1
|
Glycoproteins Involved in Sea Urchin Temporary Adhesion. Mar Drugs 2023; 21:md21030145. [PMID: 36976195 PMCID: PMC10057474 DOI: 10.3390/md21030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023] Open
Abstract
Biomedical adhesives, despite having been used increasingly in recent years, still face a major technological challenge: strong adhesion in wet environments. In this context, biological adhesives secreted by marine invertebrates have appealing characteristics to incorporate into new underwater biomimetic adhesives: water resistance, nontoxicity and biodegradability. Little is still known about temporary adhesion. Recently, a transcriptomic differential analysis of sea urchin Paracentrotus lividus tube feet pinpointed 16 adhesive/cohesive protein candidates. In addition, it has been demonstrated that the adhesive secreted by this species is composed of high molecular weight proteins associated with N-Acetylglucosamine in a specific chitobiose arrangement. As a follow-up, we aimed to investigate which of these adhesive/cohesive protein candidates were glycosylated through lectin pulldowns, protein identification by mass spectroscopy and in silico characterization. We demonstrate that at least five of the previously identified protein adhesive/cohesive candidates are glycoproteins. We also report the involvement of a third Nectin variant, the first adhesion-related protein to be identified in P. lividus. By providing a deeper characterization of these adhesive/cohesive glycoproteins, this work advances our understanding of the key features that should be replicated in future sea urchin-inspired bioadhesives.
Collapse
|
2
|
Li X, Li S, Huang X, Chen Y, Cheng J, Zhan A. Protein-mediated bioadhesion in marine organisms: A review. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105409. [PMID: 34271483 DOI: 10.1016/j.marenvres.2021.105409] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Protein-mediated bioadhesion is one of the crucial physiological processes in marine organisms, by which they can firmly adhere to underwater substrates. Most marine adhesive organisms are biofoulers, causing negative effects on marine ecosystems and huge economic losses to aquaculture and maritime industries. Furthermore, adhesive proteins in these organisms are promising bionic candidates for high-performance artificial materials with great application value. In-depth understanding of the bioadhesion in marine ecosystems is of dual significance for resolving biofouling issue and developing marine bionic products. Here, we review the research progress of protein-mediated bioadhesion in marine organisms. The adhesion processes such as protein biosynthesis and secretion are similar among organisms, but the detailed features such as compositions, structures, and molecular functions of adhesive proteins are distinct. Hydroxylation, glycosylation, and phosphorylation are important post-translational modifications during the processes of adhesion. The contents of some amino acids such as glycine, tyrosine and cysteine involved in underwater adhesion are significantly higher, which is a sequence feature of barnacle cement and mussel foot proteins. The amyloid structures and conserved domains/motifs such as EGF and vWFA distributed in adhesive proteins are involved in the underwater adhesion. In addition, the oxidative cross-linking also plays an important role in marine bioadhesion. Overall, the unique and common features identified for the protein-mediated bioadhesion in diverse marine organisms here provide background information and essential reference for characterizing marine adhesive proteins and associated functional domains, formulating antifouling strategies, and developing novel biomimetic adhesives.
