathophysiology of autoimmune chronic disease of the central nervous system (CNS), multiple sclerosis (MS), leading to nerve cell damage and progressive neurodegeneration. Stimulating the reconstruction of damaged myelin sheaths is one of the goals in terms of delaying the progression of MS symptoms and preventing neuronal damage. Short, noncoding RNA molecules, microRNAs (miRNAs), responsible for regulating gene expression, are believed to play a crucial role in the remyelination process. For example, studies showed that miR-223 promotes efficient activation and phagocytosis of myelin debris by microglia, which is necessary for the initiation of remyelination. Meanwhile, miR-124 promotes the return of activated microglia to the quiescent state, while miR-204 and miR-219 promote the differentiation of mature oligodendrocytes. Furthermore, miR-138, miR-145, and miR-338 have been shown to be involved in the synthesis and assembly of myelin proteins. Various delivery systems, including extracellular vesicles, hold promise as an efficient and non-invasive way for providing miRNAs to stimulate remyelination. This article summarizes the biology of remyelination as well as current challenges and strategies for miRNA molecules in potential diagnostic and therapeutic applications.
Collapse
|
5
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
6
|
Tarakcioglu E, Tastan B, Arioz BI, Tufekci KU, Genc S. Melatonin Alters the miRNA Transcriptome of Inflammasome Activation in Murine Microglial Cells. Neurochem Res 2022; 47:3202-3211. [PMID: 35842554 DOI: 10.1007/s11064-022-03674-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 12/01/2022]
Abstract
Systemic inflammation can have devastating effects on the central nervous system via its resident immune cells, the microglia. One of the primary mediators of this inflammation is inflammasomes, multiprotein complexes that trigger a release of inflammatory proteins when activated. Melatonin, a hormone with anti-inflammatory effects, is an attractive candidate for suppressing such inflammation. In this study, we have investigated how melatonin alters the microRNA (miRNA) transcriptome of microglial cells. For that purpose, we have performed RNA sequencing on a lipopolysaccharide and adenosine triphosphate (LPS + ATP) induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation model in the N9 mouse microglial cell line, with and without melatonin pre-treatment. We have identified 136 differentially expressed miRNAs in cells exposed to LPS + ATP compared to controls and 10 differentially expressed miRNAs in melatonin pre-treated cells compared to the inflammasome group. We have identified miR-155-3p as a miRNA that is upregulated with inflammasome activation and downregulated with melatonin treatment. We further confirmed this pattern of miR-155-3p expression in the brains of mice injected intraperitoneally with LPS. Moreover, an overexpression study with miRNA-155-3p mimic supported the idea that the protective effects of melatonin in NLRP3 inflammasome activation are partly associated with miRNA-155-3p inhibition.
Collapse
Affiliation(s)
- Emre Tarakcioglu
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Bora Tastan
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Burak I Arioz
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey
| | - Kemal Ugur Tufekci
- Department of Health Care Services, Vocational School of Health Services, Izmir Democracy University, 35290, Izmir, Turkey.,Center for Brain and Neuroscience Research, Izmir Democracy University, 35290, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, 35340, Izmir, Balcova, Turkey. .,Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, 35340, Izmir, Turkey.
| |
Collapse
|
7
|
Abstract
MicroRNAs (miRNAs) are key players in gene regulation that target specific mRNAs for degradation or translational repression. Each miRNA is synthesized as a miRNA duplex comprising two strands (5p and 3p). However, only one of the two strands becomes active and is selectively incorporated into the RNA-induced silencing complex in a process known as miRNA strand selection. Recently, significant progress has been made in understanding the factors and processes involved in strand selection. Here, we explore the selection and functionality of the miRNA star strand (either 5p or 3p), which is generally present in the cell at low levels compared to its partner strand and, historically, has been thought to possess no biological activity. We also highlight the concepts of miRNA arm switching and miRNA isomerism. Finally, we offer insights into the impact of aberrant strand selection on immunity and cancer. Leading us through this journey is miR-155, a well-established regulator of immunity and cancer, and the increasing evidence that its 3p strand plays a role in these arenas. Interestingly, the miR-155-5p/-3p ratio appears to vary dependent on the timing of the immune response, and the 3p strand seems to play a regulatory role upon its partner 5p strand.
