1
|
Koeda S, Fortes IM, Rodríguez-López MJ, Fernández-Muñoz R, Moriones E. Resistance to the Insect Vector Bemisia tabaci Enhances the Robustness and Durability of Tomato Yellow Leaf Curl Virus Resistance Conferred by Ty-1. PLANT DISEASE 2025; 109:399-409. [PMID: 39306688 DOI: 10.1094/pdis-06-24-1281-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a begomovirus (genus Begomovirus, family Geminiviridae) transmitted persistently by the whitefly Bemisia tabaci. It causes tomato yellow leaf curl disease (TYLCD), resulting in significant yield losses worldwide. TYLCD is controlled mainly by using F1 hybrid tomato cultivars harboring the TYLCV resistance gene Ty-1. However, infected Ty-1-bearing tomato plants accumulate viral DNA, which may eventually lead to the emergence of a resistance-breaking TYLCV variant. Recently, a B. tabaci-resistant tomato line derived from the introgression of type IV leaf glandular trichomes and acylsucrose secretion from wild tomato (Solanum pimpinellifolium) was shown to effectively control the spread of TYLCV. In this study, we combined B. tabaci resistance and Ty-1-based TYLCV resistance to increase the robustness and durability of the TYLCD resistance mediated by Ty-1 in tomato plants. Specifically, we characterized and used a Group 2-like isolate of the Israel strain of TYLCV (TYLCV-IL-G2) that contributes to TYLCD epidemics in southeastern Spain. A comparison with isolates of the previously identified TYLCV variant revealed TYLCV-IL-G2 has a similar host range, but it induces a slightly more severe TYLCD in Ty-1-bearing tomato plants. Moreover, we demonstrated that acylsucrose-producing B. tabaci-resistant tomato plants can limit the spread of TYLCV-IL-G2 better than a near-isogenic line lacking type IV trichomes and unable to secrete acylsucrose. Pyramiding Ty-1-based TYLCV resistance and B. tabaci resistance provided by type IV glandular trichomes helped to decrease the effects of TYLCV on Ty-1-bearing tomato plants as well as the likelihood of TYLCV evolution in infected plants.
Collapse
Affiliation(s)
- Sota Koeda
- Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| | - Maria J Rodríguez-López
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
2
|
Ma X, Zhou Y, Wu L, Moffett P. Resistance gene Ty-1 restricts TYLCV infection in tomato by increasing RNA silencing. Virol J 2024; 21:256. [PMID: 39415211 PMCID: PMC11483987 DOI: 10.1186/s12985-024-02508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024] Open
Abstract
A major antiviral mechanism in plants is mediated by RNA silencing through the action of DICER-like (DCL) proteins, which cleave dsRNA into discrete small RNA fragments, and ARGONAUTE (AGO) proteins, which use the small RNAs to target single-stranded RNA. RNA silencing can also be amplified through the action of RNA-dependent RNA polymerases (RDRs), which use single stranded RNA to generate dsRNA that in turn is targeted by DCL proteins. As a counter-defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different components in the RNA silencing pathway. The tomato Ty-1 gene confers resistance to the DNA virus tomato yellow leaf curl virus (TYLCV) and has been reported to encode an RDRγ protein. However, the molecular mechanisms by which Ty-1 controls TYLCV infection, including whether Ty-1 is involved in RNA silencing, are unknown. Here, by using a transient expression assay, we have confirmed that Ty-1 shows antiviral activity against TYLCV in Nicotiana benthamiana. Also, in transient expression-based silencing assays, Ty-1 augmented systemic transgene silencing in GFP transgenic N. benthamiana plants. Furthermore, co-expression of Ty-1 or other RDRγ proteins from N. benthamiana or Arabidopsis with various proteins resulted in lower protein expression. These results are consistent with a model wherein Ty-1-mediated resistance to TYLCV is due, at least in part, to an increase in RNA silencing activity.
Collapse
Affiliation(s)
- Xiaofang Ma
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, People's Republic of China.
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China.
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd.de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Liming Wu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, People's Republic of China
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd.de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
3
|
Koeda S, Yamamoto C, Yamamoto H, Fujishiro K, Mori R, Okamoto M, Nagano AJ, Mashiko T. Cy-1, a major QTL for tomato leaf curl New Delhi virus resistance, harbors a gene encoding a DFDGD-Class RNA-dependent RNA polymerase in cucumber (Cucumis sativus). BMC PLANT BIOLOGY 2024; 24:879. [PMID: 39358692 PMCID: PMC11446051 DOI: 10.1186/s12870-024-05591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Tomato leaf curl New Delhi virus (ToLCNDV) (family Geminiviridae, genus Begomovirus) is a significant threat to cucumber (Cucumis sativus) production in many regions. Previous studies have reported the genetic mapping of loci related to ToLCNDV resistance, but no resistance genes have been identified. RESULTS We conducted map-based cloning of the ToLCNDV resistance gene in cucumber accession No.44. Agroinfiltration and graft-inoculation analyses confirmed the resistance of No.44 to ToLCNDV isolates from the Mediterranean and Asian countries. Initial mapping involving two rounds of phenotyping with two independent F2 populations generated by crossing the begomovirus-susceptible cultivar SHF and No.44 consistently detected major quantitative trait loci (QTLs) on chromosomes 1 and 2 that confer resistance to ToLCNDV. Fine-mapping of Cy-1, the dominant QTL on chromosome 1, using F3 populations narrowed the candidate region to a 209-kb genomic segment harboring 24 predicted genes. Among these genes, DFDGD-class RNA-dependent RNA polymerase (CsRDR3), an ortholog of Ty-1/Ty-3 of tomato and Pepy-2 of capsicum, was found to be a strong candidate conferring ToLCNDV resistance. The CsRDR3 sequence of No.44 contained multiple amino acid substitutions; the promoter region of CsRDR3 in No.44 had a large deletion; and the CsRDR3 transcript levels were greater in No.44 than in SHF. Virus-induced gene silencing (VIGS) of CsRDR3 using two chromosome segment substitution lines harboring chromosome 1 segments derived from No.44 compromised resistance to ToLCNDV. CONCLUSIONS Forward and reverse genetic approaches identified CsRDR3, which encodes a DFDGD-class RNA-dependent RNA polymerase, as the gene responsible for ToLCNDV resistance at the major QTL Cy-1 on chromosome 1 in cucumber. Marker-assisted breeding of ToLCNDV resistance in cucumber will be expedited by using No.44 and the DNA markers developed in this study.
