1
|
Lakhani S, Rojmala JV, Chotai NM, Waghela BN, Thakor P. Virtual screening and identification of potent phytoconstituents from Acorus calamus L. as inhibitors of Monkeypox virus infection. J Genet Eng Biotechnol 2025; 23:100487. [PMID: 40390486 PMCID: PMC12060457 DOI: 10.1016/j.jgeb.2025.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND The threat posed by the Monkeypox (Mpox) disease has re-emerged globally while the world strives to recover from the Corona Virus Disease -19 (COVID-19) pandemic. The World Health Organization has declared Mpox a global health emergency. Monkeypox virus (MPXV), the causative agent of Mpox disease, is a zoonotic, large, enveloped, double-stranded deoxyribonucleic acid (DNA) virus that belongs to the Orthopoxviridae genus. The Food and Drug Administration (FDA), USA has approved repurposed antiviral agents Cidofovir and Tecovirimat as the primary treatment options for Mpox, however, they project systemic toxicity and have underwhelming clinical data. A plethora of medicinal plant compounds including flavonoids, phenolics, terpenoids, and alkaloids have awide range of biological activities such as antimicrobial, antioxidant, antiulcer, antineoplastic, anti-inflammatory, and immuno-stimulating potentials. Since many of them are being studied in modern research to discover an active drug candidate, we turned to medicinal plants to explore potent antiviral compounds. METHODS In the present study, we aimed to screen phytoconstituents ofAcorus calamusL. (AC) against four essential virulence enabling proteins D8L, A48R, D13L, and A42R of MPXV byin silicoapproach. Further, we have elucidated pharmaceutical-relevant parameters of hit compounds through their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties as well as drug-likeness parameters. RESULTS Our results revealed that AC phytoconstituents such as β-Sitosterol against A42R and D8L, Lucenin-2 against D13L and Zingiberene against A48R showed the strongest binding affinities, respectively. Moreover, Galangin could prominently interact with all four proteins with lower binding energy and higher affinity. All top phytoconstituents obeyed Lipinski's RO5 and drug-likeness properties. CONCLUSIONS The phytoconstituents of AC can act as potent inhibitors of essential virulence enabling proteins of MPXV. Thus, we recommend further experimental investigations to validate the promising results of thepresent in silico study.
Collapse
Affiliation(s)
- Shivani Lakhani
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Janki V Rojmala
- Faculty of Science, Atmiya University, Kalawad Road, Rajkot, Gujarat, India
| | | | - Bhargav N Waghela
- Faculty of Science, Atmiya University, Kalawad Road, Rajkot, Gujarat, India.
| | - Parth Thakor
- Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India.
| |
Collapse
|
2
|
Raen R, Islam MM, Islam R, Islam MR, Jarin T. Functional characterization and structural prediction of hypothetical proteins in monkeypox virus and identification of potential inhibitors. Mol Divers 2025; 29:1589-1617. [PMID: 39043911 DOI: 10.1007/s11030-024-10935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
The excessive activation of the monkeypox virus (MPXV-Congo_8-156) is linked to various skin and respiratory disorders such as rashes, fluid-filled blisters, swollen lymph nodes and encephalitis (inflammation of the brain), highlighting MPXV-Congo_8-156 as a promising target for drug intervention. Despite the effectiveness of Cidofovir, in inhibiting MPXV activity, its limited ability to penetrate the skin and its strong side effects restrict its application. To address this challenge, we screened 500 compounds capable of penetrating the skin and gastrointestinal tract to identify potent MPXV inhibitors. Various characterization schemes and structural models of MPXV-Congo_8-156 were explored with bioinformatics tools like PROTPARAM, SOPMA, SWISS-MODEL and PROCHECK. Using molecular docking in PyRx, we evaluated the binding affinities of these compounds with MPXV-Congo_8-156 and identified the top five candidates ranging from - 9.2 to - 8.8 kcal/mol. ADMET analysis indicated that all five compounds were safer alternatives, showing no AMES toxicity or carcinogenicity in toxicological assessments. Molecular dynamics (MD) simulations, conducted for 100 ns each, confirmed the docking interactions of the top five compounds alongside the control (Cidofovir), validating their potential as MPXV inhibitors. The compounds with PubChem CID numbers 4061636, 4422538, 3583576, 4856107 and 4800629 demonstrated strong support in terms of root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA) value, hydrogen bond analysis, and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analysis. Thus, our investigation identified these five compounds as promising inhibitors of MPXV, offering potential therapeutic avenues. However, further in vivo studies are necessary to validate our findings.