Collapse
Affiliation(s)
- Xi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Jiawei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
3
|
Misevic G, Checiu I, Popescu O. Glyconectin Cell Adhesion Epitope, β-d-Glc pNAc3S-(1→3)-α-l-Fuc p, Is Involved in Blastulation of Lytechinus pictus Sea Urchin Embryos. Molecules 2021; 26:4012. [PMID: 34209220 PMCID: PMC8271808 DOI: 10.3390/molecules26134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 12/05/2022] Open
Abstract
Glycans, as the most peripheral cell surface components, are the primary candidates to mediate the initial steps of cell recognition and adhesion via glycan-glycan binding. This molecular mechanism was quantitatively demonstrated by biochemical and biophysical measurements at the cellular and molecular level for the glyconectin 1 β-d-GlcpNAc3S-(1→3)-α-l-Fucp glycan structure (GN1). The use of adhesion blocking monoclonal antibody Block 2 that specifically recognize this epitope showed that, besides Porifera, human colon carcinoma also express this structure in the apical glycocalyx. Here we report that Block 2 selectively immune-precipitate a Mr 580 × 103 (g580) acidic non-glycosaminoglycan glycan from the total protein-free glycans of Lytechinus pictus sea urchin hatched blastula embryos. Immuno-fluorescence confocal light microscopy and immunogold electron microscopy localized the GN1 structure in the apical lamina glycocalyx attachments of ectodermal cells microvilli, and in the Golgi complex. Biochemical and immune-chemical analyses showed that the g580 glycan is carrying about 200 copies of the GN1 epitope. This highly polyvalent g580 glycan is one of the major components of the glycocalyx structure, maximally expressed at hatched blastula and gastrula. The involvement of g580 GN1 epitope in hatched blastula cell adhesion was demonstrated by: (1) enhancement of cell aggregation by g580 and sponge g200 glycans, (2) inhibition of cell reaggregation by Block 2, (3) dissociation of microvilli from the apical lamina matrix by the loss of its gel-like structure resulting in a change of the blastula embryonal form and consequent inhibition of gastrulation at saturating concentration of Block 2, and (4) aggregation of beads coated with the immune-purified g580 protein-free glycan. These results, together with the previous atomic force microscopy measurements of GN1 binding strength, indicated that this highly polyvalent and calcium ion dependent glycan-glycan binding can provide the force of 40 nanonewtons per single ectodermal cell association of microvilli with the apical lamina, and conservation of glycocalyx gel-like structure. This force can hold the weight of 160,000 cells in sea water, thus it is sufficient to establish, maintain and preserve blastula form after hatching, and prior to the complete formation of further stabilizing basal lamina.
Collapse
Affiliation(s)
- Gradimir Misevic
- Research and Development, Gimmune GmbH, Baarerstrasse 12, 6302 Zug, Switzerland
- LIBO Medicine Biotechnology Co., Ltd., 78 Dongsheng West Road, Jiangyin 214400, China
| | - Iacob Checiu
- Gynatal, Assisted Reproduction Center, Str. Protopop George Dragomir 1, 300229 Timisoara, Romania
| | - Octavian Popescu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
- Institute of Biology Bucharest, Romanian Academy, 296 Splaiul Independenței, 060031 Bucharest, Romania
| |
Collapse
|
4
|
Alijagic A, Gaglio D, Napodano E, Russo R, Costa C, Benada O, Kofroňová O, Pinsino A. Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory-relate gene transcription and boosting antioxidant metabolic activity. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121389. [PMID: 31639584 DOI: 10.1016/j.jhazmat.2019.121389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are revolutionizing biomedicine due to their potential application as diagnostic and therapeutic agents. However, the TiO2NP immune-compatibility remains an open issue, even for ethical reasons. In this work, we investigated the immunomodulatory effects of TiO2NPs in an emergent proxy to human non-mammalian model for in vitro basic and translational immunology: the sea urchin Paracentrotus lividus. To highlight on the new insights into the evolutionarily conserved intracellular signaling and metabolism pathways involved in immune-TiO2NP recognition/interaction we applied a wide-ranging approach, including electron microscopy, biochemistry, transcriptomics and metabolomics. Findings highlight that TiO2NPs interact with immune cells suppressing the expression of genes encoding for proteins involved in immune response and apoptosis (e.g. NF-κB, FGFR2, JUN, MAPK14, FAS, VEGFR, Casp8), and boosting the immune cell antioxidant metabolic activity (e.g. pentose phosphate, cysteine-methionine, glycine-serine metabolism pathways). TiO2NP uptake was circumscribed to phagosomes/phagolysosomes, depicting harmless vesicular internalization. Our findings underlined that under TiO2NP-exposure sea urchin innate immune system is able to control inflammatory signaling, excite antioxidant metabolic activity and acquire immunological tolerance, providing a new level of understanding of the TiO2NP immune-compatibility that could be useful for the development in Nano medicines.
Collapse
Affiliation(s)
- Andi Alijagic
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Daniela Gaglio
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy; Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Consiglio Nazionale delle Ricerche, Segrate, Milano, Italy
| | - Elisabetta Napodano
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Roberta Russo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Caterina Costa
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Oldřich Benada
- Institute of Microbiology of The Czech Academy of Sciences, Prague, Czechia
| | - Olga Kofroňová
- Institute of Microbiology of The Czech Academy of Sciences, Prague, Czechia
| | - Annalisa Pinsino
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy.
