1
|
Zhang X, Ding Z, Lou H, Han R, Ma C, Yang S. A Systematic Review and Developmental Perspective on Origin of CMS Genes in Crops. Int J Mol Sci 2024; 25:8372. [PMID: 39125940 PMCID: PMC11312923 DOI: 10.3390/ijms25158372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Cytoplasmic male sterility (CMS) arises from the incompatibility between the nucleus and cytoplasm as typical representatives of the chimeric structures in the mitochondrial genome (mitogenome), which has been extensively applied for hybrid seed production in various crops. The frequent occurrence of chimeric mitochondrial genes leading to CMS is consistent with the mitochondrial DNA (mtDNA) evolution. The sequence conservation resulting from faithfully maternal inheritance and the chimeric structure caused by frequent sequence recombination have been defined as two major features of the mitogenome. However, when and how these chimeric mitochondrial genes appear in the context of the highly conserved reproduction of mitochondria is an enigma. This review, therefore, presents the critical view of the research on CMS in plants to elucidate the mechanisms of this phenomenon. Generally, distant hybridization is the main mechanism to generate an original CMS source in natural populations and in breeding. Mitochondria and mitogenomes show pleomorphic and dynamic changes at key stages of the life cycle. The promitochondria in dry seeds develop into fully functioning mitochondria during seed imbibition, followed by massive mitochondria or mitogenome fusion and fission in the germination stage along with changes in the mtDNA structure and quantity. The mitogenome stability is controlled by nuclear loci, such as the nuclear gene Msh1. Its suppression leads to the rearrangement of mtDNA and the production of heritable CMS genes. An abundant recombination of mtDNA is also often found in distant hybrids and somatic/cybrid hybrids. Since mtDNA recombination is ubiquitous in distant hybridization, we put forward a hypothesis that the original CMS genes originated from mtDNA recombination during the germination of the hybrid seeds produced from distant hybridizations to solve the nucleo-cytoplasmic incompatibility resulting from the allogenic nuclear genome during seed germination.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Zhengpin Ding
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Hongbo Lou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (Z.D.); (H.L.)
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
2
|
Wen JF, Zhao K, Lv JH, Huo JL, Wang ZR, Wan HJ, Zhu HS, Zhang ZQ, Shao GF, Wang J, Zhang S, Yang TY, Zhang JR, Zou XX, Deng MH. Orf165 is associated with cytoplasmic male sterility in pepper. Genet Mol Biol 2021; 44:e20210030. [PMID: 34555144 PMCID: PMC8459829 DOI: 10.1590/1678-4685-gmb-2021-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 07/04/2021] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is a maternally inherited trait that derives from the inability to produce functional pollen in higher plants. CMS results from recombination of the mitochondrial genome. However, understanding of the molecular mechanism of CMS in pepper is limited. In this study, comparative transcriptomic analyses were performed using a near-isogenic CMS line 14A (CMS-14A) and a maintainer line 14B (ML-14B) as experimental materials. A total of 17,349 differentially expressed genes were detected between CMS-14A and ML-14B at the PMC meiosis stage. Among them, six unigenes associated with CMS and 108 unigenes involved in energy metabolism were identified. The gene orf165 was found in CMS-14A. When orf165 was introduced into ML-14B, almost 30% of transgenic plants were CMS. In addition, orf165 expression in transgenic CMS plants resulted in abnormal function of some genes involved in energy metabolism. When orf165 in transgenic CMS plant was silenced, the resulted orf165-silenced plant was male fertile and the expression patterns of some genes associated with energy metabolism were similar to ML-14B. Thus, we confirmed that orf165 influenced CMS in pepper.
