1
|
Majhi S, Kerry RG, Sahoo L. Profiling of microbiome diversity in cattle: present status and future prospectives. APPLICATIONS OF METAGENOMICS 2024:129-142. [DOI: 10.1016/b978-0-323-98394-5.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
|
2
|
Nami Y, Kiani A, Elieh‐Ali‐Komi D, Jafari M, Haghshenas B. Impacts of alginate–basil seed mucilage–prebiotic microencapsulation on the survival rate of the potential probiotic
Leuconostoc mesenteroides
ABRIINW
.
N18
in yogurt. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology Branch for Northwest and West Region Agricultural Biotechnology Research Institute of Iran Agricultural Research, Education and Extension Organization (AREEO) Tabriz Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC) Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Daniel Elieh‐Ali‐Komi
- Regenerative Medicine Research Center (RMRC) Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mahdieh Jafari
- Department of Animal, Marine and Aquatic Biology and Biotechnology Faculty of Life Sciences and Biotechnology Shahid Beheshti University, Evin Tehran Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC) Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
3
|
Nami Y, Kahieshesfandiari M, Lornezhad G, Kiani A, Elieh-Ali-Komi D, Jafari M, Jaymand M, Haghshenas B. Administration of microencapsulated Enterococcus faecium ABRIINW.N7 with fructo-oligosaccharides and fenugreek on the mortality of tilapia challenged with Streptococcus agalactiae. Front Vet Sci 2022; 9:938380. [PMID: 35978708 PMCID: PMC9376237 DOI: 10.3389/fvets.2022.938380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022] Open
Abstract
We investigated the probiotic potential of a microencapsulated Enterococcus faecium ABRIINW.N7 for control of Streptococcus agalactiae infection in hybrid (Oreochromis niloticus × Oreochromis mossambicus) red tilapia. A two-phase experiment approach was completed in which E. faecium bacteria were propagated, from which a culture was isolated, identified using molecular techniques, and microencapsulated to produce a stable commercial fructooligosaccharide (FOS) and fenugreek (Fk) product of optimal concentration. The FOS and Fk products were assessed in a 90-days in vivo challenge study, in which red hybrid tilapia were allocated to one of five treatments: (1) No Streptococcus agalactiae (Sa) challenge (CON); (2) Sa challenge only (CON+); (3) Sa challenge in a free cell (Free Cell); (4) Sa challenge with 0.8% (w/v) Alginate; (5) Microencapsulated FOS and Fk. In vitro results showed high encapsulation efficiency (≥98.6 ± 0.7%) and acceptable viability of probiotic bacteria within the simulated fish digestive system and high stability of viable cells in all gel formulations (34 < SR% <63). In vivo challenges demonstrated that the FOS and Fk products could be used to control S. agalactiae infection in tilapia fish and represented a novel investigation using microencapsulation E. faecium as a probiotic diet for tilapia fish to control S. agalactiae infection and to lower fish mortality. It is recommended that local herbal gums such as 0.2% Persian gum and 0.4% Fk in combination with 0.8% alginate (Formulation 7) can be used as a suitable scaffold and an ideal matrix for the encapsulation of probiotics. These herbal gums as prebiotics are capable of promoting the growth of probiotic cells in the food environment and digestive tract.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Mahdi Kahieshesfandiari
- Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia, Selangor, Malaysia
| | - Gilda Lornezhad
- Department of Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Daniel Elieh-Ali-Komi
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdieh Jafari
- Department of Animal, Marine and Aquatic Biology and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Liu X, Tang Y, Wu J, Liu JX, Sun HZ. Feedomics provides bidirectional omics strategies between genetics and nutrition for improved production in cattle. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:314-319. [PMID: 35600547 PMCID: PMC9097626 DOI: 10.1016/j.aninu.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
Increasing the efficiency and sustainability of cattle production is an effective way to produce valuable animal proteins for a growing human population. Genetics and nutrition are the 2 major research topics in selecting cattle with beneficial phenotypes and developing genetic potentials for improved performance. There is an inextricable link between genetics and nutrition, which urgently requires researchers to uncover the underlying molecular mechanisms to optimize cattle production. Feedomics integrates a range of omic techniques to reveal the mechanisms at different molecular levels related to animal production and health, which can provide novel insights into the relationships of genes and nutrition/nutrients. In this review, we summarized the applications of feedomics techniques to reveal the effect of genetic elements on the response to nutrition and investigate how nutrients affect the functional genome of cattle from the perspective of both nutrigenetics and nutrigenomics. We highlighted the roles of rumen microbiome in the interactions between host genes and nutrition. Herein, we discuss the importance of feedomics in cattle nutrition research, with a view to ensure that cattle exhibit the best production traits for human consumption from both genetic and nutritional aspects.
Collapse
|
5
|
Xue MY, Wu JJ, Xie YY, Zhu SL, Zhong YF, Liu JX, Sun HZ. Investigation of fiber utilization in the rumen of dairy cows based on metagenome-assembled genomes and single-cell RNA sequencing. MICROBIOME 2022; 10:11. [PMID: 35057854 PMCID: PMC8772221 DOI: 10.1186/s40168-021-01211-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/07/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Dairy cows utilize human-inedible, low-value plant biomass to produce milk, a low-cost product with rich nutrients and high proteins. This process largely relies on rumen microbes that ferment lignocellulose and cellulose to produce volatile fatty acids (VFAs). The VFAs are absorbed and partly metabolized by the stratified squamous rumen epithelium, which is mediated by diverse cell types. Here, we applied a metagenomic binning approach to explore the individual microbes involved in fiber digestion and performed single-cell RNA sequencing on rumen epithelial cells to investigate the cell subtypes contributing to VFA absorption and metabolism. RESULTS The 52 mid-lactating dairy cows in our study (parity = 2.62 ± 0.91) had milk yield of 33.10 ± 6.72 kg. We determined the fiber digestion and fermentation capacities of 186 bacterial genomes using metagenomic binning and identified specific bacterial genomes with strong cellulose/xylan/pectin degradation capabilities that were highly associated with the biosynthesis of VFAs. Furthermore, we constructed a rumen epithelial single-cell map consisting of 18 rumen epithelial cell subtypes based on the transcriptome of 20,728 individual epithelial cells. A systematic survey of the expression profiles of genes encoding candidates for VFA transporters revealed that IGFBP5+ cg-like spinous cells uniquely highly expressed SLC16A1 and SLC4A9, suggesting that this cell type may play important roles in VFA absorption. Potential cross-talk between the microbiome and host cells and their roles in modulating the expression of key genes in the key rumen epithelial cell subtypes were also identified. CONCLUSIONS We discovered the key individual microbial genomes and epithelial cell subtypes involved in fiber digestion, VFA uptake and metabolism, respectively, in the rumen. The integration of these data enables us to link microbial genomes and epithelial single cells to the trophic system. Video abstract.
Collapse
Affiliation(s)
- Ming-Yuan Xue
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Jin Wu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Yi Xie
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Sen-Lin Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Fan Zhong
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Lu Y, Liu H, Yang K, Mao Y, Meng L, Yang L, Ouyang G, Liu W. A comprehensive update: gastrointestinal microflora, gastric cancer and gastric premalignant condition, and intervention by traditional Chinese medicine. J Zhejiang Univ Sci B 2022; 23:1-18. [PMID: 35029085 DOI: 10.1631/jzus.b2100182] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the recent upsurge of studies in the field of microbiology, we have learned more about the complexity of the gastrointestinal microecosystem. More than 30 genera and 1000 species of gastrointestinal microflora have been found. The structure of the normal microflora is relatively stable, and is in an interdependent and restricted dynamic equilibrium with the body. In recent years, studies have shown that there is a potential relationship between gastrointestinal microflora imbalance and gastric cancer (GC) and precancerous lesions. So, restoring the balance of gastrointestinal microflora is of great significance. Moreover, intervention in gastric premalignant condition (GPC), also known as precancerous lesion of gastric cancer (PLGC), has been the focus of current clinical studies. The holistic view of traditional Chinese medicine (TCM) is consistent with the microecology concept, and oral TCM can play a two-way regulatory role directly with the microflora in the digestive tract, restoring the homeostasis of gastrointestinal microflora to prevent canceration. However, large gaps in knowledge remain to be addressed. This review aims to provide new ideas and a reference for clinical practice.
Collapse
Affiliation(s)
- Yuting Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Huayi Liu
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China.
| | - Kuo Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Liu Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Guangze Ouyang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Wenjie Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| |
Collapse
|
7
|
Diakoumopoulou D, Magana M, Karoussis IK, Nikolaou C, Chatzipanagiotou S, Ioannidis A. The ever-changing landscape in modern dentistry therapeutics - Enhancing the emptying quiver of the periodontist. Heliyon 2021; 7:e08342. [PMID: 34816039 PMCID: PMC8591475 DOI: 10.1016/j.heliyon.2021.e08342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/12/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction/Objectives Periodontitis comprises of a wide range of inflammatory conditions of the gums leading to soft tissue damage and attachment loss. The initiation of periodontitis constitutes a rather complex disease pathogenesis which is based on pathogenic shifts of the oral microbiota combined with the host-microbiome interactions. The severity of the periodontitis is multifactorial depending on genetic, environmental, as well as host immunity factors. Data and sources To make an inclusive analysis on the periodontitis therapeutics, reading of the recent relevant literature was carried out using the MEDLINE/PubMed database, Google Scholar and the NIH public online database for clinical trials (http://www.clinicaltrials.gov). Conclusions Tackling the inflammation associated periodontal defects can be succeeded with conventional therapy or resective and regenerative treatment. To date, the mechanical removal of the supragingival and subgingival biofilm is considered the “gold standard” of periodontal therapy in combination with the use of antibacterial compounds. The antimicrobial resistance phenomenon tends to turn all the currently applied antibacterials into “endangered species”. Ongoing efforts through the conduct of clinical trials should be focused on understanding the advantages of modern approaches in comparison to traditional therapies.