Collapse
Affiliation(s)
- Reana Raen
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh.
- Department of Biomedical Engineering, Chittagong University of Engineering & Technology, Chittagong, Bangladesh.
| | - Muhammad Muinul Islam
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
| | - Redwanul Islam
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
| | - Md Rabiul Islam
- Department of Electrical and Electronic Engineering, Jashore University of Science & Technology, Jashore, Bangladesh
| | - Tanima Jarin
- Department of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
3
|
Chen C, Chen Y, Ye Z, Ali A, Yao S. Bioactive Deep Eutectic Solvent-Involved Sprayable Versatile Hydrogel for Monkeypox Virus Lesions Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2148-2168. [PMID: 39727382 DOI: 10.1021/acsami.4c14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
To address the issues of infectious virus, bacterial secondary infections, skin pigmentation, and scarring caused by monkeypox virus (MPXV), a sprayable hydrogel with versatile functions was developed with comprehensive properties. Based on current research, the bioactive deep eutectic solvent (DES) of rosmarinic acid-proanthocyanidin-glycol (RPG) was designed and synthesized as active agent, and molecular docking was applied to discover its binding to MPXV proteins through H-bonds and van der Waals interactions, and the docking results show the binding energies between RA, PC, Gly and MPXV proteins are -58.7188, -50.2311, and -18.4755 kcal/mol, respectively. Additionally, poly(vinyl alcohol) (PVA), borate, and xylitol (Xyl) were integrated with RPG to prepare the PB-RPG-Xyl hydrogel, which was characterized by popular ways. The pH-responsive properties of the hydrogel accelerated the release of RPG under acidic conditions, resulting in an increased cumulative release percentage of 84.83% at pH 5.5 at 210 min. Besides that, it was proved to have the expected sprayability, self-healing, adhesion, and shape-adaptability. The results of molecular dynamic simulation were meaningful to understanding its formation and self-healing mechanisms. Furthermore, the hydrogel shows ideal degradability, removability, and biocompatibility. Lastly, its multiple functions were systematically explored, including UV-blocking, blood clotting, cooling, antioxidant, antibacterial, and virus inhibition properties. The developed sprayable PB-RPG-Xyl hydrogel represents the first promising dressing based on natural bioactive DES for MPXV lesions management, which not only expands the application of green solvents in health care but also provides a convenient and effective treatment process for MPXV infection in the face of difficult skin lesions and complex treatment needs.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, College of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhiyi Ye
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ahmad Ali
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
4
|
Varghese R, Patel P, Kumar D, Sharma R. Monkeypox and drug repurposing: seven potential antivirals to combat the viral disease. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:871-874. [PMID: 36809250 DOI: 10.1515/reveh-2023-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The growing concern about the monkeypox (Mpox) virus infection has garnered a lot of public attention. However, the treatment options available to combat the same is limited to tecovirimat. Additionally, in a possible incidence of resistance, hypersensitivity, or adverse drug reaction, it is imperative to devise and reinforce the second-line therapy. Thus, in this editorial, the authors suggest seven antiviral drugs that could potentially be repurposed to combat the viral illness.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Pal Patel
- Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankalathur, Tamil Nadu, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune Maharashtra, India
- Department of Entomology, University of California, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana , Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Ghate SD, Pinto L, Alva S, Srinivasa MG, Vangala RK, Naik P, Revanasiddappa BC, Rao RSP. In silico identification of potential phytochemical inhibitors for mpox virus: molecular docking, MD simulation, and ADMET studies. Mol Divers 2024; 28:4067-4086. [PMID: 38519803 DOI: 10.1007/s11030-023-10797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/19/2023] [Indexed: 03/25/2024]
Abstract