Collapse
Affiliation(s)
- Jin-Fen Wen
- Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming, China.,College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Kai Zhao
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Jun-Heng Lv
- Hunan Academy of Agricultural Science, Changsha, China
| | - Jin-Long Huo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zi-Ran Wang
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Hong-Jian Wan
- Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Hai-Shan Zhu
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | | | - Gui-Fang Shao
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Jiao Wang
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Shui Zhang
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Ting-Yu Yang
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Jing-Rou Zhang
- College of Horticulture, Yunnan Agricultural University, Kunming, China
| | - Xue-Xiao Zou
- Hunan Academy of Agricultural Science, Changsha, China
| | - Ming-Hua Deng
- College of Horticulture, Yunnan Agricultural University, Kunming, China.,College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Tang M, Li Z, Luo D, Wei F, Kashif MH, Lu H, Hu Y, Yue J, Huang Z, Tan W, Li R, Chen P. A comprehensive integrated transcriptome and metabolome analyses to reveal key genes and essential metabolic pathways involved in CMS in kenaf. PLANT CELL REPORTS 2021; 40:223-236. [PMID: 33128088 DOI: 10.1007/s00299-020-02628-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Numbers of critical genes and pathways were found from the levels of transcriptome and metabolome, which were useful information for understanding of kenaf CMS mechanism. Cytoplasmic male sterility (CMS) is a maternally inherited trait in higher plants that leads to the inability to produce or release functional pollen. However, there is lack of comprehensive studies to reveal the molecular basis of CMS occurrence in kenaf. Herein, we performed transcriptome and UPLC-MS-based metabolome analyses in the anthers of a CMS (UG93A) and its maintainer (UG93B) to sort out essential genes and metabolites responding to CMS in kenaf. Transcriptome characterized 7769 differentially expressed genes (DEGs) between these two materials, and pathway enrichment analysis indicated that these DEGs were involved mainly in pentose and glucuronate interconversions, starch and sucrose metabolism, taurine and hypotaurine metabolism. In the metabolome assay, a total of 116 significantly different metabolites (SDMs) were identified between the CMS and its maintainer line, and these SDMs were involved in eight KEGG pathways, including flavone and flavonol biosynthesis, glycerophospholipid metabolism, flavonoid biosynthesis, glycosylphosphatidylinositol-anchor biosynthesi. Integrated analyses of transcriptome and metabolome showed that 50 genes had strong correlation coefficient values (R2 > 0.9) with ten metabolites enriched in six pathways; notably, most genes and metabolites of flavonoid biosynthesis pathways and flavone and flavonol biosynthesis pathways involved in flavonoids biosynthetic pathways were downregulated in CMS compared to those in maintainer. Taken together, the decreased accumulation of flavonoids resulted from the compromised biosynthesis pathways coupled with energy deficiency in the anthers may contribute largely to CMS in UG93A of kenaf.
Collapse
Affiliation(s)
- Meiqiong Tang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Botanical Garden of Medicinal Plants, Guangxi Key Laboratory Resources Protection and Genetic Improvement, Nanning, China
| | - Zengqiang Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Dengjie Luo
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Fan Wei
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Botanical Garden of Medicinal Plants, Guangxi Key Laboratory Resources Protection and Genetic Improvement, Nanning, China
| | - Muhammad Haneef Kashif
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Hai Lu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Yali Hu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Jiao Yue
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Zhen Huang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Wenye Tan
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China.
| |
Collapse
|
4
|
Structural and functional properties of plant mitochondrial F-ATP synthase. Mitochondrion 2020; 53:178-193. [DOI: 10.1016/j.mito.2020.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
5
|
Han Y, Gao Y, Zhao Y, Zhang D, Zhao C, Xin F, Zhu T, Jian M, Ding Q, Ma L. Energy metabolism involved in fertility of the wheat TCMS line YS3038. PLANTA 2019; 250:2159-2171. [PMID: 31628536 DOI: 10.1007/s00425-019-03281-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
In the wheat TCMS line YS3038, the anther development is inhibited from late uninucleate stage to the binucleate stage. The disruption of energy metabolism pathways by aberrant transcriptional regulation causes the male sterility under low temperatures. The utilization of thermosensitive male sterile (TMS) lines provides a basis for two-line breeding. Previous work, including morphological and cytological observations, has shown that the development process of the TMS line YS3038 is inhibited from the late uninucleate stage to the binucleate stage. Transcriptomics studies could now help to elucidate the overall expression of related genes in a specific reproductive process, revealing the metabolic network and its regulatory mechanism of the reproductive process from the transcription level. Considering the fertility characteristics of YS3038, three important stages for transcriptome analysis were determined to be the early uninucleate, late uninucleate and binucleate stages. The number of differentially expressed genes (DEGs) was found to be highest in the binucleate stage, and most were related to energy metabolism. Quantitative PCR analysis of selected genes related to energy metabolism revealed that their expression patterns were consistent with the sequencing results. Analysis of the fertility mechanism of YS3038 showed that although the tapetum of anthers was degraded in advance of the tetrad stage, the development of microspores did not result in obvious abnormalities until the binucleate stage, because the genes involved in energy metabolism pathways, including starch and sucrose metabolism (SSM), glycolysis, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and respiration electron transport chain are differentially expressed under sterile and fertile conditions. Therefore, the pollen in YS3038 was sterile.
Collapse
Affiliation(s)
- Yucui Han
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Yujie Gao
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Yue Zhao
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Dazhong Zhang
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Chao Zhao
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Fang Xin
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Ting Zhu
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Mingyang Jian
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China
| | - Qin Ding
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China.
| | - Lingjian Ma
- College of Agronomy, Northwest Agriculture and Forestry University, Yangling, China.