Collapse
Affiliation(s)
- Dimitra Diakoumopoulou
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Ioannis K Karoussis
- Department of Periodontology, School of Dental Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysoula Nikolaou
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | | | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece.,Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripolis, Greece
| |
Collapse
|
8
|
De Cuyper A, Winkler DE, Tütken T, Bosch G, Hummel J, Kreuzer M, Muñoz Saravia A, Janssens GPJ, Clauss M. Digestion of bamboo compared to grass and lucerne in a small hindgut fermenting herbivore, the guinea pig (Cavia porcellus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:128-140. [PMID: 34411456 DOI: 10.1002/jez.2538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 11/08/2022]
Abstract
Bamboo is an enigmatic forage, representing a niche food for pandas and bamboo lemurs. Bamboo might not represent a suitable forage for herbivores relying on fermentative digestion, potentially due to its low fermentability. To test this hypothesis, guinea pigs (n = 36) were used as model species and fed ad libitum with one of three forages (bamboo, lucerne, or timothy grass) in a fresh or dried state, with six individuals per group, for 3 weeks. The nutrient composition and in vitro fermentation profile of bamboo displayed low fermentation potential, i.e. high lignin and silica levels together with a gas production (Hohenheim gas test) at 12 h of only 36% of that of lucerne and grass. Although silica levels were more abundant in the leftovers of (almost) all groups, guinea pigs did not select against lignin on bamboo. Dry matter (DM) intake was highest and DM digestibility lowest on the bamboo forage. Total short-chain fatty acid levels in caecal content were highest for lucerne and lowest for grass and bamboo. Bamboo-fed guinea pigs had a lower body weight gain than the grass and lucerne group. The forage hydration state did not substantially affect digestion, but dry forage led to a numerically higher total wet gut fill. Although guinea pigs increased DM intake on the bamboo diet, the negative effects on fermentation of lignin and silica in bamboo seemed overriding. For herbivores that did not evolutionary adapt, bamboo as an exclusive food resource can be considered as inadequate.
Collapse
Affiliation(s)
- Annelies De Cuyper
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daniela E Winkler
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany.,Department of Natural Environmental Studies, Graduate School of 12 Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Thomas Tütken
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany
| | - Guido Bosch
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University, AH Wageningen, The Netherlands
| | - Jürgen Hummel
- Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Arturo Muñoz Saravia
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert P J Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Islam M, Kim SH, Son AR, Ramos SC, Jeong CD, Yu Z, Kang SH, Cho YI, Lee SS, Cho KK, Lee SS. Seasonal Influence on Rumen Microbiota, Rumen Fermentation, and Enteric Methane Emissions of Holstein and Jersey Steers under the Same Total Mixed Ration. Animals (Basel) 2021; 11:1184. [PMID: 33924248 PMCID: PMC8074768 DOI: 10.3390/ani11041184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/16/2023] Open
Abstract
Seasonal effects on rumen microbiome and enteric methane (CH4) emissions are poorly documented. In this study, 6 Holstein and 6 Jersey steers were fed the same total mixed ration diet during winter, spring, and summer seasons under a 2 × 3 factorial arrangement for 30 days per season. The dry matter intake (DMI), rumen fermentation characteristics, enteric CH4 emissions and rumen microbiota were analyzed. Holstein had higher total DMI than Jersey steers regardless of season. However, Holstein steers had the lowest metabolic DMI during summer, while Jersey steers had the lowest total DMI during winter. Jersey steers had higher CH4 yields and intensities than Holstein steers regardless of season. The pH was decreased, while ammonia nitrogen concentration was increased in summer regardless of breed. Total volatile fatty acids concentration and propionate proportions were the highest in winter, while acetate and butyrate proportion were the highest in spring and in summer, respectively, regardless of breed. Moreover, Holstein steers produced a higher proportion of propionate, while Jersey steers produced a higher proportion of butyrate regardless of season. Metataxonomic analysis of rumen microbiota showed that operational taxonomic units and Chao 1 estimates were lower and highly unstable during summer, while winter had the lowest Shannon diversity. Beta diversity analysis suggested that the overall rumen microbiota was shifted according to seasonal changes in both breeds. In winter, the rumen microbiota was dominated by Carnobacterium jeotgali and Ruminococcus bromii, while in summer, Paludibacter propionicigenes was predominant. In Jersey steers, Capnocytophaga cynodegmi, Barnesiella viscericola and Flintibacter butyricus were predominant, whereas in Holstein steers, Succinivibrio dextrinosolvens and Gilliamella bombicola were predominant. Overall results suggest that seasonal changes alter rumen microbiota and fermentation characteristics of both breeds; however, CH4 emissions from steers were significantly influenced by breeds, not by seasons.
Collapse
Affiliation(s)
- Mahfuzul Islam
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
- Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Seon-Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - A-Rang Son
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Chang-Dae Jeong
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Seung Ha Kang
- Faculty of Medicine, Diamantina Institute, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Yong-Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Sung-Sill Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju 52828, Korea;
| | - Kwang-Keun Cho
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Sang-Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (M.I.); (S.-H.K.); (A-R.S.); (S.C.R.); (C.-D.J.)
| |
Collapse
|
10
|
Bailoni L, Carraro L, Cardin M, Cardazzo B. Active Rumen Bacterial and Protozoal Communities Revealed by RNA-Based Amplicon Sequencing on Dairy Cows Fed Different Diets at Three Physiological Stages. Microorganisms 2021; 9:754. [PMID: 33918504 PMCID: PMC8066057 DOI: 10.3390/microorganisms9040754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Seven Italian Simmental cows were monitored during three different physiological stages, namely late lactation (LL), dry period (DP), and postpartum (PP), to evaluate modifications in their metabolically-active rumen bacterial and protozoal communities using the RNA-based amplicon sequencing method. The bacterial community was dominated by seven phyla: Proteobacteria, Bacteroidetes, Firmicutes, Spirochaetes, Fibrobacteres, Verrucomicrobia, and Tenericutes. The relative abundance of the phylum Proteobacteria decreased from 47.60 to 28.15% from LL to DP and then increased to 33.24% in PP. An opposite pattern in LL, DP, and PP stages was observed for phyla Verrucomicrobia (from 0.96 to 4.30 to 1.69%), Elusimicrobia (from 0.32 to 2.84 to 0.25%), and SR1 (from 0.50 to 2.08 to 0.79%). The relative abundance of families Succinivibrionaceae and Prevotellaceae decreased in the DP, while Ruminococcaceae increased. Bacterial genera Prevotella and Treponema were least abundant in the DP as compared to LL and PP, while Ruminobacter and Succinimonas were most abundant in the DP. The rumen eukaryotic community was dominated by protozoal phylum Ciliophora, which showed a significant decrease in relative abundance from 97.6 to 93.9 to 92.6 in LL, DP, and PP, respectively. In conclusion, the physiological stage-dependent dietary changes resulted in a clear shift in metabolically-active rumen microbial communities.
Collapse
Affiliation(s)
- Lucia Bailoni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Universitá 16, 35020 Legnaro, PD, Italy; (L.C.); (M.C.); (B.C.)
| | | | | | | |
Collapse
|
11
|
Mukherjee A, Reddy MS. Metatranscriptomics: an approach for retrieving novel eukaryotic genes from polluted and related environments. 3 Biotech 2020; 10:71. [PMID: 32030340 DOI: 10.1007/s13205-020-2057-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/06/2020] [Indexed: 02/02/2023] Open
Abstract
Metatranscriptomics, a subset of metagenomics, provides valuable information about the whole gene expression profiling of complex microbial communities of an ecosystem. Metagenomic studies mainly focus on the genomic content and identification of microbes present within a community, while metatranscriptomics provides the diversity of the active genes within such community, their expression profile and how these levels change due to change in environmental conditions. Metatranscriptomics has been applied to different types of environments, from the study of human microbiomes, to those found in plants, animals, within soils and in aquatic systems. Metatranscriptomics, based on the utilization of mRNA isolated from environmental samples, is a suitable approach to mine the eukaryotic gene pool for genes of biotechnological relevance. Also, it is imperative to develop different bioinformatic pipelines to analyse the data obtained from metatranscriptomic analysis. In the present review, we summarise the metatranscriptomics applied to soil environments to study the functional diversity, and discuss approaches for isolating the genes involved in organic matter degradation and providing tolerance to toxic metals, role of metatranscriptomics in microbiome research, various bioinformatics pipelines used in data analysis and technical challenges for gaining biologically meaningful insight of this approach.