Collapse
Affiliation(s)
- Sota Koeda
- Graduate School of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan.
- Faculty of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan.
| | - Chihiro Yamamoto
- Graduate School of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Hiroto Yamamoto
- Graduate School of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Kohei Fujishiro
- Faculty of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Ryoma Mori
- Faculty of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Momoka Okamoto
- Faculty of Agriculture, Kindai University, Nara, Nara, 631-8505, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2914, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | | |
Collapse
|
4
|
Tennant P, Rampersad S, Alleyne A, Johnson L, Tai D, Amarakoon I, Roye M, Pitter P, Chang PG, Myers Morgan L. Viral Threats to Fruit and Vegetable Crops in the Caribbean. Viruses 2024; 16:603. [PMID: 38675944 PMCID: PMC11053604 DOI: 10.3390/v16040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Viruses pose major global challenges to crop production as infections reduce the yield and quality of harvested products, hinder germplasm exchange, increase financial inputs, and threaten food security. Small island or archipelago habitat conditions such as those in the Caribbean are particularly susceptible as the region is characterized by high rainfall and uniform, warm temperatures throughout the year. Moreover, Caribbean islands are continuously exposed to disease risks because of their location at the intersection of transcontinental trade between North and South America and their role as central hubs for regional and global agricultural commodity trade. This review provides a summary of virus disease epidemics that originated in the Caribbean and those that were introduced and spread throughout the islands. Epidemic-associated factors that impact disease development are also discussed. Understanding virus disease epidemiology, adoption of new diagnostic technologies, implementation of biosafety protocols, and widespread acceptance of biotechnology solutions to counter the effects of cultivar susceptibility remain important challenges to the region. Effective integrated disease management requires a comprehensive approach that should include upgraded phytosanitary measures and continuous surveillance with rapid and appropriate responses.
Collapse
Affiliation(s)
- Paula Tennant
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Sephra Rampersad
- Department of Life Sciences, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago;
| | - Angela Alleyne
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill, Bridgetown BB11000, Barbados;
| | - Lloyd Johnson
- Department of Life Sciences, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Deiondra Tai
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Icolyn Amarakoon
- Department of Basic Medical Sciences, Biochemistry Section, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica;
| | - Marcia Roye
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
| | - Patrice Pitter
- Biotechnology Centre, The University of the West Indies, Mona, St. Andrew JMAAW07, Jamaica; (D.T.); (M.R.); (P.P.)
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Peta-Gaye Chang
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| | - Lisa Myers Morgan
- Ministry of Agriculture, Bodles Research Station, Old Harbour, St. Catherine JMACE18, Jamaica; (P.-G.C.); (L.M.M.)
| |
Collapse
|
5
|
Koeda S, Kitawaki A. Breakdown of Ty- 1-Based Resistance to Tomato Yellow Leaf Curl Virus in Tomato Plants at High Temperatures. PHYTOPATHOLOGY 2024; 114:294-303. [PMID: 37321561 DOI: 10.1094/phyto-04-23-0119-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The global dissemination of the Israel (IL) and mild (Mld) strains of tomato yellow leaf curl virus (TYLCV) (family Geminiviridae, genus Begomovirus) is a major threat to tomato production in many regions worldwide. The use of resistant hybrid cultivars bearing the dominant resistance genes Ty-1, Ty-3, and Ty-3a has become a common practice for controlling tomato yellow leaf curl disease (TYLCD) caused by TYLCV. However, TYLCD symptoms have been sporadically observed in resistant cultivars grown in seasons when temperatures are high. In this study, we used TYLCV-resistant cultivars with confirmed presence of Ty-1, which were determined using newly developed allele-specific markers based on polymorphisms within the locus. These Ty-1-bearing resistant tomato plants and susceptible plants were infected with TYLCV and grown at moderate or high temperatures. Under high-temperature conditions, the Ty-1-bearing tomato cultivar Momotaro Hope (MH) infected with TYLCV-IL had severe TYLCD symptoms, which were almost equivalent to those of the susceptible cultivar. However, MH plants infected with TYLCV-Mld were symptomless or had slight symptoms under the same temperature condition. The quantitative analysis of the TYLCV-IL viral DNA content revealed a correlation between symptom development and viral DNA accumulation. Furthermore, under high-temperature conditions, TYLCV-IL caused severe symptoms in multiple commercial tomato cultivars with different genetic backgrounds. Our study provided the scientific evidence for the experientially known phenomenon by tomato growers, and it is anticipated that global warming, associated with climate change, could potentially disrupt the management of TYLCV in tomato plants mediated by the Ty-1 gene.