| |
Collapse
|
6
|
Makarenko MS, Usatov AV, Tatarinova TV, Azarin KV, Logacheva MD, Gavrilova VA, Horn R. Characterization of the mitochondrial genome of the MAX1 type of cytoplasmic male-sterile sunflower. BMC PLANT BIOLOGY 2019; 19:51. [PMID: 30813888 PMCID: PMC6394147 DOI: 10.1186/s12870-019-1637-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND More than 70 cytoplasmic male sterility (CMS) types have been identified in Helianthus, but only for less than half of them, research of mitochondrial organization has been conducted. Moreover, complete mitochondrion sequences have only been published for two CMS sources - PET1 and PET2. It has been demonstrated that other sunflower CMS sources like MAX1, significantly differ from the PET1 and PET2 types. However, possible molecular causes for the CMS induction by MAX1 have not yet been proposed. In the present study, we have investigated structural changes in the mitochondrial genome of HA89 (MAX1) CMS sunflower line in comparison to the fertile mitochondrial genome. RESULTS Eight significant major reorganization events have been determined in HA89 (MAX1) mtDNA: one 110 kb inverted region, four deletions of 439 bp, 978 bp, 3183 bp and 14,296 bp, respectively, and three insertions of 1999 bp, 5272 bp and 6583 bp. The rearrangements have led to functional changes in the mitochondrial genome of HA89 (MAX1) resulting in the complete elimination of orf777 and the appearance of new ORFs - orf306, orf480, orf645 and orf1287. Aligning the mtDNA of the CMS sources PET1 and PET2 with MAX1 we found some common reorganization features in their mitochondrial genome sequences. CONCLUSION The new open reading frame orf1287, representing a chimeric atp6 gene, may play a key role in MAX1 CMS phenotype formation in sunflower, while the contribution of other mitochondrial reorganizations seems to appear negligible for the CMS development.
Collapse
Affiliation(s)
| | | | - Tatiana V. Tatarinova
- University of La Verne, La Verne, CA USA
- Institute for Information Transmission Problems, Moscow, Russia
- Institute for General Genetics, Moscow, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | | | - Maria D. Logacheva
- Institute for Information Transmission Problems, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Vera A. Gavrilova
- The N.I. Vavilov All Russian Institute of Plant Genetic Resources, Saint Petersburg, Russia
| | - Renate Horn
- University of Rostock, Institute of Biological Sciences, Plant Genetics, Rostock, Germany
| |
Collapse
|
7
|
Ding B, Hao M, Mei D, Zaman QU, Sang S, Wang H, Wang W, Fu L, Cheng H, Hu Q. Transcriptome and Hormone Comparison of Three Cytoplasmic Male Sterile Systems in Brassica napus. Int J Mol Sci 2018; 19:ijms19124022. [PMID: 30545163 PMCID: PMC6321506 DOI: 10.3390/ijms19124022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction between plant mitochondria and the nucleus markedly influences stress responses and morphological features, including growth and development. An important example of this interaction is cytoplasmic male sterility (CMS), which results in plants producing non-functional pollen. In current research work, we compared the phenotypic differences in floral buds of different Brassica napus CMS (Polima, Ogura, Nsa) lines with their corresponding maintainer lines. By comparing anther developmental stages between CMS and maintainer lines, we identified that in the Nsa CMS line abnormality occurred at the tetrad stage of pollen development. Phytohormone assays demonstrated that IAA content decreased in sterile lines as compared to maintainer lines, while the total hormone content was increased two-fold in the S2 stage compared with the S1 stage. ABA content was higher in the S1 stage and exhibited a two-fold decreasing trend in S2 stage. Sterile lines however, had increased ABA content at both stages compared with the corresponding maintainer lines. Through transcriptome sequencing, we compared differentially expressed unigenes in sterile and maintainer lines at both (S1 and S2) developmental stages. We also explored the co-expressed genes of the three sterile lines in the two stages and classified these genes by gene function. By analyzing transcriptome data and validating by RT-PCR, it was shown that some transcription factors (TFs) and hormone-related genes were weakly or not expressed in the sterile lines. This research work provides preliminary identification of the pollen abortion stage in Nsa CMS line. Our focus on genes specifically expressed in sterile lines may be useful to understand the regulation of CMS.
Collapse
Affiliation(s)
- Bingli Ding
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Mengyu Hao
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Desheng Mei
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Qamar U Zaman
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Shifei Sang
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Hui Wang
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Wenxiang Wang
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Li Fu
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Hongtao Cheng
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Qiong Hu
- Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
8
|
Li S, Chen Z, Zhao N, Wang Y, Nie H, Hua J. The comparison of four mitochondrial genomes reveals cytoplasmic male sterility candidate genes in cotton. BMC Genomics 2018; 19:775. [PMID: 30367630 PMCID: PMC6204043 DOI: 10.1186/s12864-018-5122-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The mitochondrial genomes of higher plants vary remarkably in size, structure and sequence content, as demonstrated by the accumulation and activity of repetitive DNA sequences. Incompatibility between mitochondrial genome and nuclear genome leads to non-functional male reproductive organs and results in cytoplasmic male sterility (CMS). CMS has been used to produce F1 hybrid seeds in a variety of plant species. RESULTS Here we compared the mitochondrial genomes (mitogenomes) of Gossypium hirsutum sterile male lines CMS-2074A and CMS-2074S, as well as their restorer and maintainer lines. First, we noticed the mitogenome organization and sequences were conserved in these lines. Second, we discovered the mitogenomes of 2074A and 2074S underwent large-scale substitutions and rearrangements. Actually, there were five and six unique chimeric open reading frames (ORFs) in 2074A and 2074S, respectively, which were derived from the recombination between unique repetitive sequences and nearby functional genes. Third, we found out four chimeric ORFs that were differentially transcribed in sterile line (2074A) and fertile-restored line. CONCLUSIONS These four novel and recombinant ORFs are potential candidates that confer CMS character in 2074A. In addition, our observations suggest that CMS in cotton is associated with the accelerated rates of rearrangement, and that novel expression products are derived from recombinant ORFs.