Collapse
Affiliation(s)
- Arkadeep Mukherjee
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| |
Collapse
|
12
|
Effects of Dietary Non-Fibrous Carbohydrate (NFC) to Neutral Detergent Fiber (NDF) Ratio Change on Rumen Bacteria in Sheep Based on Three Generations of Full-Length Amplifiers Sequencing. Animals (Basel) 2020; 10:ani10020192. [PMID: 31979054 PMCID: PMC7070923 DOI: 10.3390/ani10020192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Rumen microbes play an important role in the health and production of ruminants, and they are influenced by dietary changes. In our study, we investigated the change of rumen bacteria under the four treatments of dietary non-fibrous carbohydrate (NFC) to neutral detergent fiber (NDF) ratios in sheep using three generations of full-length amplifiers sequencing. As rumen is a complex organ, and the effects of dietary NFC/NDF ratio change on ruminal bacteria might change over time, thus the study was conducted for four periods of 72 d in total. The results showed that the composition of rumen bacteria changed with different dietary NFC/NDF ratio during the experimental periods. Rumen bacterial diversity was decreased in dietary NFC/NDF ratio of 1.90 with the prolong of experimental periods. The main dominant phyla in Karakul sheep rumen didn’t change, while their relative abundance changed with dietary NFC/NDF ratio and experimental periods. The relative abundance of unidentified-Lachnospiraceae and main cellulose-degrading bacteria was higher in dietary NFC/NDF ratio of 1.37 than other groups (NFC/NDF ratio of 0.54, 0.96 and 1.90). Abstract The study was conducted to investigate the effects of dietary NFC/NDF ratio change on rumen bacteria in sheep. Twelve Karakul sheep were assigned randomly into four groups fed with four dietary NFC/NDF ratios of 0.54, 0.96, 1.37, and 1.90 and they were assigned into groups 1, 2, 3, and 4, respectively. The experiment was divided into four periods: I (1–18 d), II (19–36 d), III (37–54 d), and IV (55–72 d). In each period, the first 15 d were used for adaption, and then rumen fluid was collected for 3 d from each sheep before morning feeding. The fluid was analyzed with three generations of full-length amplifiers sequencing. Results showed that the bacterial diversity of group 4 was decreased in period III and IV. At the phylum level, Bacteroidetes (37–60%) and Firmicutes (26–51%) were the most dominant bacteria over the four periods. The relative abundance of Bacteroidetes, Firmicutes, Tenericutes, and Spirochaete changed with dietary NFC/NDF ratio change over the four periods, but there was no difference among groups over the four periods (p > 0.05). At the genus level, unidentified-Lachnospiraceae was the dominant genus, and its relative abundance in group 3 was high during the period I and III (p < 0.05). The relative abundance of Mycoplasma in group 4 was high in the period I and II (p < 0.05). The relative abundance of Succiniclasticum was high in group 2 of period II (p < 0.05). At the species level, the relative abundance of Butyrivibrio-fibrisolvens was found to be high in group 3 during periods I and III (p < 0.05). The main semi-cellulose-degrading bacteria and starch-degrading bacteria were low, and there was no significant difference among groups over four periods (p > 0.05). Taken together, the dietary NFC/NDF ratio of 1.90 decreased the diversity of bacteria as a period changed from I to IV. While the main phylum bacteria didn’t change, their relative abundance changed with the dietary NFC/NDF ratio change over the four periods. The most prevalent genus was unidentified-Lachnospiraceae, and its relative abundance was higher in dietary NFC/NDF ratio of 1.37 than other groups. Similarly, the main cellulose-degrading species was higher in the treatment of dietary NFC/NDF ratio of 1.37 than other groups.
Collapse
|
13
|
Vasta V, Daghio M, Cappucci A, Buccioni A, Serra A, Viti C, Mele M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J Dairy Sci 2019; 102:3781-3804. [PMID: 30904293 DOI: 10.3168/jds.2018-14985] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 01/13/2019] [Indexed: 12/29/2022]
Abstract
The interest of the scientific community in the effects of plant polyphenols on animal nutrition is increasing. These compounds, in fact, are ubiquitous in the plant kingdom, especially in some spontaneous plants exploited as feeding resources alternative to cultivated crops and in several agro-industry by-products. Polyphenols interact with rumen microbiota, affecting carbohydrate fermentation, protein degradation, and lipid metabolism. Some of these aspects have been largely reviewed, especially for tannins; however, less information is available about the direct effect of polyphenols on the composition of rumen microbiota. In the present paper, we review the most recent literature about the effect of plant polyphenols on rumen microbiota responsible for unsaturated fatty acid biohydrogenation, fiber digestion, and methane production, taking into consideration the advances in microbiota analysis achieved in the last 10 yr. Key aspects, such as sample collection, sample storage, DNA extraction, and the main phylogenetic markers used in the reconstruction of microbial community structure, are examined. Furthermore, a summary of the new high-throughput methods based on next generation sequencing is reviewed. Several effects can be associated with dietary polyphenols. Polyphenols are able to depress or modulate the biohydrogenation of unsaturated fatty acids by a perturbation of ruminal microbiota composition. In particular, condensed tannins have an inhibitory effect on biohydrogenation, whereas hydrolyzable tannins seem to have a modulatory effect on biohydrogenation. With regard to fiber digestion, data from literature are quite consistent about a general depressive effect of polyphenols on gram-positive fibrolytic bacteria and ciliate protozoa, resulting in a reduction of volatile fatty acid production (mostly acetate molar production). Methane production is also usually reduced when tannins are included in the diet of ruminants, probably as a consequence of the inhibition of fiber digestion. However, some evidence suggests that hydrolyzable tannins may reduce methane emission by directly interacting with rumen microbiota without affecting fiber digestion.
Collapse
Affiliation(s)
- V Vasta
- Food Scientist, viale delle Alpi 40, 90144, Palermo, Italy
| | - M Daghio
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - A Cappucci
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - A Buccioni
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - A Serra
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - C Viti
- Dipartimento di Scienze delle Produzioni Agro-Alimentari e dell'Ambiente, University of Florence, Piazzale delle Cascine 18, 50144 Firenze, Italy
| | - M Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Centro di Ricerche Agro-ambientali "E. Avanzi," University of Pisa, Via Vecchia di Masrina, 6, 56100 Pisa, Italy.
| |
Collapse
|
14
|
A cellulolytic fungal biofilm enhances the consolidated bioconversion of cellulose to short chain fatty acids by the rumen microbiome. Appl Microbiol Biotechnol 2019; 103:3355-3365. [PMID: 30847541 PMCID: PMC6449290 DOI: 10.1007/s00253-019-09706-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
Abstract
The ability of the multispecies biofilm membrane reactors (MBM reactors) to provide distinguished niches for aerobic and anaerobic microbes at the same time was used for the investigation of the consolidated bioprocessing of cellulose to short chain fatty acids (SCFAs). A consortium based consolidated bioprocess (CBP) was designed. The rumen microbiome was used as the converting microbial consortium, co-cultivated with selected individual aerobic fungi which formed a biofilm on the tubular membrane flushed with oxygen. The beneficial effect of the fungal biofilm on the process yields and productivities was attributed to the enhanced cellulolytic activities compared with those achieved by the rumen microbiome alone. At 30 °C, the MBM system with Trichoderma reesei biofilm reached a concentration 39% higher (7.3 g/L SCFAs), than the rumen microbiome alone (5.1 g/L) using 15 g/L crystalline cellulose as the substrate. Fermentation temperature was crucial especially for the composition of the short chain fatty acids produced. The temperature increase resulted in shorter fatty acids produced. While a mixture of acetic, propionic, butyric, and caproic acids was produced at 30 °C with Trichoderma reesei biofilm, butyric and caproic acids were not detected during the fermentations at 37.5 °C carried out with Coprinopsis cinerea as the biofilm forming fungus. Apart from the presence of the fungal biofilm, no parameter studied had a significant impact on the total yield of organic acids produced, which reached 0.47 g of total SCFAs per g of cellulose (at 30 °C and at pH 6, with rumen inoculum to total volume ratio equal to 0.372).
Collapse
|
15
|
Lan W, Yang C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1270-1283. [PMID: 30841400 DOI: 10.1016/j.scitotenv.2018.11.180] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 05/16/2023]
Abstract
Methane emission from ruminants not only causes serious environmental problems, but also represents a significant source of energy loss to animals. The increasing demand for sustainable animal production is driving researchers to explore proper strategies to mitigate ruminal methanogenesis. Since hydrogen is the primary substrate of ruminal methanogenesis, hydrogen metabolism and its associated microbiome in the rumen may closely relate to low- and high-methane phenotypes. Using candidate microbes that can compete with methanogens and redirect hydrogen away from methanogenesis as ruminal methane mitigants are promising avenues for methane mitigation, which can both prevent the adverse effects deriving from chemical additives such as toxicity and resistance, and increase the retention of feed energy. This review describes the ruminal microbial ecosystem and its association with methane production, as well as the effects of interspecies hydrogen transfer on methanogenesis. It provides a scientific perspective on using bacteria that are involved in hydrogen utilization as ruminal modifiers to decrease methanogenesis. This information will be helpful in better understanding the key role of ruminal microbiomes and their relationship with methane production and, therefore, will form the basis of valuable and eco-friendly methane mitigation methods while improving animal productivity.
Collapse
Affiliation(s)
- Wei Lan
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China
| | - Chunlei Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China.
| |
Collapse
|
16
|
Miralda I, Vashishta A, Uriarte SM. Neutrophil Interaction with Emerging Oral Pathogens: A Novel View of the Disease Paradigm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:165-178. [PMID: 31732941 DOI: 10.1007/978-3-030-28524-1_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Periodontitis is a multifactorial chronic inflammatory infectious disease that compromises the integrity of tooth-supporting tissues. The disease progression depends on the disruption of host-microbe homeostasis in the periodontal tissue. This disruption is marked by a shift in the composition of the polymicrobial oral community from a symbiotic to a dysbiotic, more complex community that is capable of evading killing while promoting inflammation. Neutrophils are the main phagocytic cell in the periodontal pocket, and the outcome of the interaction with the oral microbiota is an important determinant of oral health. Novel culture-independent techniques have facilitated the identification of new bacterial species at periodontal lesions and induced a reappraisal of the microbial etiology of periodontitis. In this chapter, we discuss how neutrophils interact with two emerging oral pathogens, Filifactor alocis and Peptoanaerobacter stomatis, and the different strategies deploy by these organisms to modulate neutrophil effector functions, with the goal to outline a new paradigm in our knowledge about neutrophil responses to putative periodontal pathogens and their contribution to disease progression.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Aruna Vashishta
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA. .,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
17
|
Xue M, Sun H, Wu X, Guan LL, Liu J. Assessment of Rumen Microbiota from a Large Dairy Cattle Cohort Reveals the Pan and Core Bacteriomes Contributing to Varied Phenotypes. Appl Environ Microbiol 2018; 84:e00970-18. [PMID: 30054362 PMCID: PMC6146982 DOI: 10.1128/aem.00970-18] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
Currently, knowledge on the extent to which rumen microbiota differ in a large population of cattle fed the same diet and whether such differences are associated with animal performance is limited. This study was conducted to characterize the rumen microbiota of a large cohort of lactating Holstein dairy cows (n = 334) that were fed the same diet and raised under the same environment, aiming to uncover linkages between core and pan rumen microbiomes and host phenotypes. Amplicon sequencing of the partial 16S rRNA gene identified 391 bacterial genera in the pan bacteriome and 33 genera in the core bacteriome. Interanimal variation existed in the pan and core bacteriomes, with the effect of lactation stage being more prominent than that of parity (the number of pregnancies, ranging from 2 to 7) and sire. Spearman's correlation network analysis revealed significant correlations among bacteria, rumen short-chain fatty acids, and lactation performance, with the core and noncore genera accounting for 53.9 and 46.2% of the network, respectively. These results suggest that the pan rumen bacteriome together with the core bacteriome potentially contributes to variations in milk production traits. Our findings provide an understanding of the potential functions of noncore rumen microbes, suggesting the possibility of enhancing bacterial fermentation using strategies to manipulate the core and noncore bacteriomes for improved cattle performance.IMPORTANCE This study revealed the rumen bacteriome from a large dairy cattle cohort (n = 334) raised under the same management and showed the linkages among the rumen core and pan bacteriomes, rumen short-chain fatty acids, and milk production phenotypes. The findings from this study suggest that the pan rumen bacteriome, together with the core bacteriome, potentially contributes to variations in host milk production traits. Fundamental knowledge on the rumen core and pan microbiomes and their roles in contributing to lactation performance provides novel insights into future strategies for manipulating rumen microbiota to enhance milk production in dairy cattle.