Collapse
Affiliation(s)
- Sota Koeda
- Graduate School of Agriculture, Kindai University, 3327-204 Nara, Japan
| | - Arata Kitawaki
- Graduate School of Agriculture, Kindai University, 3327-204 Nara, Japan
| |
Collapse
|
6
|
Naveed H, Islam W, Jafir M, Andoh V, Chen L, Chen K. A Review of Interactions between Plants and Whitefly-Transmitted Begomoviruses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3677. [PMID: 37960034 PMCID: PMC10648457 DOI: 10.3390/plants12213677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The transmission of plant viruses from infected to healthy host plants is a process in which insects play a major role, using various transmission strategies. Environmental factors have an impact on the transmission of viruses and the subsequent development of infections or diseases. When viruses are successful, plant virus diseases can reach epidemic proportions. Many plants across different regions are vulnerable to viral infections transmitted by the whitefly vector. Begomoviruses, which are transmitted by whiteflies, represent a significant threat to agriculture worldwide. The review highlights the mechanisms of virus acquisition and transmission by whiteflies and explores the factors influencing these interactions. Understanding the impacts of these changes is crucial for managing the spread of pests and mitigating damage to crops. It underscores the need for continued research to elucidate the mechanisms driving plant-insect-virus interactions and to identify new approaches for sustainable pest management.
Collapse
Affiliation(s)
- Hassan Naveed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Muhammad Jafir
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China;
| | - Vivian Andoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
7
|
Huang X, Wei J, Wu D, Mi N, Fang S, Xiao Y, Li Y. Silencing of SlDRB1 gene reduces resistance to tomato yellow leaf curl virus (TYLCV) in tomato ( Solanum lycopersicum). PLANT SIGNALING & BEHAVIOR 2022; 17:2149942. [PMID: 36453197 PMCID: PMC9718546 DOI: 10.1080/15592324.2022.2149942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Double-stranded RNA-binding proteins are small molecules in the RNA interference (RNAi) pathway that form the RNAi machinery together with the Dicer-like protein (DCL) as a cofactor. This machinery cuts double-stranded RNA (dsRNA) to form multiple small interfering RNAs (siRNAs). Our goal was to clarify the function of DRB in tomato resistant to TYLCV. In this experiment, the expression of the SlDRB1 and SlDRB4 genes was analyzed in tomato leaves by qPCR, and the function of SlDRB1 and SlDRB4 in resistance to TYLCV was investigated by virus-induced gene silencing (VIGS). Then, peroxidase activity was determined. The results showed that the expression of SlDRB1 gradually increased after inoculation of 'dwarf tomato' plants with tomato yellow leaf curl virus (TYLCV), but this gene was suppressed after 28 days. Resistance to TYLCV was significantly weakened after silencing of the SlDRB1 gene. However, there were no significant expression differences in SlDRB4 after TYLCV inoculation. Our study showed that silencing SlDRB1 attenuated the ability of tomato plants to resist virus infection; therefore, SlDRB1 may play a key role in the defense against TYLCV in tomato plants, whereas SlDRB4 is likely not involved in this defense response. Taken together, These results suggest that the DRB gene is involved in the mechanism of antiviral activity.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Jianming Wei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Dan Wu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Na Mi
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Sili Fang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Yao Xiao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
H. El-Sappah A, Qi S, A. Soaud S, Huang Q, M. Saleh A, A. S. Abourehab M, Wan L, Cheng GT, Liu J, Ihtisham M, Noor Z, Rouf Mir R, Zhao X, Yan K, Abbas M, Li J. Natural resistance of tomato plants to Tomato yellow leaf curl virus. FRONTIERS IN PLANT SCIENCE 2022; 13:1081549. [PMID: 36600922 PMCID: PMC9807178 DOI: 10.3389/fpls.2022.1081549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most harmful afflictions in the world that affects tomato growth and production. Six regular antagonistic genes (Ty-1, Ty-2, Ty-3, Ty-4, ty-5, and Ty-6) have been transferred from wild germplasms to commercial cultivars as TYLCV protections. With Ty-1 serving as an appropriate source of TYLCV resistance, only Ty-1, Ty-2, and Ty-3 displayed substantial levels of opposition in a few strains. It has been possible to clone three TYLCV opposition genes (Ty-1/Ty-3, Ty-2, and ty-5) that target three antiviral safety mechanisms. However, it significantly impacts obtaining permanent resistance to TYLCV, trying to maintain opposition whenever possible, and spreading opposition globally. Utilizing novel methods, such as using resistance genes and identifying new resistance resources, protects against TYLCV in tomato production. To facilitate the breeders make an informed decision and testing methods for TYLCV blockage, this study highlights the portrayal of typical obstruction genes, common opposition sources, and subatomic indicators. The main goal is to provide a fictitious starting point for the identification and application of resistance genes as well as the maturation of tomato varieties that are TYLCV-resistant.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shiming Qi
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, China
| | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Qiulan Huang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Alaa M. Saleh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lingyun Wan
- Key Laboratory of Guangxi for High-quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guo-ting Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, China
| | - Jingyi Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Muhammad Ihtisham
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Zarqa Noor
- School of Chemical Engineering Beijing Institute of Technology, Beijing, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), SKUAST–Kashmir, Sopore, India
| | - Xin Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
9
|
Vanlay M, Samnang S, Jung HJ, Choe P, Kang KK, Nou IS. Interspecific and Intraspecific Hybrid Rootstocks to Improve Horticultural Traits and Soil-Borne Disease Resistance in Tomato. Genes (Basel) 2022; 13:genes13081468. [PMID: 36011379 PMCID: PMC9408122 DOI: 10.3390/genes13081468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Tomato rootstocks are important to increase yield and control soil-borne pathogens, increasing vigor for a longer crop cycle and tolerance to biotic and abiotic stress. This study, conducted in the greenhouse of Sunchon National University during the period from 2019 to 2022, aimed to identify local soil-borne-disease resistant interspecific and intraspecific tomato hybrid rootstocks. The 71 interspecific hybrids (S. lycopersicum × S. habrochaites) showed that the germination vigor (GV) was less than Maxifort, except for several combinations. The germination rate (GP) of cross-species hybrids showed a different pattern according to the hybrid combinations, of which three combinations showed less than 30%. The horticultural traits, such as GV and GP, of the intraspecies hybrid (S. l × S. l) combination were significantly improved compared to that of Maxifort. In 71 combinations (S. l × S. h) and 25 combinations (S. l × S. l), MAS was used to evaluate the resistance of eight genes related to soil-borne pathogens, four genes related to vector-mediated pathogens, and three genes related to air-borne pathogens. The results showed that the new hybrid combination had improved resistance over the commercial-stock Maxifort. Therefore, interspecies and intraspecies hybrid techniques for breeding commercial rootstocks can be utilized as a way to improve horticultural properties and resistance to soil-borne diseases in tomato.