The mpox virus (MPXV), a member of the Poxviridae family, which recently appeared outside of the African continent has emerged as a global threat to public health. Given the scarcity of antiviral treatments for mpox disease, there is a pressing need to identify and develop new therapeutics. We investigated 5715 phytochemicals from 266 species available in IMMPAT database as potential inhibitors for six MPXV targets namely thymidylate kinase (A48R), DNA ligase (A50R), rifampicin resistance protein (D13L), palmytilated EEV membrane protein (F13L), viral core cysteine proteinase (I7L), and DNA polymerase (E9L) using molecular docking. The best-performing phytochemicals were also subjected to molecular dynamics (MD) simulations and in silico ADMET analysis. The top phytochemicals were forsythiaside for A48R, ruberythric acid for A50R, theasinensin F for D13L, theasinensin A for F13L, isocinchophyllamine for I7L, and terchebin for E9L. Interestingly, the binding energies of these potential phytochemical inhibitors were far lower than brincidofovir and tecovirimat, the standard drugs used against MPXV, hinting at better binding properties of the former. These findings may pave the way for developing new MPXV inhibitors based on natural product scaffolds. However, they must be further studied to establish their inhibitory efficacy and toxicity in in vitro and in vivo models.
Collapse
Affiliation(s)
- Sudeep D Ghate
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India.
- Central Research Laboratory, KS Hegde Medical Academy, NITTE Deemed to be University, Mangaluru, 575018, India.
| | - Larina Pinto
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India
| | - Shivakiran Alva
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India
| | - Mahendra Gowdru Srinivasa
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University) NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Mangaluru, 575018, India
| | - Rajani Kanth Vangala
- Institute for Applied Research and Innovation, Neuome Technologies Pvt. Ltd., Bangalore Bioinnovation Centre, IBAB Campus, Electronic City Phase 1, Bangalore, 560100, India
| | - Prashantha Naik
- Department of Biosciences, Mangalore University, Mangaluru, 574199, India
| | - B C Revanasiddappa
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University) NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Mangaluru, 575018, India
| | - R Shyama Prasad Rao
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India.
- Central Research Laboratory, KS Hegde Medical Academy, NITTE Deemed to be University, Mangaluru, 575018, India.
| |
Collapse
|
6
|
Grajales DB, Kar S. Exploring Monkeypox: prospects for therapeutics through computational-aided drug discovery. Mol Divers 2024; 28:3497-3521. [PMID: 38079063 DOI: 10.1007/s11030-023-10767-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2024]
Abstract
Monkeypox virus (MPXV) has emerged as a significant public health concern due to its potential for human transmission and its severe clinical manifestations. This review synthesizes findings from peer-reviewed articles spanning the last two decades, shedding light on diverse aspects of MPXV research. The exploration commences with an analysis of transmission dynamics, including zoonotic and human-to-human transmission, and potential reservoir hosts. Detailed insights into viral replication mechanisms illuminate its influence on disease progression and pathogenicity. Understanding the genomic and virion structure of MPXV is pivotal for targeted interventions. Genomic characteristics contributing to virulence are examined, alongside recent advancements in virion structure elucidation through cutting-edge imaging techniques. Emphasizing combat strategies, the review lists potential protein targets within the MPXV lifecycle for computer-aided drug design (CADD). The role of protein-ligand interactions and molecular docking simulations in identifying potential drug candidates is highlighted. Despite the absence of approved MPXV medications, the review outlines updates on ongoing small molecules and vaccine development efforts, spanning traditional and innovative platforms. The evolving landscape of computational drug research for MPXV is explored, encompassing advanced algorithms, machine learning, and high-performance computing. In conclusion, this review offers a holistic perspective on MPXV research by integrating insights spanning transmission dynamics to drug design. Equipping researchers with multifaceted understanding underscore the importance of innovative methodologies and interdisciplinary collaborations in addressing MPXV's challenges as research advances.