Collapse
Affiliation(s)
- Mingyuan Xue
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huizeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Xuehui Wu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jianxin Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Tseng CH, Wu CY. The gut microbiome in obesity. J Formos Med Assoc 2018; 118 Suppl 1:S3-S9. [PMID: 30057153 DOI: 10.1016/j.jfma.2018.07.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023] Open
Abstract
Obesity is worldwide epidemic given its rapid growth in global prevalence. Among the risk factors contributing to obesity, human gut microbiome recently emerges with unprecedented intimacy in host metabolism and inflammation. With the advances in sequencing technology, more and more detailed understandings towards the intricate relationships linking gut microbiome and obesity have been continuously disclosed. Herein, we review studies resolving associations between gut microbiome and obesity, and then mechanistic studies tackling the roles played by gut microbes in obesogenic physiology.
Collapse
Affiliation(s)
| | - Chun-Ying Wu
- Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine & Institute of Public Health, National Yang-Ming University, Taipei, Taiwan; College of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
19
|
Zhu H, Zeng D, Wang Q, Wang N, Zeng B, Niu L, Ni X. Diarrhea-Associated Intestinal Microbiota in Captive Sichuan Golden Snub-Nosed Monkeys (Rhinopithecus roxellana). Microbes Environ 2018; 33:249-256. [PMID: 30047510 PMCID: PMC6167115 DOI: 10.1264/jsme2.me17163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diarrhea is often associated with marked alterations in the intestinal microbiota, termed dysbiosis; however, limited information is currently available on the intestinal microbiota in captive golden snub-nosed monkeys (Rhinopithecus roxellana) with diarrhea. We herein characterized the fecal microbiota in diarrhea and healthy monkeys using the Illumina MiSeq platform. The concentrations of fecal short-chain fatty acids (SCFAs) and copy numbers of virulence factor genes were also assessed using gas chromatography and quantitative PCR (qPCR), respectively. The results obtained showed that diarrhea monkeys harbored a distinctive microbiota from that of healthy monkeys and had 45% fewer Bacteroidetes. Among healthy subjects, old monkeys had the lowest relative abundance of Bacteroidetes. Linear discriminant analysis coupled with the effect size (LEfSe) and canonical correlation analysis (CCA) identified significant differences in microbial taxa between diarrhea and healthy monkeys. A PICRUSt analysis revealed that several pathogenic genes were enriched in diarrhea monkeys, while glycan metabolism genes were overrepresented in healthy monkeys. A positive correlation was observed between the abundance of nutrition metabolism-related genes and the individual digestive capacities of healthy monkeys. Consequently, the abundance of genes encoding heat stable enterotoxin was significantly higher in diarrhea monkeys than in healthy monkeys (P<0.05). In healthy subjects, adult monkeys had significant higher concentrations of butyrate and total SCFAs than old monkeys (P<0.05). In conclusion, the present study demonstrated that diarrhea had a microbial component and changes in the microbial structure were accompanied by altered systemic metabolic states. These results suggest that pathogens and malabsorption are the two main causes of diarrhea, which are closely related to the microbial structure and functions.
Collapse
Affiliation(s)
- Hui Zhu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University.,Sichuan University of Science and Engineering
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University
| | | | - Ning Wang
- Sichuan University of Science and Engineering.,Department of Parasitology, College of Veterinary, Sichuan Agricultural University
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University
| |
Collapse
|
20
|
Gonzalez-Recio O, Zubiria I, García-Rodríguez A, Hurtado A, Atxaerandio R. Short communication: Signs of host genetic regulation in the microbiome composition in 2 dairy breeds: Holstein and Brown Swiss. J Dairy Sci 2017; 101:2285-2292. [PMID: 29274973 DOI: 10.3168/jds.2017-13179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023]
Abstract
This study aimed to evaluate whether the host genotype exerts any genetic control on the microbiome composition of the rumen in cattle. Microbial DNA was extracted from 18 samples of ruminal content from 2 breeds (Holstein and Brown Swiss). Reads were processed using mothur (https://www.mothur.org/) in 16S and 18S rRNA gene-based analyses. Then, reads were classified at the genus clade, resulting in 3,579 operational taxonomic units (OTU) aligned against the 16S database and 184 OTU aligned against the 18S database. After filtering on relative abundance (>0.1%) and penetrance (95%), 25 OTU were selected for the analyses (17 bacteria, 1 archaea, and 7 ciliates). Association with the genetic background of the host animal based on the principal components of a genomic relationship matrix based on single nucleotide polymorphism markers was analyzed using Bayesian methods. Fifty percent of the bacteria and archaea genera were associated with the host genetic background, including Butyrivibrio, Prevotella, Paraprevotella, and Methanobrevibacter as main genera. Forty-three percent of the ciliates analyzed were also associated with the genetic background of the host. In total, 48% of microbes were associated with the host genetic background. The results in this study support the hypothesis and provide some evidence that there exists a host genetic component in cattle that can partially regulate the composition of the microbiome.
Collapse
Affiliation(s)
- O Gonzalez-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; Departamento de Produccion Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - I Zubiria
- Departamento de Producción Animal, NEIKER-Tecnalia, Granja Modelo de Arkaute Apartado 46, 01080 Vitoria-Gasteiz, Spain
| | - A García-Rodríguez
- Departamento de Producción Animal, NEIKER-Tecnalia, Granja Modelo de Arkaute Apartado 46, 01080 Vitoria-Gasteiz, Spain
| | - A Hurtado
- Departamento de Sanidad Animal, NEIKER-Tecnalia, Berreaga 1, 48160 Derio, Spain
| | - R Atxaerandio
- Departamento de Producción Animal, NEIKER-Tecnalia, Granja Modelo de Arkaute Apartado 46, 01080 Vitoria-Gasteiz, Spain
| |
Collapse
|
21
|
Kim M, Park T, Yu Z. Metagenomic investigation of gastrointestinal microbiome in cattle. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1515-1528. [PMID: 28830126 PMCID: PMC5666186 DOI: 10.5713/ajas.17.0544] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/19/2023]
Abstract
The gastrointestinal (GI) tract, including the rumen and the other intestinal segments of cattle, harbors a diverse, complex, and dynamic microbiome that drives feed digestion and fermentation in cattle, determining feed efficiency and output of pollutants. This microbiome also plays an important role in affecting host health. Research has been conducted for more than a century to understand the microbiome and its relationship to feed efficiency and host health. The traditional cultivation-based research elucidated some of the major metabolism, but studies using molecular biology techniques conducted from late 1980’s to the late early 2000’s greatly expanded our view of the diversity of the rumen and intestinal microbiome of cattle. Recently, metagenomics has been the primary technology to characterize the GI microbiome and its relationship with host nutrition and health. This review addresses the main methods/techniques in current use, the knowledge gained, and some of the challenges that remain. Most of the primers used in quantitative real-time polymerase chain reaction quantification and diversity analysis using metagenomics of ruminal bacteria, archaea, fungi, and protozoa were also compiled.
Collapse
Affiliation(s)
- Minseok Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Wanju 55365, Korea
| | - Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Evaluation of the Bacterial Diversity in the Human Tongue Coating Based on Genus-Specific Primers for 16S rRNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8184160. [PMID: 28904972 PMCID: PMC5585543 DOI: 10.1155/2017/8184160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/20/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
The characteristics of tongue coating are very important symbols for disease diagnosis in traditional Chinese medicine (TCM) theory. As a habitat of oral microbiota, bacteria on the tongue dorsum have been proved to be the cause of many oral diseases. The high-throughput next-generation sequencing (NGS) platforms have been widely applied in the analysis of bacterial 16S rRNA gene. We developed a methodology based on genus-specific multiprimer amplification and ligation-based sequencing for microbiota analysis. In order to validate the efficiency of the approach, we thoroughly analyzed six tongue coating samples from lung cancer patients with different TCM types, and more than 600 genera of bacteria were detected by this platform. The results showed that ligation-based parallel sequencing combined with enzyme digestion and multiamplification could expand the effective length of sequencing reads and could be applied in the microbiota analysis.