| |
Collapse
|
5
|
Costa C, Pinsino A, Bonaventura R, Russo R, Zito F, Matranga V. A pilot study for an innovative approach highlighting Actin and COI mRNAs as potential biomarkers of quality of the edible crustacean Nephrops norvegicus (Linnaeus, 1758). Food Control 2019. [DOI: 10.1016/j.foodcont.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Martino C, Costa C, Roccheri MC, Koop D, Scudiero R, Byrne M. Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:57-66. [PMID: 29156215 DOI: 10.1016/j.aquatox.2017.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Chelates of Gadolinium (Gd), a lanthanide metal, are employed as contrast agents for magnetic resonance imaging and are released into the aquatic environment where they are an emerging contaminant. We studied the effects of environmentally relevant Gd concentrations on the development of two phylogenetically and geographically distant sea urchin species: the Mediterranean Paracentrotus lividus and the Australian Heliocidaris tuberculata. We found a general delay of embryo development at 24h post-fertilization, and a strong inhibition of skeleton growth at 48h. Total Gd and Ca content in the larvae showed a time- and concentration-dependent increase in Gd, in parallel with a reduction in Ca. To investigate the impact of Gd on the expression of genes involved in the regulation of skeletogenesis, we performed comparative RT-PCR analysis and found a misregulation of several genes involved in the skeletogenic and left-right axis specification gene regulatory networks. Species-specific differences in the biomineralization response were evident, likely due to differences in the skeletal framework of the larvae and the amount of biomineral produced. Our results highlight the hazard of Gd for marine organisms.
Collapse
Affiliation(s)
- Chiara Martino
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Maria Carmela Roccheri
- Dipartimento Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Ed. 16, 90128, Palermo, Italy
| | - Demian Koop
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia
| | - Rosaria Scudiero
- Dipartimento di Biologia, Università di Napoli Federico II, via Mezzocannone 8, 80134, Napoli, Italy
| | - Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, NSW, Australia
| |
Collapse
|
7
|
Wang J, Guo J, Wang S, Zeng Z, Zheng D, Yao X, Yu H, Ruan L. The global strategy employed by Xanthomonas oryzae pv. oryzae to conquer low-oxygen tension. J Proteomics 2017; 161:68-77. [PMID: 28412528 DOI: 10.1016/j.jprot.2017.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/21/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a notorious rice pathogen that causes bacterial leaf blight (BLB), a destructive rice disease. Low-oxygen tension in the xylem vessels of rice stresses Xoo during infection. In this study, differentially expressed proteins under normoxic and hypoxic conditions were identified using high-performance liquid chromatography (HPLC) coupled with LC-MS/MS to investigate the global effects of low oxygen environment on Xoo PXO99A. A statistically validated list of 187 (normoxia) and 140 (hypoxia) proteins with functional assignments was generated, allowing the reconstruction of central metabolic pathways. Ten proteins involved in aromatic amino acid biosynthesis, glycolysis, butanoate metabolism, propanoate metabolism and biological adhesion were significantly modulated under low-oxygen tension. The genes encoded by these proteins were in-frame deleted, and three of them were determined to be required for full virulence in Xoo. The contributions of these three genes to important virulence-associated functions, including extracellular polysaccharide, cell motility and antioxidative ability, are presented. BIOLOGICAL SIGNIFICANCE To study how Xanthomonas oryzae pv. oryzae (Xoo) conquers low-oxygen tension in the xylem of rice, we identified differentially expressed proteins under normoxic and hypoxia. We found 140 proteins that uniquely expressed under the hypoxia were involved in 33 metabolism pathways. We identified 3 proteins were required for full virulence in Xoo and related to the ability of extracellular polysaccharide, cell motility, and antioxidative. This study is helpful for broadening our knowledge of the metabolism processed of Xoo in the xylem of rice.
Collapse
Affiliation(s)
- Jianliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Guo
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shasha Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Zeng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Yao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoquan Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Karakostis K, Costa C, Zito F, Brümmer F, Matranga V. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:384-395. [PMID: 27230618 DOI: 10.1007/s10126-016-9701-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
- INSERM - UMR 1162, Institute de Génétique Moléculaire, Hôpital St. Louis, 27 rue Juliette Dodu, 75010, Paris, France
| | - Caterina Costa
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy.