Collapse
Affiliation(s)
- Owen Dawson
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
8
|
Nguyen TPN, Kumar M, Fedele E, Bonanno G, Bonifacino T. MicroRNA Alteration, Application as Biomarkers, and Therapeutic Approaches in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23094718. [PMID: 35563107 PMCID: PMC9104163 DOI: 10.3390/ijms23094718] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are essential post-transcriptional gene regulators involved in various neuronal and non-neuronal cell functions and play a key role in pathological conditions. Numerous studies have demonstrated that miRNAs are dysregulated in major neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, or Huntington’s disease. Hence, in the present work, we constructed a comprehensive overview of individual microRNA alterations in various models of the above neurodegenerative diseases. We also provided evidence of miRNAs as promising biomarkers for prognostic and diagnostic approaches. In addition, we summarized data from the literature about miRNA-based therapeutic applications via inhibiting or promoting miRNA expression. We finally identified the overlapping miRNA signature across the diseases, including miR-128, miR-140-5p, miR-206, miR-326, and miR-155, associated with multiple etiological cellular mechanisms. However, it remains to be established whether and to what extent miRNA-based therapies could be safely exploited in the future as effective symptomatic or disease-modifying approaches in the different human neurodegenerative disorders.
Collapse
Affiliation(s)
- T. P. Nhung Nguyen
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Mandeep Kumar
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
9
|
Toomey LM, Papini M, Lins B, Wright AJ, Warnock A, McGonigle T, Hellewell SC, Bartlett CA, Anyaegbu C, Fitzgerald M. Cuprizone feed formulation influences the extent of demyelinating disease pathology. Sci Rep 2021; 11:22594. [PMID: 34799634 PMCID: PMC8604913 DOI: 10.1038/s41598-021-01963-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Cuprizone is a copper-chelating agent that induces pathology similar to that within some multiple sclerosis (MS) lesions. The reliability and reproducibility of cuprizone for inducing demyelinating disease pathology depends on the animals ingesting consistent doses of cuprizone. Cuprizone-containing pelleted feed is a convenient way of delivering cuprizone, but the efficacy of these pellets at inducing demyelination has been questioned. This study compared the degree of demyelinating disease pathology between mice fed cuprizone delivered in pellets to mice fed a powdered cuprizone formulation at an early 3 week demyelinating timepoint. Within rostral corpus callosum, cuprizone pellets were more effective than cuprizone powder at increasing astrogliosis, microglial activation, DNA damage, and decreasing the density of mature oligodendrocytes. However, cuprizone powder demonstrated greater protein nitration relative to controls. Furthermore, mice fed control powder had significantly fewer mature oligodendrocytes than those fed control pellets. In caudal corpus callosum, cuprizone pellets performed better than cuprizone powder relative to controls at increasing astrogliosis, microglial activation, protein nitration, DNA damage, tissue swelling, and reducing the density of mature oligodendrocytes. Importantly, only cuprizone pellets induced detectable demyelination compared to controls. The two feeds had similar effects on oligodendrocyte precursor cell (OPC) dynamics. Taken together, these data suggest that demyelinating disease pathology is modelled more effectively with cuprizone pellets than powder at 3 weeks. Combined with the added convenience, cuprizone pellets are a suitable choice for inducing early demyelinating disease pathology.
Collapse
Affiliation(s)
- Lillian M Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia.,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, WA, 6009, Australia
| | - Melissa Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Brittney Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Alexander J Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Carole A Bartlett
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia. .,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
10
|
Safaei HA, Eftekhari SM, Aliomrani M. Analysis of platelet-derived growth factor receptor A and oligodendrocyte transcription factor 2 markers following Hydroxychloroquine administration in animal induced multiple sclerosis model. Metab Brain Dis 2021; 36:2101-2110. [PMID: 34342813 DOI: 10.1007/s11011-021-00802-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/22/2021] [Indexed: 12/19/2022]
Abstract
It has been shown that following demyelination, Oligodendrocyte Progenitor Cells (OPCs) migrate to the lesion site and begin to proliferate, and differentiate. This study aimed to investigate the effects of Hydroxychloroquine (HCQ) on the expression of OLIG-2 and PDGFR-α markers during the myelination process. C57BL/6 mice were fed cuprizone pellets for 5 weeks to induce demyelination and return to a normal diet for 1 week to stimulate remyelination. During the Phase I all of the animals except CPZ and Vehicle groups were exposed to HCQ (2.5, 10, and 100 mg/kg) via drinking water. At the end of the study, animals were euthanized, perfused and the brain samples were assessed for myelination and immunohistochemistry evaluation. What is remarkable is the high rate of Olig2 + cells in the groups treated with 10 and 100 mg/kg HCQ in the demyelination phase and its decreasing trend in the remyelination phase. However, there was no significant difference between groups during phase I and Phase II based on the percentage of olig-2+/total cells in the corpus callosum region. The number of PDGFR-α+ cells in the group treated with 10 mg/kg HCQ was significant in the first phase (p value < 0.05). Considering that the 100 mg/kg HCQ group had the highest level of PDGFR-α as well as the highest level of myelin repair in LFB staining, it could be inferred that it was the most effective dose in inducing proliferation and migration of OPCs.