Collapse
|
23
|
Identification of Trypanosomatids by detecting Single Nucleotide Fingerprints using DNA analysis by dynamic chemistry with MALDI-ToF. Talanta 2017; 176:299-307. [PMID: 28917755 DOI: 10.1016/j.talanta.2017.07.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/09/2023]
Abstract
Protozoan parasites of the Trypanosomatidae family can cause devastating diseases in humans and animals, such as Human African Trypanosomiasis or Sleeping Sickness, Chagas disease and Leishmaniasis. Currently, there are molecular assays for detecting parasitic infections and their post-treatment monitoring based on nucleic acid amplification, but there are still certain limitations which limit the development of assays that can detect and discriminate between parasite infections with a single test. Here, we present the development of a novel molecular assay for the rapid identification of Trypanosomatids, integrating DNA analysis by dynamic chemistry in conjunction with Matrix-Assisted Laser Desorption Ionization - Time-of-Flight Mass Spectrometry (MALDI-ToF). Differentiation of Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp. is now possible using a single reaction tube, and enables rapid identification of Trypanosomatids. The test is based on a singleplex PCR, using a specific primer pair that amplifies a 155 base pair segment of the 28S ribosomal RNA gene, within a conserved homology region of Trypanosomatidae species. Amplified fragments are analysed by dynamic chemistry using two abasic PNA probes and the four reactive nucleobases - containing an aldehyde functional group - with MALDI-ToF to identify unique molecular patterns created by each specie due to their single base differences (Single Nucleotide Fingerprint 'SNF') in this highly homologous region. This novel assay offers the possibility to expand routine diagnostic testing for Trypanosomatids, and monitoring of therapeutic responses to these infectious diseases.
Collapse
|
24
|
Granja-Salcedo YT, Ramirez-Uscategui RA, Machado EG, Duarte Messana J, Takeshi Kishi L, Lino Dias AV, Berchielli TT. Studies on bacterial community composition are affected by the time and storage method of the rumen content. PLoS One 2017; 12:e0176701. [PMID: 28453579 PMCID: PMC5409139 DOI: 10.1371/journal.pone.0176701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/14/2017] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to investigate three storage methods and four storage times for rumen sampling in terms of quality and yield of extracted metagenomic DNA as well as the composition of the rumen bacterial community. One Nellore steer fitted with a ruminal silicone-type cannula was used as a donor of ruminal contents. The experiment comprised 11 experimental groups: pellet control (PC), lyophilized control (LC), P-20: pellet stored frozen at -20°C for a period of 3, 6, and 12 months, P-80: pellet stored frozen at -80°C for a period of 3, 6, and 12 months, and L-20: lyophilized sample stored frozen at -20°C for a period of 3, 6, and 12 months. Metagenomic DNA concentrations were measured spectrophotometrically and fluorometrically and ion torrent sequencing was used to assess the bacterial community composition. The L-20 method could not maintain the yield of DNA during storage. In addition, the P-80 group showed a greater yield of metagenomic DNA than the other groups after 6 months of storage. Rumen samples stored as pellets (P-20 and P-80) resulted in lower richness Chao 1, ACE, and Shannon Wiener indices when compared to PC, while LC and PC were only different in richness ACE. The storage method and storage time influenced the proportions of 14 of 17 phyla identified by sequencing. In the P-20 group, the proportion of Cyanobacteria, Elusimicrobia, Fibrobacteres, Lentisphaerae, Proteobacteria, and Spirochaetes phyla identified was lower than 1%. In the P-80 group, there was an increase in the proportion of the Bacteroidetes phylum (p = 0.010); however, the proportion of Actinobacteria, Chloroflexi, SR1, Synergistetes, TM7, and WPS.2 phyla were unchanged compared to the PC group (p > 0.05). The class Clostridium was the most abundant in all stored groups and increased in its proportion, especially in the L-20 group. The rumen sample storage time significantly reduced the yield of metagenomic DNA extracted. Therefore, the storage method can influence the abundance of phyla, classes, and bacterial families studied in rumen samples and affect the richness and diversity index.
Collapse
Affiliation(s)
- Yury Tatiana Granja-Salcedo
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias (FCAV), UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
- * E-mail:
| | - Ricardo Andrés Ramirez-Uscategui
- Department of Clinical and Veterinary Surgery, Faculdade de Ciências Agrárias e Veterinárias (FCAV), UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Elwi Guillermo Machado
- Grupo de Investigación en Medicina Genómica - GIMEGEN, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Juliana Duarte Messana
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias (FCAV), UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Luciano Takeshi Kishi
- Department of Technology, Faculdade de Ciências Agrárias e Veterinárias (FCAV), UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Ana Veronica Lino Dias
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias (FCAV), UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Telma Teresinha Berchielli
- Department of Animal Science, Faculdade de Ciências Agrárias e Veterinárias (FCAV), UNESP - Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
- Department of Animal Science, INCT/CA – Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil
| |
Collapse
|
25
|
Metatranscriptomic Profiling Reveals Linkages between the Active Rumen Microbiome and Feed Efficiency in Beef Cattle. Appl Environ Microbiol 2017; 83:AEM.00061-17. [PMID: 28235871 DOI: 10.1128/aem.00061-17] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022] Open
Abstract
Exploring compositional and functional characteristics of the rumen microbiome can improve the understanding of its role in rumen function and cattle feed efficiency. In this study, we applied metatranscriptomics to characterize the active rumen microbiomes of beef cattle with different feed efficiencies (efficient, n = 10; inefficient, n = 10) using total RNA sequencing. Active bacterial and archaeal compositions were estimated based on 16S rRNAs, and active microbial metabolic functions including carbohydrate-active enzymes (CAZymes) were assessed based on mRNAs from the same metatranscriptomic data sets. In total, six bacterial phyla (Proteobacteria, Firmicutes, Bacteroidetes, Spirochaetes, Cyanobacteria, and Synergistetes), eight bacterial families (Succinivibrionaceae, Prevotellaceae, Ruminococcaceae, Lachnospiraceae, Veillonellaceae, Spirochaetaceae, Dethiosulfovibrionaceae, and Mogibacteriaceae), four archaeal clades (Methanomassiliicoccales, Methanobrevibacter ruminantium, Methanobrevibacter gottschalkii, and Methanosphaera), 112 metabolic pathways, and 126 CAZymes were identified as core components of the active rumen microbiome. As determined by comparative analysis, three bacterial families (Lachnospiraceae, Lactobacillaceae, and Veillonellaceae) tended to be more abundant in low-feed-efficiency (inefficient) animals (P < 0.10), and one archaeal taxon (Methanomassiliicoccales) tended to be more abundant in high-feed-efficiency (efficient) cattle (P < 0.10). Meanwhile, 32 microbial metabolic pathways and 12 CAZymes were differentially abundant (linear discriminant analysis score of >2 with a P value of <0.05) between two groups. Among them, 30 metabolic pathways and 11 CAZymes were more abundant in the rumen of inefficient cattle, while 2 metabolic pathways and 1 CAZyme were more abundant in efficient animals. These findings suggest that the rumen microbiomes of inefficient cattle have more diverse activities than those of efficient cattle, which may be related to the host feed efficiency variation.IMPORTANCE This study applied total RNA-based metatranscriptomics and showed the linkage between the active rumen microbiome and feed efficiency (residual feed intake) in beef cattle. The data generated from the current study provide fundamental information on active rumen microbiome at both compositional and functional levels, which serve as a foundation to study rumen function and its role in cattle feed efficiency. The findings that the active rumen microbiome may contribute to variations in feed efficiency of beef cattle highlight the possibility of enhancing nutrient utilization and improve cattle feed efficiency through modification of rumen microbial functions.
Collapse
|
26
|
Nami Y, Haghshenas B, Yari Khosroushahi A. Effect of psyllium and gum Arabic biopolymers on the survival rate and storage stability in yogurt of Enterococcus duransIW3 encapsulated in alginate. Food Sci Nutr 2016; 5:554-563. [PMID: 28572941 PMCID: PMC5448373 DOI: 10.1002/fsn3.430] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/27/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022] Open
Abstract
Different herbal biopolymers were used to encapsulate Enterococcus durans IW3 to enhance its storage stability in yogurt and subsequently its endurance in gastrointestinal condition. Nine formulations of encapsulation were performed using alginate (ALG), ALG-psyllium (PSY), and ALG-gum Arabic (GA) blends. The encapsulation efficiency of all formulations, tolerance of encapsulated E. durans IW3 against low pH/high bile salt concentration, storage lifetime, and release profile of cells in natural condition of yogurt were evaluated. Result revealed 98.6% encapsulation efficiency and 76% survival rate for all formulation compared with the unencapsulated formulation cells (43%). The ALG-PSY and ALG-GA formulations have slightly higher survival rates at low pH and bile salt condition (i.e., 76-93% and 81-95%, respectively) compared with the ALG formulation. All encapsulated E. durans IW3 was released from the prepared beads of ALG after 90 min, whereas both probiotics encapsulated in ALG-GA and ALG-PSY were released after 60 min. Enterococcus durans IW3 was successfully encapsulated in ALG, ALG-GA, and ALG-PSY beads prepared by extrusion method. ALG-GA and ALG-PSY beads are suitable delivery carriers for the oral administration of bioactive compounds like probiotics. The GA and PSY gels exhibited better potential for encapsulation of probiotic bacteria cells because of the amendment of ALG difficulties and utilization of therapeutic and prebiotic potentials of these herbal biopolymers.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology Branch for Northwest & West region Agricultural Biotechnology Research Institute of Iran Agricultural Research Education and Extension Organization (AREEO) Tabriz Islamic Republic of Iran.,Institute of Biosciences University Putra Malaysia Selangor Malaysia
| | - Babak Haghshenas
- Institute of Biosciences University Putra Malaysia Selangor Malaysia
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Islamic Republic of Iran.,Department of Pharmacognosy Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Islamic Republic of Iran
| |
Collapse
|
27
|
Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis 2016; 23:276-286. [PMID: 27219464 DOI: 10.1111/odi.12509] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/14/2022]
Abstract
The oral microbiome is incredibly complex with the average adult harboring about 50-100 billion bacteria in the oral cavity, which represent about 200 predominant bacterial species. Collectively, there are approximately 700 predominant taxa of which less than one-third still have not yet been grown in vitro. Compared to other body sites, the oral microbiome is unique and readily accessible. There is extensive literature available describing the oral microbiome and discussing the roles that bacteria may play in oral health and disease. However, the purpose of this review is not to rehash these detailed studies but rather to educate the reader with understanding the essence of the oral microbiome, namely that there are abundant bacteria in numbers and types, that there are molecular methods to rapidly determine bacterial associations, that there is site specificity for colonization of the host, that there are specific associations with oral health and disease, that oral bacteria may serve as biomarkers for non-oral diseases, and that oral microbial profiles may have potential use to assess disease risk.