| | - Francesca Zito
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| | - Franz Brümmer
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Valeria Matranga
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| |
Collapse
|
9
|
Toubarro D, Gouveia A, Ribeiro RM, Simões N, da Costa G, Cordeiro C, Santos R. Cloning, Characterization, and Expression Levels of the Nectin Gene from the Tube Feet of the Sea Urchin Paracentrotus Lividus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:372-383. [PMID: 27194026 DOI: 10.1007/s10126-016-9698-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Marine bioadhesives perform in ways that manmade products simply cannot match, especially in wet environments. Despite their technological potential, bioadhesive molecular mechanisms are still largely understudied, and sea urchin adhesion is no exception. These animals inhabit wave-swept shores, relying on specialized adhesive organs, tube feet, composed by an adhesive disc and a motile stem. The disc encloses a duo-gland adhesive system, producing adhesive and deadhesive secretions for strong reversible substratum attachment. The disclosure of sea urchin Paracentrotus lividus tube foot disc proteome led to the identification of a secreted adhesion protein, Nectin, never before reported in adult adhesive organs but, that given its adhesive function in eggs/embryos, was pointed out as a putative substratum adhesive protein in adults. To further understand Nectin involvement in sea urchin adhesion, Nectin cDNA was amplified for the first time from P. lividus adhesive organs, showing that not only the known Nectin mRNA, called Nectin-1 (GenBank AJ578435), is expressed in the adults tube feet but also a new mRNA sequence, called Nectin-2 (GenBank KT351732), differing in 15 missense nucleotide substitutions. Nectin genomic DNA was also obtained for the first time, indicating that both Nectin-1 and Nectin-2 derive from a single gene. In addition, expression analysis showed that both Nectins are overexpressed in tube feet discs, its expression being significantly higher in tube feet discs from sea urchins just after collection from the field relative to sea urchin from aquarium. These data further advocate for Nectin involvement in sea urchin reversible adhesion, suggesting that its expression might be regulated according to the hydrodynamic conditions.
Collapse
Affiliation(s)
- Duarte Toubarro
- Centro de Biotecnologia dos Açores, Departamento de Biologia, Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal
- Structural and Cellular Microbiology Unit, Instituto de Tecnologia Química e Biológica, 2780-157, Oeiras, Portugal
| | - Analuce Gouveia
- Centro de Biotecnologia dos Açores, Departamento de Biologia, Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal
| | - Raquel Mesquita Ribeiro
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Nélson Simões
- Centro de Biotecnologia dos Açores, Departamento de Biologia, Universidade dos Açores, 9501-801, Ponta Delgada, Açores, Portugal
| | - Gonçalo da Costa
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Carlos Cordeiro
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Romana Santos
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
10
|
Lebesgue N, da Costa G, Ribeiro RM, Ribeiro-Silva C, Martins GG, Matranga V, Scholten A, Cordeiro C, Heck AJR, Santos R. Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: A quantitative proteomics approach. J Proteomics 2016; 138:61-71. [PMID: 26926440 DOI: 10.1016/j.jprot.2016.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/24/2023]
Abstract
UNLABELLED Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. SIGNIFICANCE Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially involved in sea urchin adhesion, is not only highly expressed in tube feet discs, but is a genuine component of the secreted adhesive.
Collapse
Affiliation(s)
- Nicolas Lebesgue
- Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, Netherlands
| | - Gonçalo da Costa
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Laboratório de FTICR e espectrometria de massa estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Raquel Mesquita Ribeiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Cristina Ribeiro-Silva
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, R. da Quinta Grande 6, 2780-156 Oeiras, Portugal; Centro de Ecologia, Evolução e Alterações Ambientais, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare, 'Alberto Monroy', Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Arjen Scholten
- Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, Netherlands
| | - Carlos Cordeiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Laboratório de FTICR e espectrometria de massa estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Albert J R Heck
- Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, Netherlands
| | - Romana Santos
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Campo Grande, 1749-016, Lisboa, Portugal; MARE - Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| |
Collapse
|
11
|
Karakostis K, Costa C, Zito F, Matranga V. Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity. Sci Rep 2015; 5:17665. [PMID: 26640155 PMCID: PMC4671058 DOI: 10.1038/srep17665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
Galectin family members specifically bind beta-galactoside derivatives and are involved in different cellular events, including cell communication, signalling, apoptosis, and immune responses. Here, we report a tandem-repeat type galectin from the Paracentrotus lividus sea urchin embryo, referred to as Pl-GAL-8. The 933nt sequence encodes a protein of 34.73 kDa, containing the conserved HFNPRF and WGxExR motifs in the two highly similar carbohydrate-recognition domains (CRD). The three-dimensional protein structure model of the N-CRD confirms the high evolutionary conservation of carbohydrate binding sites. The temporal gene expression is regulated during development and transcripts localize at the tip of the archenteron at gastrula stage, in a subset of the secondary mesenchyme cells that differentiate into blastocoelar (immune) cells. Functional studies using a recombinant Pl-GAL-8 expressed in bacteria demonstrate its hemo-agglutinating activity on human red blood cells through the binding to lactose, as well as its ability in inhibiting the adhesion of human Hep-G2 cells to the substrate. The recent implications in autoimmune diseases and inflammatory disorders make Gal-8 an attractive candidate for therapeutic purposes. Our results offer a solid basis for addressing the use of the new Pl-GAL-8 in functional and applicative studies, respectively in the developmental and biomedical fields.