Collapse
Affiliation(s)
- Shuangshuang Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhiwen Chen
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Makarenko MS, Kornienko IV, Azarin KV, Usatov AV, Logacheva MD, Markin NV, Gavrilova VA. Mitochondrial genomes organization in alloplasmic lines of sunflower ( Helianthus annuus L.) with various types of cytoplasmic male sterility. PeerJ 2018; 6:e5266. [PMID: 30057860 PMCID: PMC6061164 DOI: 10.7717/peerj.5266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/29/2018] [Indexed: 01/19/2023] Open
Abstract
Background Cytoplasmic male sterility (CMS) is a common phenotype in higher plants, that is often associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce hybrid seeds in a variety of valuable crop species. Investigation of the CMS phenomenon promotes understanding of fundamental issues of nuclear-cytoplasmic interactions in the ontogeny of higher plants. In the present study, we analyzed the structural changes in mitochondrial genomes of three alloplasmic lines of sunflower (Helianthus annuus L.). The investigation was focused on CMS line PET2, as there are very few reports about its mtDNA organization. Methods The NGS sequencing, de novo assembly, and annotation of sunflower mitochondrial genomes were performed. The comparative analysis of mtDNA of HA89 fertile line and two HA89 CMS lines (PET1, PET2) occurred. Results The mtDNA of the HA89 fertile line was almost identical to the HA412 line (NC_023337). The comparative analysis of HA89 fertile and CMS (PET1) analog mitochondrial genomes revealed 11,852 bp inversion, 4,732 bp insertion, 451 bp deletion and 18 variant sites. In the mtDNA of HA89 (PET2) CMS line we determined 27.5 kb and 106.5 kb translocations, 711 bp and 3,780 bp deletions, as well as, 5,050 bp and 15,885 bp insertions. There are also 83 polymorphic sites in the PET2 mitochondrial genome, as compared with the fertile line. Discussion The observed mitochondrial reorganizations in PET1 resulted in only one new open reading frame formation (orfH522), and PET2 mtDNA rearrangements led to the elimination of orf777, duplication of atp6 gene and appearance of four new ORFs with transcription activity specific for the HA89 (PET2) CMS line—orf645, orf2565, orf228 and orf285. Orf228 and orf285 are the atp9 chimeric ORFs, containing transmembrane domains and possibly may impact on mitochondrial membrane potential. So orf228 and orf285 may be the cause for the appearance of the PET2 CMS phenotype, while the contribution of other mtDNA reorganizations in CMS formation is negligible.
Collapse
Affiliation(s)
| | - Igor V Kornienko
- Southern Federal University, Rostov-on-Don, Russia.,Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
| | | | | | - Maria D Logacheva
- Moscow State University, Belozersky Institute of Physical and Chemical Biology, Moscow, Russia
| | | | - Vera A Gavrilova
- The N.I. Vavilov All Russian Institute of Plant Genetic Resources, Saint Petersburg, Russia
| |
Collapse
|
10
|
Integrated analysis of transcriptome and proteome changes related to the Ogura cytoplasmic male sterility in cabbage. PLoS One 2018. [PMID: 29529074 PMCID: PMC5846740 DOI: 10.1371/journal.pone.0193462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cabbage (Brassica oleracea L. var. capitata), an important vegetable crop in the Brassicaceae family, is economically important worldwide. In the process of hybrid seed production, Ogura cytoplasmic male sterility (OguCMS), controlled by the mitochondrial gene orf138, has been extensively used for cabbage hybrid production with complete and stable male sterility. To identify the critical genes and pathways involved in the sterility and to better understand the underlying molecular mechanisms, the anther of OguCMS line R2P2CMS and the fertile line R2P2 were used for RNA-seq and iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) proteome analysis. RNA-seq analysis generated 13,037,109 to 13,066,594 SE50-clean reads, from the sterile and fertile lines, which were assembled into 36,890 unigenes. Among them, 1,323 differentially expressed genes (DEGs) were identified, consisting of 307 up- and 1016 down-regulated genes. For ITRAQ analysis, a total of 7,147 unique proteins were identified, and 833 were differentially expressed including 538 up- and 295 down-regulated proteins. These were mainly annotated to the ribosome, spliceosome and mRNA surveillance pathways. Combined transcriptomic and proteomic analyses identified 22 and 70 genes with the same and opposite expression profiles, respectively. Using KEGG analysis of DEGs, gibberellin mediated signaling pathways regulating tapetum programmed cell death and four different pathways involved in sporopollenin synthesis were identified. Secretion and translocation of the sporopollenin precursors were identified, and the key genes participating in these pathways were all significantly down-regulated in R2P2CMS. Light and transmission electron (TE) microscopy revealed fat abnormal tapetum rather than vacuolization and degradation at the tetrad and microspore stages of the OguCMS line. This resulted in the failed deposition of sporopollenin on the pollen resulting in sterility. This study provides a comprehensive understanding of the mechanism underlying OguCMS in cabbage.