Collapse
Affiliation(s)
- Mean Vanlay
- Department of Horticulture, Suncheon National University, 255 Jungang-ro, Suncheon 57922, Jeonnam, Korea
| | - Song Samnang
- Department of Horticulture, Suncheon National University, 255 Jungang-ro, Suncheon 57922, Jeonnam, Korea
| | - Hee-Jong Jung
- Department of Horticulture, Suncheon National University, 255 Jungang-ro, Suncheon 57922, Jeonnam, Korea
| | - Phillip Choe
- Department of Horticulture, PPS Co., Ltd., #51 Hagalro86beon-gil, Giheung-gu, Yongin-si 17096, Gyeonggi-do, Korea
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Gyeonggi-do, Korea
- Correspondence: (K.K.K.); (I.-S.N.); Tel.: +82-31-670-5104 (K.K.K.); +82-61-750-3249 (I.-S.N.)
| | - Ill-Sup Nou
- Department of Horticulture, Suncheon National University, 255 Jungang-ro, Suncheon 57922, Jeonnam, Korea
- Correspondence: (K.K.K.); (I.-S.N.); Tel.: +82-31-670-5104 (K.K.K.); +82-61-750-3249 (I.-S.N.)
| |
Collapse
|
10
|
García-Estrada RS, Diaz-Lara A, Aguilar-Molina VH, Tovar-Pedraza JM. Viruses of Economic Impact on Tomato Crops in Mexico: From Diagnosis to Management-A Review. Viruses 2022; 14:1251. [PMID: 35746722 PMCID: PMC9228091 DOI: 10.3390/v14061251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Tomato is the most economically important vegetable crop worldwide and the second most important for Mexico. However, viral diseases are among the main limiting factors that affect the productivity of this crop, causing total losses in some cases. This review provides key information and findings on the symptoms, distribution, transmission, detection, and management of diseases caused by viruses of major importance in tomato crops in Mexico. Currently, about 25 viruses belonging to nine different families have been reported infecting tomato in Mexico, but not all of them cause economically significant diseases. Viruses of economic importance include tomato brown rugose fruit virus (ToBRFV), tomato spotted wilt virus (TSWV), tomato yellow leaf curl virus (TYLCV), pepino mosaic virus (PepMV), and tomato marchitez virus (ToMarV). The topics discussed here will provide updated information about the status of these plant viruses in Mexico as well as diverse management strategies that can be implemented according to the specific circumstances of each viral pathosystem. Additionally, a list of tomato-affecting viruses not present in Mexico that are continuous threats to the crop health is included.
Collapse
Affiliation(s)
- Raymundo Saúl García-Estrada
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Mexico;
| | - Alfredo Diaz-Lara
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Santiago de Querétaro 76130, Mexico; (A.D.-L.); (V.H.A.-M.)
| | - Vivian Hayde Aguilar-Molina
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Santiago de Querétaro 76130, Mexico; (A.D.-L.); (V.H.A.-M.)
| | - Juan Manuel Tovar-Pedraza
- Laboratorio de Fitopatología, Coordinación Regional Culiacán, Centro de Investigación en Alimentación y Desarrollo, Culiacán 80110, Mexico;
| |
Collapse
|
11
|
Yan Z, Wolters AMA, Navas-Castillo J, Bai Y. The Global Dimension of Tomato Yellow Leaf Curl Disease: Current Status and Breeding Perspectives. Microorganisms 2021; 9:740. [PMID: 33916319 PMCID: PMC8066563 DOI: 10.3390/microorganisms9040740] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Tomato yellow leaf curl disease (TYLCD) caused by tomato yellow leaf curl virus (TYLCV) and a group of related begomoviruses is an important disease which in recent years has caused serious economic problems in tomato (Solanum lycopersicum) production worldwide. Spreading of the vectors, whiteflies of the Bemisia tabaci complex, has been responsible for many TYLCD outbreaks. In this review, we summarize the current knowledge of TYLCV and TYLV-like begomoviruses and the driving forces of the increasing global significance through rapid evolution of begomovirus variants, mixed infection in the field, association with betasatellites and host range expansion. Breeding for host plant resistance is considered as one of the most promising and sustainable methods in controlling TYLCD. Resistance to TYLCD was found in several wild relatives of tomato from which six TYLCV resistance genes (Ty-1 to Ty-6) have been identified. Currently, Ty-1 and Ty-3 are the primary resistance genes widely used in tomato breeding programs. Ty-2 is also exploited commercially either alone or in combination with other Ty-genes (i.e., Ty-1, Ty-3 or ty-5). Additionally, screening of a large collection of wild tomato species has resulted in the identification of novel TYLCD resistance sources. In this review, we focus on genetic resources used to date in breeding for TYLCVD resistance. For future breeding strategies, we discuss several leads in order to make full use of the naturally occurring and engineered resistance to mount a broad-spectrum and sustainable begomovirus resistance.