Collapse
Affiliation(s)
- Kostantinos Karakostis
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “A. Monroy”, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
12
|
Katow H. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos. Tissue Barriers 2015; 3:e1059004. [PMID: 26716069 PMCID: PMC4681286 DOI: 10.1080/21688370.2015.1059004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology; Tohoku University; Asamushi, Aomori, Japan
| |
Collapse
|
13
|
Russo R, Pinsino A, Costa C, Bonaventura R, Matranga V, Zito F. The newly characterizedPl-jun is specifically expressed in skeletogenic cells of theParacentrotus lividussea urchin embryo. FEBS J 2014; 281:3828-43. [DOI: 10.1111/febs.12911] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/24/2014] [Accepted: 07/03/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Roberta Russo
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| | - Annalisa Pinsino
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| | - Caterina Costa
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| | - Rosa Bonaventura
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| | - Valeria Matranga
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| | - Francesca Zito
- Institute of Biomedicine and Molecular Immunology ‘A. Monroy’; National Research Council; Palermo Italy
| |
Collapse
|
14
|
Mapping sea urchins tube feet proteome — A unique hydraulic mechano-sensory adhesive organ. J Proteomics 2013; 79:100-13. [DOI: 10.1016/j.jprot.2012.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/10/2012] [Accepted: 12/02/2012] [Indexed: 11/22/2022]
|
15
|
Costa C, Karakostis K, Zito F, Matranga V. Phylogenetic analysis and expression patterns of p16 and p19 in Paracentrotus lividus embryos. Dev Genes Evol 2012; 222:245-51. [PMID: 22565340 DOI: 10.1007/s00427-012-0405-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
P16 and P19 are two small acidic proteins involved in the formation of the biomineralized skeleton of sea urchin embryos and adults. Here, we describe the cloning and the embryonic temporal and spatial expression profiles of p16 and p19 mRNAs, identified for the first time in Paracentrotus lividus. Phylogenetic analysis showed a high degree of similarity of the deduced Pl-P16 and Pl-P19 sequences with the Lytechinus variegatus and Strongylocentrotus purpuratus orthologs. While only a reduced similarity with other phyla, including mammals, was detected, their implication in biomineralized tissues calls for their conservation in evolution. By comparative quantitative PCR and in situ hybridization, we found that Pl-p16 and Pl-p19 expression was restricted to skeletogenic cells throughout embryogenesis, with transcript levels peaking at the late gastrula stage. Dissimilar Pl-p16 and Pl-p19 spatial expression within the primary mesenchyme cell syncytium at the gastrula and pluteus stages suggests the occurrence of a different regulation of gene transcription.
Collapse
Affiliation(s)
- Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | | | | | | |
Collapse
|
16
|
Marrone V, Piscopo M, Romano G, Ianora A, Palumbo A, Costantini M. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 2012; 7:e31750. [PMID: 22363721 PMCID: PMC3282763 DOI: 10.1371/journal.pone.0031750] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/12/2012] [Indexed: 12/30/2022] Open
Abstract
Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.
Collapse
Affiliation(s)
- Vincenzo Marrone
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marina Piscopo
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy
| | - Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Adrianna Ianora
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
- * E-mail:
| |
Collapse
|
17
|
Echinoderms as Blueprints for Biocalcification: Regulation of Skeletogenic Genes and Matrices. MOLECULAR BIOMINERALIZATION 2011; 52:225-48. [DOI: 10.1007/978-3-642-21230-7_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|