Collapse
Affiliation(s)
- Daniela Bermeo Grajales
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ, 07083, USA
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ, 07083, USA.
| |
Collapse
|
7
|
Chaudhuri D, Majumder S, Datta J, Giri K. Exploring the chemical space for potential inhibitors against cell surface binding protein of Mpox virus using molecular fingerprint based screening approach. J Biomol Struct Dyn 2024; 42:7160-7173. [PMID: 37480263 DOI: 10.1080/07391102.2023.2238087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Mpox virus is the latest member of the Poxviridae family of which small pox virus is a member. Monekypox virus has led to thousands of infections across the globe. Poxvirus gains entry into the cell making use of glycosaminoglycans like chondroitin sulphate and heparan sulphate. The interaction of the Mpox virus protein E8L also called cell surface binding protein is crucial for host cell attachment, membrane fusion and viral entry into the host cell leading to establishment of infection thus making this protein a very attractive therapeutic target. In this study we have tried to utilize the chondroitin sulphate binding groove present in the protein and identify molecules which are structurally similar to chondroitin sulphate. These molecules can thus occupy the same pocket but with a better binding affinity than chondroitin sulphate in order to outcompete the latter molecule from binding to the E8L protein and thus prevent it from performing its function. This study may pave the way for development of highly efficient therapeutics against the Mpox virus and further curb its infective potential.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Joyeeta Datta
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
8
|
Mohapatra RK, Mahal A, Mohapatra PK, Sarangi AK, Mishra S, Alsuwat MA, Alshehri NN, Abdelkhalig SM, Garout M, Aljeldah M, Alshehri AA, Saif A, Alshahrani MA, Alqahtani AS, Almutawif YA, Eid HM, Albaqami FM, Abdalla M, Rabaan AA. Structure-based discovery of F. religiosa phytochemicals as potential inhibitors against Monkeypox (mpox) viral protein. JOURNAL OF BIOSAFETY AND BIOSECURITY 2024; 6:157-169. [DOI: 10.1016/j.jobb.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025] Open
|
9
|
Muralitharan I, Sahoo AK, Augusthian PD, Samal A. Computational prediction of phytochemical inhibitors against the cap-binding domain of Rift Valley fever virus. Mol Divers 2024; 28:2637-2650. [PMID: 37481749 DOI: 10.1007/s11030-023-10702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Rift Valley fever is a zoonotic disease that can spread through livestock and mosquitoes, and its symptoms include retinitis, photophobia, hemorrhagic fever and neurological effects. The World Health Organization has identified Rift Valley fever as one of the viral infections that has potential to cause a future epidemic. Hence, efforts are urgently needed toward development of therapeutics and vaccine against this infectious disease. Notably, the causative virus namely, the Rift Valley fever virus (RVFV), utilizes the cap-snatching mechanism for viral transcription, rendering its cap-binding domain (CBD) as an effective antiviral target. To date, there are no published studies towards identification of potential small molecule inhibitors for the CBD of RVFV. Here, we employ a virtual screening workflow comprising of molecular docking and molecular dynamics (MD) simulation, to identify 5 potential phytochemical inhibitors of the CBD of RVFV. These 5 phytochemical inhibitors can be sourced from Indian medicinal plants, Ferula assa-foetida, Glycyrrhiza glabra and Leucas cephalotes, used in traditional medicine. In sum, the 5 phytochemical inhibitors of the CBD of RVFV identified by this purely computational study are promising drug lead molecules which can be considered for detailed experimental validation against RVFV infection.