Collapse
Affiliation(s)
- K Krishnan
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA.,New England BioLabs, Ipswich, MA, USA
| | - T Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - B J Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA.,Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
28
|
Bagherpour Shamloo H, Golkari S, Faghfoori Z, Movassaghpour A, Lotfi H, Barzegari A, Yari Khosroushahi A. Lactobacillus Casei Decreases Organophosphorus Pesticide Diazinon Cytotoxicity in Human HUVEC Cell Line. Adv Pharm Bull 2016; 6:201-10. [PMID: 27478782 DOI: 10.15171/apb.2016.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Exposure to diazinon can trigger acute and chronic toxicity and significantly induces DNA damage and proapoptotic effects in different human cells. Due to the significance of probiotic bacteria antitoxin effect, this study aimed to investigate the effect of Lactobacillus casei on diazinon (DZN) cytotoxicity in human umbilical vein endothelial cells (HUVEC) in vitro. METHODS The cytotoxicity assessments were performed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, DAPI (4',6-diamidino-2-phenylindole) staining and flow cytometric methodologies. RESULTS Cytotoxic assessments through flow cytometry/ DAPI staining demonstrated that apoptosis is the main cytotoxic mechanism of diazinon in HUVEC cells and L. casei could decrease the diazinon cytotoxic effects on toxicants. CONCLUSION the screen of total bacterial secreted metabolites can be considered as a wealthy source to find the new active compounds to introduce as reducing agricultural remained pesticide cytotoxicity effects on the human food chain.
Collapse
Affiliation(s)
- Hasan Bagherpour Shamloo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Dryland Agricultural Research Institute (DARI), Agricultural Research, Education and Extension Organization (AREEO), Maragheh, Iran
| | - Saber Golkari
- Dryland Agricultural Research Institute (DARI), Agricultural Research, Education and Extension Organization (AREEO), Maragheh, Iran
| | - Zeinab Faghfoori
- Tuberculosis & Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AliAkbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Kasparovska J, Pecinkova M, Dadakova K, Krizova L, Hadrova S, Lexa M, Lochman J, Kasparovsky T. Effects of Isoflavone-Enriched Feed on the Rumen Microbiota in Dairy Cows. PLoS One 2016; 11:e0154642. [PMID: 27124615 PMCID: PMC4849651 DOI: 10.1371/journal.pone.0154642] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/15/2016] [Indexed: 01/04/2023] Open
Abstract
In this study, we compared the effects of two diets containing different isoflavone concentrations on the isoflavone transfer from feed into milk and on the rumen microbiota in lactating dairy cows. The on-farm experiment was conducted on twelve lactating Czech Fleckvieh x Holstein cows divided into two groups, each with similar mean milk yield. Twice daily, cows were individually fed a diet based on maize silage, meadow hay and supplemental mixture. Control group (CTRL) received the basal diet while the experimental group (EXP) received the basal diet supplemented with 40% soybean isoflavone extract. The average daily isoflavone intake in the EXP group (16 g/day) was twice as high as that in the CTRL group (8.4 g/day, P<0.001). Total isoflavone concentrations in milk from the CTRL and EXP groups were 96.89 and 276.07 μg/L, respectively (P<0.001). Equol concentrations in milk increased from 77.78 μg/L in the CTRL group to 186.30 μg/L in the EXP group (P<0.001). The V3-4 region of bacterial 16S rRNA genes was used for metagenomic analysis of the rumen microbiome. The experimental cows exhibited fewer OTUs at a distance level of 0.03 compared to control cows (P<0.05) and reduced microbial richness compared to control cows based on the calculated Inverse Simpson and Shannon indices. Non-metric multidimensional scaling analysis showed that the major contributor to separation between the experimental and control groups were changes in the representation of bacteria belonging to the phyla Bacteroidetes, Proteobacteria, Firmicutes, and Planctomycetes. Surprisingly, a statistically significant positive correlation was found only between isoflavones and the phyla Burkholderiales (r = 0.65, P<0.05) and unclassified Betaproteobacteria (r = 0.58, P<0.05). Previous mouse and human studies of isoflavone effects on the composition of gastrointestinal microbial populations generally report similar findings.
Collapse
Affiliation(s)
- Jitka Kasparovska
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martina Pecinkova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katerina Dadakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ludmila Krizova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sylvie Hadrova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Matej Lexa
- Department of Information Technologies, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomas Kasparovsky
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
30
|
Haghshenas B, Nami Y, Haghshenas M, Abdullah N, Rosli R, Radiah D, Khosroushahi AY. Bioactivity characterization of Lactobacillus strains isolated from dairy products. Microbiologyopen 2015. [PMID: 26219634 PMCID: PMC4618612 DOI: 10.1002/mbo3.280] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study aimed to find candidate strains of Lactobacillus isolated from sheep dairy products (yogurt and ewe colostrum) with probiotic and anticancer activity. A total of 100 samples were randomly collected from yogurt and colostrum and 125 lactic acid bacteria were isolated. Of these, 17 Lactobacillus strains belonging to five species (L. delbrueckii, L. plantarum, L. rhamnosus, L. paracasei, and L. casei) were identified. L. plantarum 17C and 13C, which isolated from colostrums, demonstrated remarkable results such as resistant to low pH and high concentrations of bile salts, susceptible to some antibiotics and good antimicrobial activity that candidate them as potential probiotics. Seven strains (1C, 5C, 12C, 13C, 17C, 7M, and 40M), the most resistant to simulated digestion, were further investigated to evaluate their capability to adhere to human intestinal Caco-2 cells. L. plantarum 17C was the most adherent strain. The bioactivity assessment of L. plantarum 17C showed anticancer effects via the induction of apoptosis on HT-29 human cancer cells and negligible side effects on one human epithelial normal cell line (FHs 74). The metabolites produced by this strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells.
Collapse
Affiliation(s)
- Babak Haghshenas
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yousef Nami
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Minoo Haghshenas
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Norhafizah Abdullah
- Chemical and Environmental Engineering Department, Faculty of Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rozita Rosli
- Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Dayang Radiah
- Chemical and Environmental Engineering Department, Faculty of Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Haghshenas B, Nami Y, Haghshenas M, Barzegari A, Sharifi S, Radiah D, Rosli R, Abdullah N. Effect of addition of inulin and fenugreek on the survival of microencapsulated Enterococcus durans 39C in alginate-psyllium polymeric blends in simulated digestive system and yogurt. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2015.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
32
|
Haghshenas B, Abdullah N, Nami Y, Radiah D, Rosli R, Yari Khosroushahi A. Microencapsulation of probiotic bacteria Lactobacillus plantarum
15HN using alginate-psyllium-fenugreek polymeric blends. J Appl Microbiol 2015; 118:1048-57. [DOI: 10.1111/jam.12762] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/27/2014] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
Affiliation(s)
- B. Haghshenas
- Institute of Biosciences; University Putra Malaysia; Selangor Malaysia
| | - N. Abdullah
- Chemical and Environmental Engineering Department; Faculty of Engineering; University Putra Malaysia; Selangor Malaysia
| | - Y. Nami
- Institute of Biosciences; University Putra Malaysia; Selangor Malaysia
| | - D. Radiah
- Chemical and Environmental Engineering Department; Faculty of Engineering; University Putra Malaysia; Selangor Malaysia
| | - R. Rosli
- Institute of Biosciences; University Putra Malaysia; Selangor Malaysia
| | - A. Yari Khosroushahi
- Biotechnology Research Center; Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Pharmacognosy; Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
33
|
Haghshenas B, Nami Y, Abdullah N, Radiah D, Rosli R, Khosroushahi AY. Anticancer impacts of potentially probiotic acetic acid bacteria isolated from traditional dairy microbiota. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2014.09.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Rozman Grinberg I, Yin G, Borovok I, Berg Miller ME, Yeoman CJ, Dassa B, Yu Z, Mizrahi I, Flint HJ, Bayer EA, White BA, Lamed R. Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome. FEMS Microbiol Lett 2014; 362:1-10. [PMID: 25673657 DOI: 10.1093/femsle/fnu047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ruminococcus albus, a cellulolytic bacterium, is a critical member of the rumen community. Ruminococcus albus lacks a classical cellulosome complex, but it possesses a unique family 37 carbohydrate-binding module (CBM37), which is integrated into a variety of carbohydrate-active enzymes. We developed a potential molecular tool for functional phylotyping of the R. albus population in the rumen, based on a variable region in the cel48A gene. cel48A encodes a single copy of the CBM37-associated family 48 glycoside hydrolase in all known strains of this bacterium. A segment of the cel48A gene was amplified from rumen metagenomic samples of four bovines, and its abundance and diversity were evaluated. Analysis of the obtained sequences revealed the co-existence of multiple functional phylotypes of cel48A in all four animals. These included sequences identical or similar to those of R. albus isolates (reference strains), as well as several novel sequences. The dominant cel48A type varied among animals. This method can be used for detection of intraspecific diversity of R. albus in metagenomic samples. Together with scaC, a previously reported gene marker for R. flavefaciens, we present a set of two species-specific markers for phylotyping of Ruminococci in the herbivore rumen.