Collapse
Affiliation(s)
- Hajar Amin Safaei
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | | | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I. R. of Iran.
| |
Collapse
|
11
|
Fattahi H, Esmaeil N, Aliomrani M. Apamin as a BBB Shuttle and Its Effects on T Cell Population During the Experimental Autoimmune Encephalomyelitis-Induced Model of Multiple Sclerosis. Neurotox Res 2021; 39:1880-1891. [PMID: 34487326 DOI: 10.1007/s12640-021-00412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 01/22/2023]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system presented by autoimmune manifestations. This study aimed at investigating the effects of apamin administration on the activated T cell population in an experimental autoimmune encephalomyelitis (EAE) MS model. Thirty mice underwent EAE induction and were then randomly divided into 5 groups. Three groups received 10, 50, and 100 µg/kg apamin; the fourth group received 1 mg/kg dexamethasone; and the fifth group received the equivalent amount of PBS (phosphate-buffered saline) intraperitoneally. Peripheral CD4 + cell and memory T cell distribution was measured with a flow cytometer every week. Also, CD4 + and CD8 + cell infiltration to the brain was assessed with immunohistochemistry. It was observed that the group receiving 50 µg/kg apamin had a lower EAE score in comparison with the groups receiving 100 µg/kg apamin (p 0.014). Also, peripheral blood memory cells with CD44 + , CD62L - , and CD4 + markers were decreased in apamin-administered groups. Regarding the infiltrated CD8 + cells, a significant decrease (p 0.002) was observed in the group receiving 50 µg/kg apamin compared with the control group. These results indicate that 50-µg/kg doses of apamin had an effective treatment over 14 days; it reduced both the severity of symptoms and the infiltration of CD8 + cells into the CNS. Moreover, it increased myelin density and decreased the circulation of CD62L - , CD44L - , and CD44 + memory T cells. So, it appears that apamin plays a critical role in regulating immunity and reducing the complications of autoimmune MS.
Collapse
Affiliation(s)
- Haniye Fattahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
- Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
12
|
Khodabandeh Z, Etebari M, Aliomrani M. Study of the probable genotoxic effects of Zolone (Phosalone) exposure in mice bone marrow derived cells. Genes Environ 2021; 43:18. [PMID: 33985589 PMCID: PMC8117585 DOI: 10.1186/s41021-021-00191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background and aim Approximately, 2 million tonnes of pesticides are utilized annually worldwide. Phosalone (Pln), an organophosphorus pesticide, acts as an insecticide and acaricide to control pests of crops such as nuts, citrus fruits, pomegranates, stone fruits, grapes, potatoes, and artichokes. The purpose of this study was to evaluate the possible genotoxic effects following exposure to Pln in the cells derived from mouse red bone marrow. Materials and methods Sixty mice were divided into 6 groups including cyclophosphamide (40 mg/kg, IP) and Pln (6, 12, 20, and 40 mg/kg) exposure by gavage. After 1 and 5 days of exposure, animals were euthanized and the genotoxicity assays were done on bone marrow extracted cells. Results Comet assay shows a time and dose-dependent toxicity which further DNA degradation is observed after 5-day exposure (p < 0.05). Also, Pln significantly increased the MnPCE/PCE ratio after 12 and 20 mg/kg administration while no significant difference was reported between the doses of 6 and 40 mg/kg BW with the negative control group. Conclusion Our results suggested a serious concern about its potential effects on biological life and related disease inductions. However further studies need to confirm the exact mechanism of Pln genotoxicity and the cause of diverse response of its activity at 40 mg/kg. This study also showed that increasing the dose of Pln reduces the MnNCE/Total cells ratio, which may indicate the possibility of bone marrow suppression. All of the above results emphasize the need to seriously limit the use of this compound as an agricultural pesticide.
Collapse
Affiliation(s)
- Zohre Khodabandeh
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Etebari
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Pharmacology and Toxicology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Maciak K, Dziedzic A, Miller E, Saluk-Bijak J. miR-155 as an Important Regulator of Multiple Sclerosis Pathogenesis. A Review. Int J Mol Sci 2021; 22:ijms22094332. [PMID: 33919306 PMCID: PMC8122504 DOI: 10.3390/ijms22094332] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/05/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disease and the leading cause of disability among young adults. MicroRNAs (miRNAs) are involved in the post-transcriptional regulation of gene expression. Of them, miR-155 is a crucial regulator of inflammation and plays a role in modulating the autoimmune response in MS. miR-155 is involved in blood–brain barrier (BBB) disruption via down-regulation of key junctional proteins under inflammatory conditions. It drives demyelination processes by contributing to, e.g., microglial activation, polarization of astrocytes, and down-regulation of CD47 protein and affecting crucial transcription factors. miR-155 has a huge impact on the development of neuropathic pain and indirectly influences a regulatory T (Treg) cell differentiation involved in the alleviation of pain hypersensitivity. This review also focused on neuropsychiatric symptoms appearing as a result of disease-associated stressors, brain atrophy, and pro-inflammatory factors. Recent studies revealed the role of miR-155 in regulating anxiety, stress, inflammation in the hippocampus, and treatment-resistant depression. Inhibition of miR-155 expression was demonstrated to be effective in preventing processes involved in the pathophysiology of MS. This review aimed to support the better understanding the great role of miR-155 dysregulation in various aspects of MS pathophysiology and highlight future perspectives for this molecule.