Collapse
Affiliation(s)
- Ishwarya Muralitharan
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
| | - Ajaya Kumar Sahoo
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Priya Dharshini Augusthian
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
| | - Areejit Samal
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
10
|
Loganathan T, Fletcher J, Abraham P, Kannangai R, Chakraborty C, El Allali A, Alsamman AM, Zayed H, C GPD. Expression analysis and mapping of Viral-Host Protein interactions of Poxviridae suggests a lead candidate molecule targeting Mpox. BMC Infect Dis 2024; 24:483. [PMID: 38730352 PMCID: PMC11088078 DOI: 10.1186/s12879-024-09332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Monkeypox (Mpox) is an important human pathogen without etiological treatment. A viral-host interactome study may advance our understanding of molecular pathogenesis and lead to the discovery of suitable therapeutic targets. METHODS GEO Expression datasets characterizing mRNA profile changes in different host responses to poxviruses were analyzed for shared pathway identification, and then, the Protein-protein interaction (PPI) maps were built. The viral gene expression datasets of Monkeypox virus (MPXV) and Vaccinia virus (VACV) were used to identify the significant viral genes and further investigated for their binding to the library of targeting molecules. RESULTS Infection with MPXV interferes with various cellular pathways, including interleukin and MAPK signaling. While most host differentially expressed genes (DEGs) are predominantly downregulated upon infection, marked enrichments in histone modifiers and immune-related genes were observed. PPI analysis revealed a set of novel virus-specific protein interactions for the genes in the above functional clusters. The viral DEGs exhibited variable expression patterns in three studied cell types: primary human monocytes, primary human fibroblast, and HeLa, resulting in 118 commonly deregulated proteins. Poxvirus proteins C6R derived protein K7 and K7R of MPXV and VACV were prioritized as targets for potential therapeutic interventions based on their histone-regulating and immunosuppressive properties. In the computational docking and Molecular Dynamics (MD) experiments, these proteins were shown to bind the candidate small molecule S3I-201, which was further prioritized for lead development. RESULTS MPXV circumvents cellular antiviral defenses by engaging histone modification and immune evasion strategies. C6R-derived protein K7 binding candidate molecule S3I-201 is a priority promising candidate for treating Mpox.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India
| | - John Fletcher
- Department of Clinical Virology, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - Priya Abraham
- Department of Clinical Virology, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Tamil Nadu, Vellore, 632004, India
| | | | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Mohammed, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU. Health, Qatar University, Doha, Qatar
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
11
|
Nikitha R, Afeeza K, Suresh V, Dilipan E. Molecular Docking of Seaweed-Derived Drug Fucoxanthin Against the Monkeypox Virus. Cureus 2024; 16:e58730. [PMID: 38779278 PMCID: PMC11110489 DOI: 10.7759/cureus.58730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Background The monkeypox virus (MPXV) is classified as a zoonotic virus of the Poxviridae family, resulting from the MPXV strain of the Orthopoxvirus genus. Seaweeds, or marine macroalgae, are abundant reservoirs of bioactive compounds that demonstrate diverse biological properties, such as antiviral actions. In the field of computational analysis, in silico analysis refers to the use of computer-based methods to study and assess biological systems and processes. To forecast the binding affinity and interaction between the discovered chemical and the target proteins of the MPXV, a molecular docking analysis was conducted. Aim The research aims to conduct an in silico examination of a protein-ligand interaction of a drug produced from seaweed that targets the MPXV. Methodology Protein Data Bank (PDB) and PubChem databases provided MPXV methyltransferase and fucoxanthin ligand compounds. AutoDockTools 1.5.7 calculated the molecular docking using the Lamarckian genetic algorithm. Autogrid created a grid box around target 8B07 active site hotspot residues. Each docked molecule's docking parameters were obtained from 100 docking experiments with a maximum of 2.5 × 106 energy evaluations, a 0.02 mutation rate, and a 0.8 crossover rate. The population comprised 250 randomly selected volunteers. PyMOL was utilized to observe ligand fragment interactions. Results The binding energy of the ligand fucoxanthin was -5.46 kcal/mol. Fucoxanthin interacts with receptor molecules via hydrogen bonding at the amino acid level: Chain A: PHE188 and TYR189; and Chain B: LYS33, GLN37, GLY38, GLY96, ARG97, PHE115, PRO202, and SER203. The higher the negative docking score, the stronger the binding affinity between the receptor and ligand molecules, indicating that bioactive substances are more effective. Conclusion The findings of this study indicate that fucoxanthin, a pharmaceutical derivative generated from seaweed, had antiviral activity against the MPXV. This conclusion was reached based on protein-ligand interactions.