Collapse
Affiliation(s)
- Zhe Yan
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| | - Anne-Marie A. Wolters
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas Universidad de Málaga (IHSM-CSIC-UMA), Avenida Dr. Weinberg s/n, 29750 Algarrobo-Costa, Málaga, Spain;
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| |
Collapse
|
12
|
Metagenomics of Neotropical Single-Stranded DNA Viruses in Tomato Cultivars with and without the Ty-1 Gene. Viruses 2020; 12:v12080819. [PMID: 32731641 PMCID: PMC7472167 DOI: 10.3390/v12080819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
A complex of begomoviruses (Geminiviridae) can cause severe tomato yield losses in the neotropics. Here, next-generation sequencing was employed for large-scale assessment of single-stranded (ss)DNA virus diversity in tomatoes either harboring or lacking the large-spectrum begomovirus tolerance Ty-1 gene. Individual leaf samples exhibiting begomovirus-like symptoms (n = 107) were field-collected, circular DNA-enriched, subdivided into pools (with and without Ty-1), and Illumina-sequenced. Virus-specific PCR and Sanger dideoxy sequencing validations confirmed 15 distinct ssDNA virus/subviral agents (occurring mainly in mixed infections), which highlight the potential drawbacks of employing virus-specific resistance in tomato breeding. More viruses (14 versus 6 species) were observed in tomatoes without the Ty-1 gene. A gemycircularvirus (Genomoviridae), a new alpha-satellite, and two novel Begomovirus species were identified exclusively in samples without the Ty-1 gene. A novel begomovirus was found only in the Ty-1 pool, being the only species associated with severe symptoms in Ty-1 plants in our survey. Our work is the first step towards the elucidation of the potential begomovirus adaptation to Ty-1 and its specific filtering effects on a subset of ssDNA viral/subviral agents.
Collapse
|
13
|
Maio F, Helderman TA, Arroyo-Mateos M, van der Wolf M, Boeren S, Prins M, van den Burg HA. Identification of Tomato Proteins That Interact With Replication Initiator Protein (Rep) of the Geminivirus TYLCV. FRONTIERS IN PLANT SCIENCE 2020; 11:1069. [PMID: 32760417 PMCID: PMC7373745 DOI: 10.3389/fpls.2020.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Geminiviruses are plant-infecting DNA viruses that reshape the intracellular environment of their host in order to create favorable conditions for viral replication and propagation. Viral manipulation is largely mediated via interactions between viral and host proteins. Identification of this protein network helps us to understand how these viruses manipulate their host and therefore provides us potentially with novel leads for resistance against this class of pathogens, as genetic variation in the corresponding plant genes could subvert viral manipulation. Different studies have already yielded a list of host proteins that interact with one of the geminiviral proteins. Here, we use affinity purification followed by mass spectrometry (AP-MS) to further expand this list of interacting proteins, focusing on an important host (tomato) and the Replication initiator protein (Rep, AL1, C1) from Tomato yellow leaf curl virus (TYLCV). Rep is the only geminiviral protein proven to be essential for geminiviral replication and it forms an integral part of viral replisomes, a protein complex that consists of plant and viral proteins that allows for viral DNA replication. Using AP-MS, fifty-four 'high confidence' tomato proteins were identified that specifically co-purified with Rep. For two of them, an unknown EWS-like RNA-binding protein (called Geminivirus Rep interacting EWS-like protein 1 or GRIEP1) and an isoform of the THO complex subunit 4A (ALY1), we were able to confirm this interaction with Rep in planta using a second method, bimolecular fluorescence complementation (BiFC). The THO subunit 4 is part of the THO/TREX (TRanscription-EXport) complex, which controls RNA splicing and nuclear export of mRNA to the cytoplasm and is also connected to plant disease resistance. This work represents the first step towards characterization of novel host factors with a putative role in the life cycle of TYLCV and possibly other geminiviruses.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Miguel van der Wolf
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
- Keygene N.V., Wageningen, Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Gharsallah C, Gharsallah Chouchane S, Werghi S, Mehrez M, Fakhfakh H, Gorsane F. Tomato contrasting genotypes responses under combined salinity and viral stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1411-1424. [PMID: 32647458 PMCID: PMC7326896 DOI: 10.1007/s12298-020-00835-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/08/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) and salinity stress adversely affect tomato production worldwide by causing extensive damages. In Tunisia, identifying TYLCD resistant cultivars selected in different environments is useful to devise counter-measures. To this end, 20 tomato commercial cultivars were screened for different Ty gene alleles' combinations and evaluated either for TYLCD incidence or salinity constraint. We built a biological multi-layer network for integrating, visualizing and modelling generated data. It is a simple representation view linking allelic combinations to tomato cultivars behaviour under viral and salt stresses. In addition, we analyzed differential expression of transcriptions factors (TFs) belonging to WRKY and ERF families in selected resistant (R) and susceptible (S) tomato cultivars. Gene expression was evaluated for short- and long stress exposure to either TYLCSV infection or to both viral and salinity stresses. Evidence is that TFs promote resistance to abiotic and biotic stresses through a complex regulatory network.
Collapse
Affiliation(s)
- Charfeddine Gharsallah
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
| | - Sonia Gharsallah Chouchane
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
- Higher Institute of Biotechnology, University of Manouba, 2020 Sidi Thabet, Tunisia
| | - Sirine Werghi
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
| | - Marwa Mehrez
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
| | - Hatem Fakhfakh
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Faten Gorsane
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of Tunis, University of Tunis ElManar, 2092 Tunis, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| |
Collapse
|
15
|
Gill U, Scott JW, Shekasteband R, Ogundiwin E, Schuit C, Francis DM, Sim SC, Smith H, Hutton SF. Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against Tomato yellow leaf curl virus and Tomato mottle virus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1543-1554. [PMID: 30758531 PMCID: PMC6476845 DOI: 10.1007/s00122-019-03298-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/02/2019] [Indexed: 05/05/2023]
Abstract
Ty-6 is a major resistance gene on chromosome 10 of tomato that provides resistance against monopartite and bipartite begomoviruses and complements resistance conferred by the known Ty-3 and ty-5 genes. Resistance to monopartite and bipartite begomoviruses is an important breeding objective for cultivated tomato. Several begomovirus resistance genes have been introgressed from related Solanum species and are available for breeding purposes. In the present study, we mapped an additional locus, Ty-6, to chromosome 10 of tomato. Ty-6 is effective against both monopartite Tomato yellow leaf curl virus (TYLCV) and bipartite Tomato mottle virus (ToMoV). Gene action is incomplete dominance, with an intermediate resistance response when Ty-6 is heterozygous. Analysis of populations segregating for Ty-6 along with Ty-3 or ty-5 indicates that the highest level of resistance against TYLCV is attained when Ty-6 is combined with an additional resistance allele. Our results also demonstrate that ty-5 is ineffective against ToMoV. Although multiple SNPs linked to Ty-6 were identified and can be used for breeding purposes, none of these were consistently polymorphic between Ty-6 and ty-6 breeding lines. Further research is underway to generate resequencing data for several Ty-6 inbred lines for the discovery of additional sequence polymorphisms that can be used for fine mapping and characterizing the Ty-6 locus.