Collapse
Affiliation(s)
- Inna Rozman Grinberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Guohua Yin
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | - Carl J Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Bareket Dassa
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Zhongtang Yu
- The MAPLE Research Initiative, Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Itzhak Mizrahi
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Harry J Flint
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, UK
| | - Edward A Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bryan A White
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
35
|
Haghshenas B, Nami Y, Abdullah N, Radiah D, Rosli R, Barzegari A, Yari Khosroushahi A. Potentially probiotic acetic acid bacteria isolation and identification from traditional dairies microbiota. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12718] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Babak Haghshenas
- Institute of Biosciences; University Putra Malaysia; 43400 UPM Serdang Selangor Malaysia
| | - Yousef Nami
- Institute of Biosciences; University Putra Malaysia; 43400 UPM Serdang Selangor Malaysia
| | - Norhafizah Abdullah
- Chemical and Environmental Engineering Department; Faculty of Engineering; University Putra Malaysia; 43400 UPM Serdang Selangor Malaysia
| | - Dayang Radiah
- Chemical and Environmental Engineering Department; Faculty of Engineering; University Putra Malaysia; 43400 UPM Serdang Selangor Malaysia
| | - Rozita Rosli
- Institute of Biosciences; University Putra Malaysia; 43400 UPM Serdang Selangor Malaysia
| | - Abolfazl Barzegari
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Pharmacognosy; Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
36
|
Haghshenas B, Abdullah N, Nami Y, Radiah D, Rosli R, Khosroushahi AY. Different effects of two newly-isolated probiotic Lactobacillus plantarum 15HN and Lactococcus lactis subsp. Lactis 44Lac strains from traditional dairy products on cancer cell lines. Anaerobe 2014; 30:51-9. [PMID: 25168457 DOI: 10.1016/j.anaerobe.2014.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/22/2014] [Accepted: 08/18/2014] [Indexed: 01/04/2023]
|
37
|
Haghshenas B, Nami Y, Abdullah N, Radiah D, Rosli R, Khosroushahi AY. Anti-proliferative effects of Enterococcus strains isolated from fermented dairy products on different cancer cell lines. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
38
|
Carbonetto B, Rascovan N, Álvarez R, Mentaberry A, Vázquez MP. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas. PLoS One 2014; 9:e99949. [PMID: 24923965 PMCID: PMC4055693 DOI: 10.1371/journal.pone.0099949] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022] Open
Abstract
Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no- tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems may promote copiotrophy more than no-tillage systems by decreasing soil organic matter stability and therefore increasing nutrient availability.
Collapse
Affiliation(s)
- Belén Carbonetto
- Instituto de Agrobiotecnología de Rosario (INDEAR), Predio CCT Rosario, Santa Fe, Argentina
- * E-mail: (MPV); (BC)
| | - Nicolás Rascovan
- Instituto de Agrobiotecnología de Rosario (INDEAR), Predio CCT Rosario, Santa Fe, Argentina
| | - Roberto Álvarez
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Mentaberry
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martin P. Vázquez
- Instituto de Agrobiotecnología de Rosario (INDEAR), Predio CCT Rosario, Santa Fe, Argentina
- * E-mail: (MPV); (BC)
| |
Collapse
|
39
|
REVIEW: The rumen microbiome: Composition, abundance, diversity, and new investigative tools. ACTA ACUST UNITED AC 2014. [DOI: 10.15232/s1080-7446(15)30076-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Ross EM, Petrovski S, Moate PJ, Hayes BJ. Metagenomics of rumen bacteriophage from thirteen lactating dairy cattle. BMC Microbiol 2013; 13:242. [PMID: 24180266 PMCID: PMC3827882 DOI: 10.1186/1471-2180-13-242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/24/2013] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The bovine rumen hosts a diverse and complex community of Eukarya, Bacteria, Archea and viruses (including bacteriophage). The rumen viral population (the rumen virome) has received little attention compared to the rumen microbial population (the rumen microbiome). We used massively parallel sequencing of virus like particles to investigate the diversity of the rumen virome in thirteen lactating Australian Holstein dairy cattle all housed in the same location, 12 of which were sampled on the same day. RESULTS Fourteen putative viral sequence fragments over 30 Kbp in length were assembled and annotated. Many of the putative genes in the assembled contigs showed no homology to previously annotated genes, highlighting the large amount of work still required to fully annotate the functions encoded in viral genomes. The abundance of the contig sequences varied widely between animals, even though the cattle were of the same age, stage of lactation and fed the same diets. Additionally the twelve animals which were co-habited shared a number of their dominant viral contigs. We compared the functional characteristics of our bovine viromes with that of other viromes, as well as rumen microbiomes. At the functional level, we found strong similarities between all of the viral samples, which were highly distinct from the rumen microbiome samples. CONCLUSIONS Our findings suggest a large amount of between animal variation in the bovine rumen virome and that co-habiting animals may have more similar viromes than non co-habited animals. We report the deepest sequencing to date of the rumen virome. This work highlights the enormous amount of novelty and variation present in the rumen virome.
Collapse
Affiliation(s)
- Elizabeth M Ross
- Department of Environment and Primary Industries, Bundoora, VIC 3086, Australia.
| | | | | | | |
Collapse
|
41
|
Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl Environ Microbiol 2013; 79:3744-55. [PMID: 23584771 DOI: 10.1128/aem.03983-12] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the nature of the rumen epithelial adherent (epimural) microbiome in cattle fed different diets. Using denaturing gradient gel electrophoresis (DGGE), quantitative real-time PCR (qPCR), and pyrosequencing of the V3 hypervariable coding region of 16S rRNA, epimural bacterial communities of 8 cattle were profiled during the transition from a forage to a high-concentrate diet, during acidosis, and after recovery. A total of 153,621 high-quality gene sequences were obtained, with populations exhibiting less taxonomic variability among individuals than across diets. The bacterial community composition exhibited clustering (P < 0.03) by diet, with only 14 genera, representing >1% of the rumen epimural population, differing (P ≤ 0.05) among diets. During acidosis, levels of Atopobium, Desulfocurvus, Fervidicola, Lactobacillus, and Olsenella increased, while during the recovery, Desulfocurvus, Lactobacillus, and Olsenella reverted to levels similar to those with the high-grain diet and Sharpea and Succinivibrio reverted to levels similar to those with the forage diet. The relative abundances of bacterial populations changed during diet transition for all qPCR targets except Streptococcus spp. Less than 5% of total operational taxonomic units (OTUs) identified exhibited significant variability across diets. Based on DGGE, the community structures of epithelial populations differed (P ≤ 0.10); segregation was most prominent for the mixed forage diet versus the grain, acidotic challenge, and recovery diets. Atopobium, cc142, Lactobacillus, Olsenella, RC39, Sharpea, Solobacterium, Succiniclasticum, and Syntrophococcus were particularly prevalent during acidosis. Determining the metabolic roles of these key genera in the rumens of cattle fed high-grain diets could define a clinical microbial profile associated with ruminal acidosis.
Collapse
|
42
|
Ying YX, Ding WL, Li Y. Characterization of soil bacterial communities in rhizospheric and nonrhizospheric soil of Panax ginseng. Biochem Genet 2012; 50:848-59. [PMID: 22875735 DOI: 10.1007/s10528-012-9525-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 05/21/2012] [Indexed: 11/30/2022]
Abstract
A culture-independent approach was used to evaluate the bacterial community in rhizospheric and nonrhizospheric soil in which Panax ginseng had grown for 3 years. For each sample, soil was randomly collected from multiple sampling points and mixed thoroughly before genomic DNA extraction. Universal primers 27f and 1492r were used to amplify 16S rRNA genes. Clone libraries were constructed using the amplified 16S rRNA genes, and 192 white clones were chosen for further sequencing. After digestion with restriction endonuclease, 44 operational taxonomic units (OTUs) were generated for rhizospheric and 21 OTUs for nonrhizospheric soils, and the clones of each OTU were sequenced. Blast analysis showed that bacillus, acidobacteria, and proteobacteria were the dominant populations in rhizospheric soil, and proteobacteria were dominant in nonrhizospheric soil. Phylogenetic results showed that bacillus and acidobacteria were clustered into the group of uncultured bacteria in rhizospheric soil; however, proteobacteria were the unique dominant in nonrhizospheric soil.
Collapse
Affiliation(s)
- Yi Xin Ying
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Beijing, 100193, China
| | | | | |
Collapse
|
43
|
High throughput whole rumen metagenome profiling using untargeted massively parallel sequencing. BMC Genet 2012; 13:53. [PMID: 22747657 PMCID: PMC3464612 DOI: 10.1186/1471-2156-13-53] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/02/2012] [Indexed: 02/02/2023] Open
Abstract
Background Variation of microorganism communities in the rumen of cattle (Bos taurus) is of great interest because of possible links to economically or environmentally important traits, such as feed conversion efficiency or methane emission levels. The resolution of studies investigating this variation may be improved by utilizing untargeted massively parallel sequencing (MPS), that is, sequencing without targeted amplification of genes. The objective of this study was to develop a method which used MPS to generate “rumen metagenome profiles”, and to investigate if these profiles were repeatable among samples taken from the same cow. Given faecal samples are much easier to obtain than rumen fluid samples; we also investigated whether rumen metagenome profiles were predictive of faecal metagenome profiles. Results Rather than focusing on individual organisms within the rumen, our method used MPS data to generate quantitative rumen micro-biome profiles, regardless of taxonomic classifications. The method requires a previously assembled reference metagenome. A number of such reference metagenomes were considered, including two rumen derived metagenomes, a human faecal microflora metagenome and a reference metagenome made up of publically available prokaryote sequences. Sequence reads from each test sample were aligned to these references. The “rumen metagenome profile” was generated from the number of the reads that aligned to each contig in the database. We used this method to test the hypothesis that rumen fluid microbial community profiles vary more between cows than within multiple samples from the same cow. Rumen fluid samples were taken from three cows, at three locations within the rumen. DNA from the samples was sequenced on the Illumina GAIIx. When the reads were aligned to a rumen metagenome reference, the rumen metagenome profiles were repeatable (P < 0.00001) by cow regardless of location of sampling rumen fluid. The repeatability was estimated at 9%, albeit with a high standard error, reflecting the small number of animals in the study. Finally, we compared rumen microbial profiles to faecal microbial profiles. Our hypothesis, that there would be a stronger correlation between faeces and rumen fluid from the same cow than between faeces and rumen fluid from different cows, was not supported by our data (with much greater significance of rumen versus faeces effect than animal effect in mixed linear model). Conclusions We have presented a simple and high throughput method of metagenome profiling to assess the similarity of whole metagenomes, and illustrated its use on two novel datasets. This method utilises widely used freeware. The method should be useful in the exploration and comparison of metagenomes.