Collapse
Affiliation(s)
- Ramakrishnan Nikitha
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Klg Afeeza
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Vasugi Suresh
- Medical Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Elangovan Dilipan
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
12
|
Sarra H, Salim B, Hocine A. Modeling the Antiviral Activity of Ginkgo biloba Polyphenols against Variola: In Silico Exploration of Inhibitory Candidates for VarTMPK and HssTMPK Enzymes. Curr Drug Discov Technol 2024; 21:e101023221938. [PMID: 37861017 DOI: 10.2174/0115701638261541230922095853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The aim of this study is to use modeling methods to estimate the antiviral activity of natural molecules extracted from Ginkgo biloba for the treatment of variola which is a zoonotic disease posing a growing threat to human survival. The recent spread of variola in nonendemic countries and the possibility of its use as a bioterrorism weapon have made it a global threat once again. Therefore, the search for new antiviral therapies with reduced side effects is necessary. METHODS In this study, we examined the interactions between polyphenolic compounds from Ginkgo biloba, a plant known for its antiviral activity, and two enzymes involved in variola treatment, VarTMPK and HssTMPK, using molecular docking. RESULTS The obtained docking scores showed that among the 152 selected polyphenolic compounds; many ligands had high inhibitory potential according to the energy affinity. By considering Lipinski's rules, we found that Liquiritin and Olivil molecules are the best candidates to be developed into drugs that inhibit VarTMPK because of their high obtained scores compared to reference ligands, and zero violations of Lipinski's rules. We also found that ginkgolic acids have good affinities with HssTMPK and acceptable physicochemical properties to be developed into drugs administered orally. CONCLUSION Based on the obtained scores and Lipinski's rules, Liquiritin, Olivil, and ginkgolic acids molecules showed interesting results for both studied enzymes, indicating the existence of promising and moderate activity of these polyphenols for the treatment of variola and for possible multi-targeting. Liquiritin has been shown to exhibit anti-inflammatory effects on various inflammation- related diseases such as skin injury, hepatic inflammatory injury, and rheumatoid arthritis. Olivil has been shown to have antioxidant activity. Olivil derivatives have also been studied for their potential use as anticancer agents. Ginkgolic acids have been shown to have antimicrobial and antifungal properties. However, ginkgolic acids are also known to cause allergic reactions in some people. Therefore, future studies should consider these results and explore the potential of these compounds as antiviral agents. Further experimental studies in-vitro and in-vivo are required to validate and scale up these findings.
Collapse
Affiliation(s)
- Hamdani Sarra
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
| | - Bouchentouf Salim
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
- Department of Process Engineering, Faculty of Technology, Doctor Tahar Moulay University of Saida, Algeria, Saïda 20000, BP 138 cité EN-NASR, Algeria
| | - Allali Hocine
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
| |
Collapse
|
13
|
Shah BM, Modi P. Breaking Barriers: Current Advances and Future Directions in Mpox Therapy. Curr Drug Targets 2024; 25:62-76. [PMID: 38151842 DOI: 10.2174/0113894501281263231218070841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Mpox, a newly discovered zoonotic infection, can be transmitted from animal to human and between humans. Serological and genomic studies are used to identify the virus. OBJECTIVE Currently, there are no proven effective treatments for Mpox. Also, the safety and efficacy of intravenous vaccinia immune globulin, oral Tecovirimat (an inhibitor of intracellular viral release), and oral Brincidofovir (a DNA polymerase inhibitor) against the Mpox virus are uncertain, highlighting the need for more effective and safe treatments. As a result, drug repurposing has emerged as a promising strategy to identify previously licensed drugs that can be repurposed to treat Mpox. RESULTS Various approaches have been employed to identify previously approved drugs that can target specific Mpox virus proteins, including thymidylate kinase, D9 decapping enzyme, E8 protein, Topoisomerase1, p37, envelope proteins (D13, A26, and H3), F13 protein, virus's main cysteine proteases, and DNA polymerase. CONCLUSION In this summary, we provide an overview of potential drugs that could be used to treat Mpox and discuss the underlying biological processes of their actions.