Collapse
Affiliation(s)
- Upinder Gill
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 14625 CR 672, Wimauma, FL, 33598-6101, USA
| | - John W Scott
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 14625 CR 672, Wimauma, FL, 33598-6101, USA
| | - Reza Shekasteband
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 14625 CR 672, Wimauma, FL, 33598-6101, USA
| | - Eben Ogundiwin
- Nunhems USA, Inc, 890 Embarcadero Drive, West Sacramento, CA, 95605, USA
| | - Cees Schuit
- Bejo Zaden, 1749 ZH, Warmenhuizen, The Netherlands
| | - David M Francis
- Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH, 44691, USA
| | - Sung-Chur Sim
- Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH, 44691, USA
- Department of Bioresources Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Hugh Smith
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 14625 CR 672, Wimauma, FL, 33598-6101, USA
| | - Samuel F Hutton
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 14625 CR 672, Wimauma, FL, 33598-6101, USA.
| |
Collapse
|
16
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
17
|
Yang Y, Liu T, Shen D, Wang J, Ling X, Hu Z, Chen T, Hu J, Huang J, Yu W, Dou D, Wang MB, Zhang B. Tomato yellow leaf curl virus intergenic siRNAs target a host long noncoding RNA to modulate disease symptoms. PLoS Pathog 2019; 15:e1007534. [PMID: 30668603 PMCID: PMC6366713 DOI: 10.1371/journal.ppat.1007534] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/07/2019] [Accepted: 12/16/2018] [Indexed: 11/19/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) and its related begomoviruses cause fast-spreading diseases in tomato worldwide. How this virus induces diseases remains largely unclear. Here we report a noncoding RNA-mediated model to elucidate the molecular mechanisms of TYLCV-tomato interaction and disease development. The circular ssDNA genome of TYLCV contains a noncoding intergenic region (IR), which is known to mediate viral DNA replication and transcription in host cells, but has not been reported to contribute directly to viral disease development. We demonstrate that the IR is transcribed in dual orientations during plant infection and confers abnormal phenotypes in tomato independently of protein-coding regions of the viral genome. We show that the IR sequence has a 25-nt segment that is almost perfectly complementary to a long noncoding RNA (lncRNA, designated as SlLNR1) in TYLCV-susceptible tomato cultivars but not in resistant cultivars which contains a 14-nt deletion in the 25-nt region. Consequently, we show that viral small-interfering RNAs (vsRNAs) derived from the 25-nt IR sequence induces silencing of SlLNR1 in susceptible tomato plants but not resistant plants, and this SlLNR1 downregulation is associated with stunted and curled leaf phenotypes reminiscent of TYLCV symptoms. These results suggest that the lncRNA interacts with the IR-derived vsRNAs to control disease development during TYLCV infection. Consistent with its possible function in virus disease development, over-expression of SlLNR1 in tomato reduces the accumulation of TYLCV. Furthermore, gene silencing of the SlLNR1 in the tomato plants induced TYLCV-like leaf phenotypes without viral infection. Our results uncover a previously unknown interaction between vsRNAs and host lncRNA, and provide a plausible model for TYLCV-induced diseases and host antiviral immunity, which would help to develop effective strategies for the control of this important viral pathogen.
Collapse
Affiliation(s)
- Yuwen Yang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tingli Liu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jinyan Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongze Hu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianzi Chen
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jieli Hu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junyu Huang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wengui Yu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- * E-mail: (DD); (MBW); (BZ)
| | - Ming-Bo Wang
- CSIRO Plant Industry, Canberra, Australia
- * E-mail: (DD); (MBW); (BZ)
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (DD); (MBW); (BZ)
| |
Collapse
|
18
|
RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells 2019; 8:cells8010038. [PMID: 30634662 PMCID: PMC6356646 DOI: 10.3390/cells8010038] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
During plant-pathogen interactions, plants have to defend the living transposable elements from pathogens. In response to such elements, plants activate a variety of defense mechanisms to counteract the aggressiveness of biotic stressors. RNA interference (RNAi) is a key biological process in plants to inhibit gene expression both transcriptionally and post-transcriptionally, using three different groups of proteins to resist the virulence of pathogens. However, pathogens trigger an anti-silencing mechanism through the expression of suppressors to block host RNAi. The disruption of the silencing mechanism is a virulence strategy of pathogens to promote infection in the invaded hosts. In this review, we summarize the RNA silencing pathway, anti-silencing suppressors, and counter-defenses of plants to viral, fungal, and bacterial pathogens.