Collapse
|
11
|
Kong X, Liu D, Liao X, Zheng J, Diao Y, Liu Y, Zhou R. Comparative Analysis of the Cytology and Transcriptomes of the Cytoplasmic Male Sterility Line H276A and Its Maintainer Line H276B of Cotton (Gossypium barbadense L.). Int J Mol Sci 2017; 18:ijms18112240. [PMID: 29068396 PMCID: PMC5713210 DOI: 10.3390/ijms18112240] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/05/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
In this study, the tetrad stage of microspore development in a new cotton (Gossypium barbadense L.) cytoplasmic male sterility (CMS) line, H276A, was identified using paraffin sections at the abortion stage. To explore the molecular mechanism underlying CMS in cotton, a comparative transcriptome analysis between the CMS line H276A and its maintainer line H276B at the tetrad stage was conducted using an Illumina HiSeq 4000 platform. The comparison of H276A with H276B revealed a total of 64,675 genes, which consisted of 59,255 known and 5420 novel genes. An analysis of the two libraries with a given threshold yielded a total of 3603 differentially expressed genes (DEGs), which included 1363 up- and 2240 down-regulated genes. Gene Ontology (GO) annotation showed that 2171 DEGs were distributed into 38 categories, and a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 2683 DEGs were classified into 127 groups. Thirteen DEGs were randomly selected and detected by quantitative reverse-transcribed PCR (qRT-PCR), and the results indicated that the transcriptome sequencing results were reliable. The bioinformatic analysis results in conjunction with previously reported data revealed key DEGs that might be associated with the male sterility features of H276A. Our results provide a comprehensive foundation for understanding anther development and will accelerate the study of the molecular mechanisms of CMS in cotton.
Collapse
Affiliation(s)
- Xiangjun Kong
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Dongmei Liu
- Key Laboratory of Plant-Microbe Interactions, Department of Life Science and Food, Shangqiu Normal University, Shangqiu 476000, China.
| | - Xiaofang Liao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Jie Zheng
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Yong Diao
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Yiding Liu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530006, China.
| |
Collapse
|
12
|
Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2017; 7:1941-1954. [PMID: 28450372 PMCID: PMC5473770 DOI: 10.1534/g3.117.042291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations.
Collapse
|
13
|
Chakraborty A, Mitra J, Bhattacharyya J, Pradhan S, Sikdar N, Das S, Chakraborty S, Kumar S, Lakhanpaul S, Sen SK. Transgenic expression of an unedited mitochondrial orfB gene product from wild abortive (WA) cytoplasm of rice (Oryza sativa L.) generates male sterility in fertile rice lines. PLANTA 2015; 241:1463-1479. [PMID: 25754232 DOI: 10.1007/s00425-015-2269-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Over-expression of the unedited mitochondrial orfB gene product generates male sterility in fertile indica rice lines in a dose-dependent manner. Cytoplasmic male sterility (CMS) and nuclear-controlled fertility restoration are widespread developmental features in plant reproductive systems. In self-pollinated crop plants, these processes often provide useful tools to exploit hybrid vigour. The wild abortive CMS has been employed in the majority of the "three-line" hybrid rice production since 1970s. In the present study, we provide experimental evidence for a positive functional relationship between the 1.1-kb unedited orfB gene transcript, and its translated product in the mitochondria with male sterility. The generation of the 1.1-kb unedited orfB gene transcripts increased during flowering, resulting in low ATP synthase activity in sterile plants. Following insertion of the unedited orfB gene into the genome of male-fertile plants, the plants became male sterile in a dose-dependent manner with concomitant reduction of ATPase activity of F1F0-ATP synthase (complex V). Fertility of the transgenic lines and normal activity of ATP synthase were restored by down-regulation of the unedited orfB gene expression through RNAi-mediated silencing. The genetic elements deciphered in this study could further be tested for their use in hybrid rice development.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yamagishi H, Bhat SR. Cytoplasmic male sterility in Brassicaceae crops. BREEDING SCIENCE 2014; 64:38-47. [PMID: 24987289 PMCID: PMC4031109 DOI: 10.1270/jsbbs.64.38] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/05/2013] [Indexed: 05/20/2023]
Abstract