Collapse
Affiliation(s)
- Bhumi M Shah
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad, Gujarat 382210, India
| | - Palmi Modi
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad, Gujarat 382210, India
| |
Collapse
|
14
|
Koirala S, Samanta S, Mahapatra S, Ursal KD, Poddar S, Kar P. Molecular level investigation for identifying potential inhibitors against thymidylate kinase of monkeypox through in silico approaches. J Biomol Struct Dyn 2023; 42:13247-13260. [PMID: 37909473 DOI: 10.1080/07391102.2023.2274982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
The need for more advanced and effective monkeypox (Mpox) treatments has become evident with numerous Mpox virus (MPXV) outbreaks. Over the years, interest has increased in developing targeted medicines that are efficient, safe, and precise while avoiding adverse effects. Here, we screened 32409 compounds against thymidylate kinase (TMPK), an emerging target for Mpox treatment. We studied their pharmacological characteristics and analyzed those through all-atom molecular dynamics simulations followed by molecular mechanics Poisson Boltzmann surface area (MM-PBSA) based free energy calculations. According to our findings, the leads CID40777874 and CID28960001 had the highest binding affinities towards TMPK with ΔGbind of -8.04 and -5.58 kcal/mol, respectively, which outperformed our control drug cidofovir (ΔGbind = -2.92 kcal/mol) in terms of binding favourability. Additionally, we observed crucial TMPK dynamics brought on by ligand-binding and identified key residues such as Phe68 and Tyr101 as the critical points of the protein-ligand interaction. The DCCM analysis revealed the role of ligand binding in stabilizing TMPK's binding region, as indicated by residual correlation motions. Moreover, the PSN analysis revealed that the interaction with ligand induces changes in residual network properties, enhancing the stability of complexes. We successfully identified novel compounds that may serve as potential building blocks for constructing contemporary antivirals against MPXV and highlighted the molecular mechanisms underlying their binding with TMPK. Overall, our findings will play a significant role in advancing the development of new therapies against Mpox and facilitating a comprehensive understanding of their interaction patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Kapil Dattatray Ursal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| |
Collapse
|
15
|
Begum JPS, Ngangom L, Semwal P, Painuli S, Sharma R, Gupta A. Emergence of monkeypox: a worldwide public health crisis. Hum Cell 2023; 36:877-893. [PMID: 36749539 PMCID: PMC9903284 DOI: 10.1007/s13577-023-00870-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
The human monkeypox virus (MPV), a zoonotic illness that was hitherto solely prevalent in Central and West Africa, has lately been discovered to infect people all over the world and has become a major threat to global health. Humans unintentionally contract this zoonotic orthopoxvirus, which resembles smallpox, when they come into contact with infected animals. Studies show that the illness can also be transferred through frequent proximity, respiratory droplets, and household linens such as towels and bedding. However, MPV infection does not presently have a specified therapy. Smallpox vaccinations provide cross-protection against MPV because of antigenic similarities. Despite scant knowledge of the genesis, epidemiology, and ecology of the illness, the incidence and geographic distribution of monkeypox outbreaks have grown recently. Polymerase chain reaction technique on lesion specimens can be used to detect MPV. Vaccines like ACAM2000, vaccinia immune globulin intravenous (VIG-IV), and JYNNEOS (brand name: Imvamune or Imvanex) as well as FDA-approved antiviral medications such as brincidofovir (brand name: Tembexa), tecovirimat (brand name: TPOXX or ST-246), and cidofovir (brand name: Vistide) are used as therapeutic medications against MPV. In this overview, we provide an outline of the MPV's morphology, evolution, mechanism, transmission, diagnosis, preventative measures, and therapeutic approaches. This study offers the fundamental information required to prevent and manage any further spread of this emerging virus.
Collapse
Affiliation(s)
- J. P. Shabaaz Begum
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Leirika Ngangom
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Prem Nagar, Dehradun, Uttarakhand 248007 India
| | - Rohit Sharma
- Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043 USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
- BioIntegrate, Lawrenceville, GA 30043 USA
- Regenerative Orthopaedics, Uttar Pradesh, Noida, 201301 India
| |
Collapse
|