Collapse
|
19
|
Rojas MR, Macedo MA, Maliano MR, Soto-Aguilar M, Souza JO, Briddon RW, Kenyon L, Rivera Bustamante RF, Zerbini FM, Adkins S, Legg JP, Kvarnheden A, Wintermantel WM, Sudarshana MR, Peterschmitt M, Lapidot M, Martin DP, Moriones E, Inoue-Nagata AK, Gilbertson RL. World Management of Geminiviruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:637-677. [PMID: 30149794 DOI: 10.1146/annurev-phyto-080615-100327] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Management of geminiviruses is a worldwide challenge because of the widespread distribution of economically important diseases caused by these viruses. Regardless of the type of agriculture, management is most effective with an integrated pest management (IPM) approach that involves measures before, during, and after the growing season. This includes starting with resistant cultivars and virus- and vector-free transplants and propagative plants. For high value vegetables, protected culture (e.g., greenhouses and screenhouses) allows for effective management but is limited owing to high cost. Protection of young plants in open fields is provided by row covers, but other measures are typically required. Measures that are used for crops in open fields include roguing infected plants and insect vector management. Application of insecticide to manage vectors (whiteflies and leafhoppers) is the most widely used measure but can cause undesirable environmental and human health issues. For annual crops, these measures can be more effective when combined with host-free periods of two to three months. Finally, given the great diversity of the viruses, their insect vectors, and the crops affected, IPM approaches need to be based on the biology and ecology of the virus and vector and the crop production system. Here, we present the general measures that can be used in an IPM program for geminivirus diseases, specific case studies, and future challenges.
Collapse
Affiliation(s)
- Maria R Rojas
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Monica A Macedo
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Minor R Maliano
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Maria Soto-Aguilar
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Juliana O Souza
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Rob W Briddon
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | | | - Rafael F Rivera Bustamante
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Irapuato, Irapuato, Guanajuato, Mexico 36821
| | - F Murilo Zerbini
- Departamento de Fitopatologia/Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Scott Adkins
- US Department of Agriculture, Agricultural Research Service, Fort Pierce, Florida 34945, USA
| | - James P Legg
- International Institute of Tropical Agriculture, Dar-Es-Salaam, Tanzania
| | - Anders Kvarnheden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Center for Plant Biology in Uppsala, 75007 Uppsala, Sweden
| | - William M Wintermantel
- US Department of Agriculture, Agricultural Research Service, Salinas, California 93905, USA
| | - Mysore R Sudarshana
- US Department of Agriculture, Agricultural Research Service, and Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Michel Peterschmitt
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Moshe Lapidot
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Cientficas (IHSM-UMA-CSIC), Estación Experimental "La Mayora," Algarrobo-Costa, Málaga 29750, Spain
| | | | - Robert L Gilbertson
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| |
Collapse
|
20
|
Yan Z, Pérez-de-Castro A, Díez MJ, Hutton SF, Visser RGF, Wolters AMA, Bai Y, Li J. Resistance to Tomato Yellow Leaf Curl Virus in Tomato Germplasm. FRONTIERS IN PLANT SCIENCE 2018; 9:1198. [PMID: 30177938 PMCID: PMC6110163 DOI: 10.3389/fpls.2018.01198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/26/2018] [Indexed: 05/19/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a virus species causing epidemics in tomato (Solanum lycopersicum) worldwide. Many efforts have been focused on identification of resistance sources by screening wild tomato species. In many cases, the accession numbers were either not provided in publications or not provided in a consistent manner, which led to redundant screenings. In the current study, we summarized efforts on the screenings of wild tomato species for TYLCV resistance from various publications. In addition, we screened 708 accessions from 13 wild tomato species using different inoculation assays (i.e., whitefly natural infection and Agrobacterium-mediated inoculation) from which 138 accessions exhibited no tomato yellow leaf curl disease (TYLCD) symptoms. These symptomless accessions include 14 accessions from S. arcanum, 43 from S. chilense, 1 from S. chmielewskii, 28 from S. corneliomulleri, 5 from S. habrochaites, 4 from S. huaylasense, 2 from S. neorickii, 1 from S. pennellii, 39 from S. peruvianum, and 1 from S. pimpinellifolium. Most of the screened S. chilense accessions remained symptomless. Many symptomless accessions were also identified in S. arcanum, S. corneliomulleri, and S. peruvianum. A large number of S. pimpinellifolium accessions were screened. However, almost all of the tested accessions showed TYLCD symptoms. Further, we studied allelic variation of the Ty-1/Ty-3 gene in few S. chilense accessions by applying virus-induced gene silencing and allele mining, leading to identification of a number of allele-specific polymorphisms. Taken together, we present a comprehensive overview on TYLCV resistance and susceptibility in wild tomato germplasm, and demonstrate how to study allelic variants of the cloned Ty-genes in TYLCV-resistant accessions.
Collapse
Affiliation(s)
- Zhe Yan
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Ana Pérez-de-Castro
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Ciudad Politécnica de la Innovación, Universitat Politècnica de València, Valencia, Spain
| | - Maria J. Díez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Ciudad Politécnica de la Innovación, Universitat Politècnica de València, Valencia, Spain
| | - Samuel F. Hutton
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, United States
| | - Richard G. F. Visser
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Anne-Marie A. Wolters
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Junming Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Nevame AYM, Xia L, Nchongboh CG, Hasan MM, Alam MA, Yongbo L, Wenting Z, Yafei H, Emon RM, Ismail MR, Efisue A, Gang S, Wenhu L, Longting S. Development of a New Molecular Marker for the Resistance to Tomato Yellow Leaf Curl Virus. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8120281. [PMID: 30105248 PMCID: PMC6076955 DOI: 10.1155/2018/8120281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV) responsible for tomato yellow leaf curl disease (TYLCD) causes a substantial decrease in tomato (Solanum lycopersicum L.) yield worldwide. The use of resistant variety as a sustainable management strategy has been advocated. Tremendous progress has been made in genetically characterizing the resistance genes (R gene) in tomato. Breeding tomato for TYLCV resistance has been based mostly on Ty-3 as a race-specific resistance gene by introgression originating from wild tomato species relatives. Improvement or development of a cultivar is achievable through the use of marker-assisted selection (MAS). Therefore, precise and easy use of gene-targeted markers would be of significant importance for selection in breeding programs. The present study was undertaken to develop a new marker based on Ty-3 gene sequence that can be used for MAS in TYLCV resistant tomato breeding program. The new developed marker was named ACY. The reliability and accuracy of ACY were evaluated against those of Ty-3 linked marker P6-25 through screening of commercial resistant and susceptible tomato hybrids, and genetic segregation using F2 population derived from a commercial resistant hybrid AG208. With the use of bioinformatics and DNA sequencing analysis tools, deletion of 10 nucleotides was observed in Ty-3 gene sequence for susceptible tomato variety. ACY is a co-dominant indel-based marker that produced clear and strong polymorphic band patterns for resistant plant distinguishing it from its susceptible counterpart. The obtained result correlates with 3:1 segregation ratio of single resistant dominant gene inheritance, which depicted ACY as gene-tag functional marker. This marker is currently in use for screening 968 hybrids varieties and one thousand breeding lines of tomato varieties stocked in Jiangsu Green Port Modern Agriculture Development Company (Green Port). So far, ACY has been used to identify 56 hybrids and 51 breeding lines. These newly detected breeding lines were regarded as potential source of resistance for tomato breeding. This work exploited the sequence of Ty-3 and subsequently contributed to the development of molecular marker ACY to aid phenotypic selection. We thus recommend this marker to breeders, which is suitable for marker-assisted selection in tomato.