Brassicaceae crops display strong hybrid vigor, and have long been subject to F1 hybrid breeding. Because the most reliable system of F1 seed production is based on cytoplasmic male sterility (CMS), various types of CMS have been developed and adopted in practice to breed Brassicaceae oil seed and vegetable crops. CMS is a maternally inherited trait encoded in the mitochondrial genome, and the male sterile phenotype arises as a result of interaction of a mitochondrial CMS gene and a nuclear fertility restoring (Rf) gene. Therefore, CMS has been intensively investigated for gaining basic insights into molecular aspects of nuclear-mitochondrial genome interactions and for practical applications in plant breeding. Several CMS genes have been identified by molecular genetic studies, including Ogura CMS from Japanese radish, which is the most extensively studied and most widely used. In this review, we discuss Ogura CMS, and other CMS systems, and the causal mitochondrial genes for CMS. Studies on nuclear Rf genes and the cytoplasmic effects of alien cytoplasm on general crop performance are also reviewed. Finally, some of the unresolved questions about CMS are highlighted.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Faculty of Life Sciences, Kyoto Sangyo University,
Kamigamo, Kita, Kyoto 603-8555,
Japan
- Corresponding author (e-mail: )
| | - Shripad R. Bhat
- National Research Centre of Plant Biotechnology,
New Delhi 10012,
India
| |
Collapse
|
15
|
Development of molecular markers specific to petaloid-type cytoplasmic male sterility in tuber mustard (Brassica juncea var. tumida Tsen et Lee). Mol Biol Rep 2014; 41:769-78. [PMID: 24385295 DOI: 10.1007/s11033-013-2916-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/18/2013] [Indexed: 02/04/2023]
Abstract
To establish a simple and rapid method for isolating mitochondrial DNA (mtDNA) from Brassica vegetables, the effects of different factors on mtDNA extraction were investigated firstly. A new protocol includes five steps: organelle isolation, deoxyribonuclease treatment, lysis, RNase treatment, and deproteinization. Results indicate that a 15 min-lysis time can achieve higher mtDNA yields from etiolated seedlings. Moreover, it is found that the inflorescence of the cytoplasmic male sterile (CMS) line is unfit for the isolation of mtDNA. The mtDNA isolated using this method is intact and pure, and can be used for further molecular analysis. Subsequently, the genomic and transcriptional differences of atps and coxs genes on the mitochondria between the petaloid-type CMS line and its maintainer line have been identified. RFLP analysis revealed that out of the five atps and three coxs genes, except of atp4 and cox3, the others mtDNA protein coding genes exhibited polymorphisms, respectively. This results suggest that atps and coxs genes are located in a long mtDNA fragment, and the mtDNA evolves rapidly in structure between the CMS line and its maintainer line in tuber muster. Northern blot analysis showed that the expression level of these genes in flower bud is higher than that of leaf and flower, and that, alternative splicing have been found among the atp6, atp8 and cox3 genes, respectively. Our results modified a efficient protocol for isolating the mtDNA, and provided some novel molecular markers indicating the CMS trait in tuber mustard. The comparative analysis presented in this study allows a more comprehensive understanding of the molecular mechanism on CMS in Brassica crops.
Collapse
|
16
|
Li J, Pandeya D, Jo YD, Liu WY, Kang BC. Reduced activity of ATP synthase in mitochondria causes cytoplasmic male sterility in chili pepper. PLANTA 2013; 237:1097-109. [PMID: 23274393 DOI: 10.1007/s00425-012-1824-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/22/2012] [Indexed: 05/05/2023]
Abstract
Cytoplasmic male sterility (CMS) is a maternally inherited trait characterized by the inability to produce functional pollen. The CMS-associated protein Orf507 (reported as Orf456 in previous researches) was previously identified as a candidate gene for mediating male sterility in pepper. Here, we performed yeast two-hybrid analysis to screen for interacting proteins, and found that the ATP synthase 6 kDa subunit containing a mitochondrial signal peptide (MtATP6) specifically interacted with Orf507. In addition, the two proteins were found to be interacted in vivo using bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. Further functional characterization of Orf507 revealed that the encoded protein is toxic to bacterial cells. Analysis of tissue-specific expression of ATP synthase 6 kDa showed that the transcription level was much lower in anthers of the CMS line than in their wild type counterparts. In CMS plants, ATP synthase activity and content were reduced by more than half compared to that of the normal plants. Taken together, it can be concluded that reduced ATP synthase activity and ATP content might have affected pollen development in CMS plants. Here, we hypothesize that Orf507 might cause MtATP6 to be nonfunctional by changing the latter's conformation or producing an inhibitor that prevents the normal functioning of MtATP6. Thus, further functional analysis of mitochondrial Orf507 will provide insights into the mechanisms underlying CMS in plants.