Collapse
Affiliation(s)
- Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (J.S.-B.)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (J.S.-B.)
- Correspondence:
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (J.S.-B.)
| |
Collapse
|
14
|
Danesh-Seta T, Emami F, Nasr-Esfahani MH, Ghaedi K, Aliomrani M. Bee Venom-Derived BBB Shuttle and its Correlation with Oligodendrocyte Proliferation Markers in Mice Model of Multiple Sclerosis. Neurotox Res 2021; 39:1181-1188. [PMID: 33871814 DOI: 10.1007/s12640-021-00361-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis is a chronic demyelinating disease with a functional disturbance in the immune system and axonal damages. It was shown that Apamin as a blood-brain barrier shuttle acts as a Ca2+ activated K+ channels (SK channels) blocker. In this study, the effects of Apamin on oligodendrocyte differentiation markers were evaluated on an induced model of MS. Briefly, C57BL/6 male mice (22 ± 5 g) except the control group were fed with 0.2% (w/w) cuprizone pellets for 6 weeks. After cuprizone withdrawal, mice were divided randomly into six groups. Apamin (100 µg/kg/BW) was administered intraperitoneally as a co-treatment during phase I (demyelination) or post-treatment phase II (remyelination) twice a week. Mice were anesthetized, perfused with phosphate-buffered saline, then fixed brains were coronally sectioned and the changes in oligodendrocytes markers such as Olig2, PDGFR-α, and BrdU incorporation were assessed by immunohistochemistry assay. Apamin administration increased Olig2+ cells in phase I as compared to the control group (p < 0.0001). Also, a decreasing trend in PDGFRa+ cells observed after cuprizone withdrawal (p < 0.001). 5-Bromo-2'-deoxyuridine (BrdU) incorporation test was confirmed stimulation of oligodendrocyte progenitor cell proliferation in phase I in the Apamin exposed group (p < 0.0001), especially at the subventricular zone. This study highlights the potential therapeutic effects of Apamin as a bee venom-derived peptide on oligodendrocyte precursor proliferation and elevation in myelin content in an oxidative induced multiple sclerosis model due to cuprizone exposure.
Collapse
Affiliation(s)
- Tannaz Danesh-Seta
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Emami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran. .,Iranian National Science Foundation, Tehran, Iran.
| |
Collapse
|
15
|
Gholami S, Mirian M, Eftekhari SM, Aliomrani M. Apamin administration impact on miR-219 and miR-155-3p expression in cuprizone induced multiple sclerosis model. Mol Biol Rep 2020; 47:9013-9019. [PMID: 33174081 DOI: 10.1007/s11033-020-05959-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a chronic debilitating disease that attacks the central nervous system. This study aims to investigate miR-219 and miR-155-3p expression levels involved in the myelination process following the administration of apamin peptide in the model of multiple sclerosis disease. Forty-four 8 week C57BL/6 male mice (22 ± 5 g) randomly divided into six groups. Apamin (100 µg/kg/BW) was administered intraperitoneally as a co-treatment during phase I (demyelination) or post-treatment phase II (remyelination) twice a week in cuprizone induced MS model. At the end of study myelin content and microRNA expression levels were measured with LFB staining and quantitative Real-Time PCR method, respectively. It was observed that the intended microRNAs were dysregulated during the different phases of disease induction. After 6 weeks of cuprizone exposure, miR-219 downregulated in phase I in comparison with the negative control. On the other hand, the apamin co-treatment significantly inhibit the miR-155-3p upregulation during the phase I as compared with the cuprizone group (p < 0.0001). Apamin has more impact on the miR155-3p reduction in phase I than miR-219 elevation in phase II. It could be considered as a therapeutic option for decreasing plaque formation during the exacerbation phase of the MS disease. Apamin has more impact on the miR155-3p reduction in phase I than miR-219 elevation in phase II. It could be considered as a therapeutic option for decreasing plaque formation during the exacerbation phase of the MS disease.
Collapse
Affiliation(s)
- Samira Gholami
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mina Mirian
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | | | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Room 117, Isfahan, Islamic Republic of Iran.
| |
Collapse
|