Collapse
|
44
|
Carro L, Spröer C, Alonso P, Trujillo ME. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 2012; 35:73-80. [PMID: 22221858 DOI: 10.1016/j.syapm.2011.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/26/2011] [Accepted: 11/06/2011] [Indexed: 01/11/2023]
Abstract
It was recently reported that Micromonospora inhabits the intracellular tissues of nitrogen fixing nodules of the wild legume Lupinus angustifolius. To determine if Micromonospora populations are also present in nitrogen fixing nodules of cultivated legumes such as Pisum sativum, we carried out the isolation of this actinobacterium from P. sativum plants collected in two man-managed fields in the region of Castilla and León (Spain). In this work, we describe the isolation of 93 Micromonospora strains recovered from nitrogen fixing nodules and the rhizosphere of P. sativum. The genomic diversity of the strains was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). Forty-six isolates and 34 reference strains were further analyzed using a multilocus sequence analysis scheme developed to address the phylogeny of the genus Micromonospora and to evaluate the species distribution in the two studied habitats. The MLSA results were evaluated by DNA-DNA hybridization to determine their usefulness for the delineation of Micromonospora at the species level. In most cases, DDH values below 70% were obtained with strains that shared a sequence similarity of 98.5% or less. Thus, MLSA studies clearly supported the established taxonomy of the genus Micromonospora and indicated that genomic species could be delineated as groups of strains that share > 98.5% sequence similarity based on the 5 genes selected. The species diversity of the strains isolated from both the rhizosphere and nodules was very high and in many cases the new strains could not be related to any of the currently described species.
Collapse
Affiliation(s)
- Lorena Carro
- Departamento de Microbiología y Genética, Edificio Departamental, Lab. 205, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, Spain
| | | | | | | |
Collapse
|
45
|
Lidder P, Sonnino A. Biotechnologies for the management of genetic resources for food and agriculture. ADVANCES IN GENETICS 2012; 78:1-167. [PMID: 22980921 DOI: 10.1016/b978-0-12-394394-1.00001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can facilitate the development and appropriate use of biotechnologies in developing countries; and that FAO and other relevant international organizations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies.
Collapse
Affiliation(s)
- Preetmoninder Lidder
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| | - Andrea Sonnino
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| |
Collapse
|
46
|
Scholz MB, Lo CC, Chain PSG. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol 2011; 23:9-15. [PMID: 22154470 DOI: 10.1016/j.copbio.2011.11.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 12/24/2022]
Abstract
The recent technological advances in next generation sequencing have brought the field closer to the goal of reconstructing all genomes within a community by presenting high throughput sequencing at much lower costs. While these next-generation sequencing technologies have allowed a massive increase in available raw sequence data, there are a number of new informatics challenges and difficulties that must be addressed to improve the current state, and fulfill the promise of, metagenomics.
Collapse
Affiliation(s)
- Matthew B Scholz
- Genome Science Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | | | | |
Collapse
|
47
|
Activity-based metagenomic screening and biochemical characterization of bovine ruminal protozoan glycoside hydrolases. Appl Environ Microbiol 2011; 77:8106-13. [PMID: 21948825 DOI: 10.1128/aem.05925-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rumen, the foregut of herbivorous ruminant animals such as cattle, functions as a bioreactor to process complex plant material. Among the numerous and diverse microbes involved in ruminal digestion are the ruminal protozoans, which are single-celled, ciliated eukaryotic organisms. An activity-based screen was executed to identify genes encoding fibrolytic enzymes present in the metatranscriptome of a bovine ruminal protozoan-enriched cDNA expression library. Of the four novel genes identified, two were characterized in biochemical assays. Our results provide evidence for the effective use of functional metagenomics to retrieve novel enzymes from microbial populations that cannot be maintained in axenic cultures.
Collapse
|
48
|
Dasytricha dominance in Surti buffalo rumen revealed by 18S rRNA sequences and real-time PCR assay. Curr Microbiol 2011; 63:281-8. [PMID: 21744288 DOI: 10.1007/s00284-011-9975-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
The genetic diversity of protozoa in Surti buffalo rumen was studied by amplified ribosomal DNA restriction analysis, 18S rDNA sequence homology and phylogenetic and Real-time PCR analysis methods. Three animals were fed diet comprised green fodder Napier bajra 21 (Pennisetum purpureum), mature pasture grass (Dicanthium annulatum) and concentrate mixture (20% crude protein, 65% total digestible nutrients). A protozoa-specific primer (P-SSU-342f) and a eukarya-specific primer (Medlin B) were used to amplify a 1,360 bp fragment of DNA encoding protozoal small subunit (SSU) ribosomal RNA from rumen fluid. A total of 91 clones were examined and identified 14 different 18S RNA sequences based on PCR-RFLP pattern. These 14 phylotypes were distributed into four genera-based 18S rDNA database sequences and identified as Dasytricha (57 clones), Isotricha (14 clones), Ostracodinium (11 clones) and Polyplastron (9 clones). Phylogenetic analyses were also used to infer the makeup of protozoa communities in the rumen of Surti buffalo. Out of 14 sequences, 8 sequences (69 clones) clustered with the Dasytricha ruminantium-like clone and 4 sequences (13 clones) were also phylogenetically placed with the Isotricha prostoma-like clone. Moreover, 2 phylotypes (9 clones) were related to Polyplastron multivesiculatum-like clone. In addition, the number of 18S rDNA gene copies of Dasytricha ruminantium (0.05% to ciliate protozoa) was higher than Entodinium sp. (2.0 × 10(5) vs. 1.3 × 10(4)) in per ml ruminal fluid.
Collapse
|
49
|
Csöndes I, Cseh A, Taller J, Poczai P. Genetic diversity and effect of temperature and pH on the growth of Macrophomina phaseolina isolates from sunflower fields in Hungary. Mol Biol Rep 2011; 39:3259-69. [PMID: 21695429 DOI: 10.1007/s11033-011-1094-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
Abstract
The effects of temperature and pH on the growth of 45 Hungarian Macrophomina phaseolina isolates from different locations and hosts were compared on the basis of their genetic diversity. One Spanish and two Serbian isolates were also included in the experiment. The most favourable temperature regimes for the development of the isolates ranged between 25 and 35 °C. The optimal pH for the pathogen varied between 4.0 and 6.0, but growth was observed on potato dextrose agar even at pH values of 3.0, 7.0 and 8.0. RAPD analysis with 13 different primer pairs generated 148 unambiguous bands. RFLP analysis involving 8 different restriction endonucleases was performed on a 1550 bp fragment of the rDNA region containing internal transcribed spacers (ITS1, ITS2), the 5.8S rDNA and part of the 25S rDNA. The greatest genetic distance values were obtained for three isolates, two from Hungary and one from Spain, which had similar values, but were quite distinct from all the others. A strong positive correlation was observed between the genetic distances and the growth parameters measured at various temperatures, and between the geographical data and the growth data sets at different pH values, but the correlation was less strong in the latter case. While Hungarian M. phaseolina populations are thought to reproduce clonally, the present results indicate the coexistence of different haplotypes in this area, and besides the geographical dominance of a given haplotype it was found that a closer genetic relationship might exist between spatially distinct haplotypes.
Collapse
Affiliation(s)
- Izabella Csöndes
- Department of Botany and Plant Production, Faculty of Animal Science, University of Kaposvár, PO Box 16, 7400 Kaposvár, Hungary.
| | | | | | | |
Collapse
|
50
|
Leng J, Cheng YM, Zhang CY, Zhu RJ, Yang SL, Gou X, Deng WD, Mao HM. Molecular diversity of bacteria in Yunnan yellow cattle (Bos taurs) from Nujiang region, China. Mol Biol Rep 2011; 39:1181-92. [PMID: 21598111 DOI: 10.1007/s11033-011-0848-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 05/12/2011] [Indexed: 11/29/2022]
Abstract
The rumen content of four Yunnan Yellow Cattle (Bos taurs) were collected to determine the bacteria diversity by using 16S rRNA gene sequence analysis. A total of 129 sequences were examined and the sequences were referred as 107 OTU (Operational Taxonomy Unit) according to the similarity level of 97% in gene sequence. Similarity analysis revealed that Yunnan Yellow Cattle had 12 sequences (10 OTU) shared 97% or greater similarity with cultured rumen bacteria Butyrivibrio fibrisolvens, Succiniclasticum ruminis, Ruminococcus bromii, Clostridium proteoclasticum, Ruminococcus flavefaciens, Pseudobutyrivibrio ruminis, Jeotgalicoccus psychrophilus, and Prevotella ruminicola, which accounting for 9.3% of the total clones (9.2% of the total OTU). The further 12 sequences (9 OTU) shared 90-97% similarity with cultured bacteria Clostridium aminobutyricum, butyrate-producing bacterium, Schwartzia succinivorans, Prevotella ruminicola, Eubacterium ruminantium, Ruminococcus albus, and Clostridium termitidis, also accounting for 9.3% of the total sequences (8.3% of the total OTU). The remaining 105 sequences (90 OTU) shared less than 90% similarity with cultured bacteria, accounting for 81.4% of the total sequences (82.5% of the total OTU). According to the phylogenetic analysis, all sequences were phylogenetically placed within phyla of low G+C subdivision (accounting for 72.1 and 72.5% of the total clones and OTU, respectively) and CFB subdivision (Cytophaga-Flexibacter-Bacteroides; accounting for 27.9 and 27.5% of the total clones and OTU, respectively). Among the examined clones, rare bacteria Jeotgalicoccus psychrophilus was detected in the rumen of cattle.
Collapse
Affiliation(s)
- J Leng
- Yunnan Provincial Key Laboratory of Animal and Feed Science, Yunnan Agricultural University, Kunming 650201, China.
| | | | | | | | | | | | | | | |
Collapse
|