Collapse
Affiliation(s)
- Jinjie Li
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agricultural Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Ji J, Huang W, Yin C, Gong Z. Mitochondrial cytochrome c oxidase and F1Fo-ATPase dysfunction in peppers (Capsicum annuum L.) with cytoplasmic male sterility and its association with orf507 and Ψatp6-2 genes. Int J Mol Sci 2013; 14:1050-68. [PMID: 23296278 PMCID: PMC3565306 DOI: 10.3390/ijms14011050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/13/2012] [Accepted: 12/28/2012] [Indexed: 01/01/2023] Open
Abstract
Cytoplasmic male sterility (CMS) in pepper (Capsicum annuum L.) has been associated with novel genes in the mitochondria, such as orf507 and Ψatp6-2. Plant sterility has been proved to result from the rearrangement of the mitochondrial genome. Previous studies have demonstrated that orf507 is co-transcribed with the cox II gene, and Ψatp6-2 is truncated at the 3' region of the atp6-2 that is found in the maintainer line. Until this time, little has been known about the relationship between the novel gene and the function of its corresponding enzyme in mitochondria from the CMS pepper line. Moreover, the aberrant function of the mitochondrial enzymes is seldom reported in pepper. In this study, we observed that anther abortion occurred after the tetrad stage in the CMS line (HW203A), which was accompanied by premature programmed cell death (PCD) in the tapetum. The spatiotemporal expression patterns of orf507 and Ψatp6-2 were analyzed together with the corresponding enzyme activities to investigate the interactions of the genes and mitochondrial enzymes. The two genes were both highly expressed in the anther. The orf507 was down-regulated in HW203A (CMS line), with nearly no expression in HW203B (the maintainer line). In contrast, the cytochrome c oxidase activity in HW203A showed the opposite trend, reaching its highest peak at the tetrad stage when compared with HW203B at the same stage. The Ψatp6-2 in the CMS line was also down-regulated, but it was up-regulated in the maintainer line. The corresponding F(1)F(o)-ATPase activity in the CMS line was gradually decreased along with the development of the anther, which showed the same trend for Ψatp6-2 gene expression. On the contrary, with up-regulated gene expression of atp6-2 in the maintainer line, the F(1)F(o)-ATPase activity sharply decreased after the initial development stage, but gradually increased following the tetrad stage, which was contrary to what happened in the CMS line. Taken together, all these results may provide evidence for the involvement of aberrant mitochondrial cytochrome c oxidase and F(1)F(o)-ATPase in CMS pepper anther abortion. Moreover, the novel orf507 and Ψatp6-2 genes in the mitochondria may be involved in the dysfunction of the cytochrome c oxidase and F(1)F(o)-ATPase, respectively, which are responsible for the abortion of anthers in the CMS line.
Collapse
Affiliation(s)
- Jiaojiao Ji
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
| | - Wei Huang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
- State Key Laboratory for Stress Biology of Arid Region Crop, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuanchuan Yin
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
| | - Zhenhui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (J.J.); (W.H.); (C.Y.)
- State Key Laboratory for Stress Biology of Arid Region Crop, Northwest A&F University, Yangling 712100, Shaanxi, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-029-8708-2102; Fax: +86-029-8708-2613
| |
Collapse
|
18
|
Yang X, Liu X, Lv W, Li L, Shi Q, Yang J, Zhang M. Reduced expression of BjRCE1 gene modulated by nuclear-cytoplasmic incompatibility alters auxin response in cytoplasmic male-sterile Brassica juncea. PLoS One 2012; 7:e38821. [PMID: 22719957 PMCID: PMC3377708 DOI: 10.1371/journal.pone.0038821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/11/2012] [Indexed: 11/30/2022] Open
Abstract
The signal from organelle to nucleus, namely retrograde regulation of nuclear gene expression, was largely unknown. Due to the nuclear-cytoplasmic incompatibility in cytoplasmic male-sterile (CMS) plants, we employed CMS Brassica juncea to investigate the retrograde regulation of nuclear gene expression in this study. We studied how reduced BjRCE1 gene expression caused by the nuclear-cytoplasmic incompatibility altered the auxin response in CMS of B. juncea. We isolated the BjRCE1 gene that was located in the nucleus from B. juncea. Over-expression of BjRCE1 enhanced auxin response in transgenic Arabidopsis. The expression of BjRCE1 was significantly reduced in CMS compared with its maintainer fertile (MF) line of B. juncea. There were fewer lateral roots in CMS than MF under normal and treatment of indole-3-acetic acid (IAA) conditions. Expression patterns of several auxin-related genes together with their phenotypes indicated a reduced auxin response in CMS compared to MF. The phenotypes of auxin response and auxin-related gene expression pattern could be mimicked by inhibiting mitochondrial function in MF. Taken together, we proposed reduced expression of BjRCE1 gene modulated by nuclear-cytoplasmic incompatibility alters auxin response in CMS B. juncea. This may be an important mechanism of retrograde regulation of nuclear gene expression in plants.