Collapse
Affiliation(s)
- Adedze Yawo Mawunyo Nevame
- Molecular Biology Laboratory of Jiangsu Green Port Modern Agriculture Development Company, Nancai Township Road No. 1, Suqian City, Jiangsu Province 223800, China
| | - Lu Xia
- Molecular Biology Laboratory of Jiangsu Green Port Modern Agriculture Development Company, Nancai Township Road No. 1, Suqian City, Jiangsu Province 223800, China
| | | | - Muhammad Mahmudul Hasan
- Bangladesh Institute of Nuclear Agriculture, BAU Campus, Mymensingh 2202, Bangladesh
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Md. Amirul Alam
- Faculty of Sustainable Agriculture, Horticulture and Landscaping Program, Universiti Malaysia Sabah, Sandakan Campus, 90509 Sandakan, Sabah, Malaysia
| | - Li Yongbo
- Molecular Biology Laboratory of Jiangsu Green Port Modern Agriculture Development Company, Nancai Township Road No. 1, Suqian City, Jiangsu Province 223800, China
| | - Zhang Wenting
- Molecular Biology Laboratory of Jiangsu Green Port Modern Agriculture Development Company, Nancai Township Road No. 1, Suqian City, Jiangsu Province 223800, China
| | - He Yafei
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Reza Mohammad Emon
- Bangladesh Institute of Nuclear Agriculture, BAU Campus, Mymensingh 2202, Bangladesh
| | - Mohd Razi Ismail
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Andrew Efisue
- Departments of Crop and Soil Science, University of Port Harcourt, Port Harcourt, Nigeria
| | - Sun Gang
- Molecular Biology Laboratory of Jiangsu Green Port Modern Agriculture Development Company, Nancai Township Road No. 1, Suqian City, Jiangsu Province 223800, China
| | - Li Wenhu
- Molecular Biology Laboratory of Jiangsu Green Port Modern Agriculture Development Company, Nancai Township Road No. 1, Suqian City, Jiangsu Province 223800, China
| | - Si Longting
- Molecular Biology Laboratory of Jiangsu Green Port Modern Agriculture Development Company, Nancai Township Road No. 1, Suqian City, Jiangsu Province 223800, China
| |
Collapse
|
22
|
Germline BRCA mutations in Asian patients with pancreatic adenocarcinoma: a prospective study evaluating risk category for genetic testing. Invest New Drugs 2017; 36:163-169. [PMID: 28782087 DOI: 10.1007/s10637-017-0497-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
Introduction Germline BRCA mutations may have therapeutic implications as surrogate markers of DNA-damage repair status in pancreatic ductal adenocarcinoma (PDAC). We performed a prospective study to evaluate the efficiency of risk criteria based on personal or family history of breast and ovarian cancer for determining germline BRCA mutations in PDAC patients with Asian ethnicity. Methods Between November 2015 and May 2016, we screened consecutive PDAC patients with locally advanced unresectable or metastatic disease who were referred for systemic chemotherapy. Analyses for germline BRCA mutations were performed if patients had one or more first-degree or second-degree relatives with breast or ovarian cancers or had a personal medical history of these diseases. DNA was extracted from whole blood, and all coding exons and their flanking intron regions of BRCA1 and BRCA2 were sequenced. Results A total of 175 patients were screened for personal and family history and 10 (5.7%) met the inclusion criteria for genetic sequencing. Pathogenic germline BRCA2 mutation [c.7480C>T (p.Arg2494*)] was identified in one male patient, resulting in a frequency of 10% for the risk-stratified patients and 0.6% for the unselected PDAC population. Two patients had germline BRCA2 variants of uncertain significance [c.1744A>C (p.Thr582Pro) and c.68-7T>A]. Conclusion Personal or family history of breast or ovarian cancers is a feasible, cost-effective risk categorization for screening germline BRCA mutations in Asian PDAC patients as 10% of this population had the pathogenic mutation herein. Future validation from a large, prospective cohort is needed.
Collapse
|
23
|
Francis D, Finer JJ, Grotewold E. Challenges and opportunities for improving food quality and nutrition through plant biotechnology. Curr Opin Biotechnol 2017; 44:124-129. [DOI: 10.1016/j.copbio.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
|
24
|
Li Y, Qin L, Zhao J, Muhammad T, Cao H, Li H, Zhang Y, Liang Y. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS One 2017; 12:e0172466. [PMID: 28222174 PMCID: PMC5319765 DOI: 10.1371/journal.pone.0172466] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.
Collapse
Affiliation(s)
- Yunzhou Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Lei Qin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jingjing Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Tayeb Muhammad
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Hehe Cao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Hailiang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|