Collapse
Affiliation(s)
- Xiaodong Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Xunyan Liu
- College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Wenhui Lv
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Lu Li
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Qianqian Shi
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, People’s Republic of China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, People’s Republic of China
| |
Collapse
|
19
|
Liu X, Yang X, Zhao X, Yang J, Zhang M. Reduced expression of CTR1 gene modulated by mitochondria causes enhanced ethylene response in cytoplasmic male-sterile Brassica juncea. PHYSIOLOGIA PLANTARUM 2012; 145:332-340. [PMID: 22292674 DOI: 10.1111/j.1399-3054.2012.01588.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We studied how mitochondria affect ethylene response via modulation of CTR1 expression in cytoplasmic male-sterile (CMS) Brassica juncea. The expression of CTR1 gene was reduced in CMS compared with male-fertile (MF) lines. We observed that hypocotyl and root lengths were shorter than in the MF line during germination in the dark. An enhanced ethylene response was observed in CMS plants as shown by the CMS and maintainer line phenotypes treated with 1-aminocyclopropane-1-carboxylic acid. The phenotype in CMS plants could be recovered to the maintainer line when treated with Ag(+) . One ethylene response gene, plant defensin gene, was detected to be induced in CMS. The behavior of this phenotype could be mimicked by treating the maintainer line with antimycin A that disturbs mitochondrial function, which showed reduced length of hypocotyl and roots, and resulted in similar expression patterns of ethylene-related genes as in CMS. The reduced length of hypocotyl and roots could be recovered to the maintainer line by treatment with gibberellic acid (GA(3) ). In addition, the GA(3) content was reduced in CMS plants and in the MF line treated with antimycin A. Ethylene treatment markedly affects GA(3) content; however, GA(3) did not significantly affect ethylene-related gene expression in regards to regulation of hypocotyl and root length, which suggests that ethylene acts upstream via gibberellin to regulate hypocotyls and root development. Taken together, our results suggest a link between mitochondrial modulation of the ethylene and gibberellin pathway that regulates the development of hypocotyl and roots.
Collapse
Affiliation(s)
- Xunyan Liu
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou 310029, P. R. China
| | | | | | | | | |
Collapse
|
20
|
Chloroplast-located BjFer1 together with anti-oxidative genes alleviate hydrogen peroxide and hydroxyl radical injury in cytoplasmic male-sterile Brassica juncea. Mol Biol Rep 2011; 39:4169-76. [DOI: 10.1007/s11033-011-1200-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 07/11/2011] [Indexed: 11/27/2022]
|
21
|
Yang J, Liu X, Yang X, Zhang M. Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea. BMC PLANT BIOLOGY 2010; 10:231. [PMID: 20974011 PMCID: PMC3017852 DOI: 10.1186/1471-2229-10-231] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/26/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND The novel chimeric open reading frame (orf) resulting from the rearrangement of a mitochondrial genome is generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). Both positive and negative correlations have been found between CMS-associated orfs and the occurrence of CMS when CMS-associated orfs were expressed and targeted at mitochondria. Some orfs cause male sterility or semi-sterility, while some do not. Little is currently known about how mitochondrial factor regulates the expression of the nuclear genes involved in male sterility. The purpose of this study was to investigate the biological function of a candidate CMS-associated orf220 gene, newly isolated from cytoplasmic male-sterile stem mustard, and show how mitochondrial retrograde regulated nuclear gene expression is related to male sterility. RESULTS It was shown that the ORF220 protein can be guided to the mitochondria using the mitochondrial-targeting sequence of the β subunit of F1-ATPase (atp2-1). Transgenic stem mustard plants expressed the chimeric gene containing the orf220 gene and a mitochondrial-targeting sequence of the β subunit of F1-ATPase (atp2-1). Transgenic plants were male-sterile, most being unable to produce pollen while some could only produce non-vigorous pollen. The transgenic stem mustard plants also showed aberrant floral development identical to that observed in the CMS stem mustard phenotype. Results obtained from oligooarray analysis showed that some genes related to mitochondrial energy metabolism were down-regulated, indicating a weakening of mitochondrial function in transgenic stem mustard. Some genes related to pollen development were shown to be down-regulated in transgenic stem mustard and the expression of some transcription factor genes was also altered. CONCLUSION The work presented furthers our understanding of how the mitochondrially-targeted expression of CMS-associated orf220 gene causes male sterility through retrograde regulation of nuclear gene expression in Brassica juncea.
Collapse
Affiliation(s)
- Jinghua Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Xunyan Liu
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Xiaodong Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Mingfang Zhang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| |
Collapse
|
22
|
Analysis of genetic diversity in cytoplasmic male sterility, and association of mitochondrial genes with petaloid-type cytoplasmic male sterility in tuber mustard (Brassica juncea var. tumida Tsen et Lee). Mol Biol Rep 2009; 37:1059-67. [DOI: 10.1007/s11033-009-9830-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
|
23
|
Yang JH, Zhang MF, Yu JQ. Relationship between cytoplasmic male sterility and SPL-like gene expression in stem mustard. PHYSIOLOGIA PLANTARUM 2008; 133:426-434. [PMID: 18331407 DOI: 10.1111/j.1399-3054.2008.01064.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We studied how mitochondria-nuclear interactions may give rise to cytoplasmic male sterility (CMS) in stem mustard exhibiting abnormal microsporogenesis. In this system, expression of SPL-like, the counterpart of the Arabidopsis nuclear gene SPOROCYTELESS, is specifically lost in buds of CMS plants. When mitochondrial-specific inhibitors were applied to wild-type fertile stem mustard plants, expression of SPL-like was repressed to some extent. As a consequence, the shape and vigor of pollen grains were severely affected, whereas the fertility of pistils remained unaltered. Thereby, we suggest that a probable pathway responsible for CMS in stem mustard involves mitochondrial retrograde regulation, with SPL-like as a target nuclear gene for a mitochondrial signal.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|