1
|
Alibardi L. Scales of non-avian reptiles and their derivatives contain corneous beta proteins coded from genes localized in the Epidermal Differentiation Complex. Tissue Cell 2023; 85:102228. [PMID: 37793208 DOI: 10.1016/j.tice.2023.102228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The evolution of modern reptiles from basic reptilian ancestors gave rise to scaled vertebrates. Scales are of different types, and their corneous layer can shed frequently during the year in lepidosaurians (lizards, snakes), 1-2 times per year in the tuatara and in some freshwater turtle, irregularly in different parts of the body in crocodilians, or simply wore superficially in marine and terrestrial turtles. Lepidosaurians possess tuberculate, non-overlapped or variably overlapped scales with inter-scale (hinge) regions. The latter are hidden underneath the outer scale surface or may be more exposed in specific body areas. Hinge regions allow stretching during growth and movement so that the skin remains mechanically functional. Crocodilian and turtles feature flat and shield scales (scutes) with narrow inter-scale regions for stretching and growth. The epidermis of non-avian reptilian hinge regions is much thinner than the exposed outer surface of scales and is less cornified. Despite the thickness of the epidermis, scales are mainly composed of variably amount of Corneous Beta Proteins (CBPs) that are coded in a gene cluster known as EDC (Epidermal Differentiation Complex). These are small proteins, 100-200 amino acid long of 8-25 kDa, rich in glycine and cysteine but also in serine, proline and valine that participate to the formation of beta-sheets in the internal part of the protein, the beta-region. This region determines the further polymerization of CBPs in filamentous proteins that, together a network of Intermediate Filament Keratins (IFKs) and other minor epidermal proteins from the EDC make the variable pliable or inflexible corneous material of reptilian scales, claws and of turtle beak. The acquisition of scales and skin derivatives with different mechanical and material properties, mainly due to the evolution of reptile CBPs, is essential for the life and different adaptations of these vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Italy; Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Holthaus KB, Eckhart L, Dalla Valle L, Alibardi L. Review: Evolution and diversification of corneous beta‐proteins, the characteristic epidermal proteins of reptiles and birds. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 330:438-453. [DOI: 10.1002/jez.b.22840] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/28/2018] [Accepted: 12/23/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Karin Brigit Holthaus
- Department of DermatologyMedical University of ViennaWien Austria
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA)University of BolognaBologna Italy
| | - Leopold Eckhart
- Department of DermatologyMedical University of ViennaWien Austria
| | | | - Lorenzo Alibardi
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA)University of BolognaBologna Italy
- Comparative Histolab PadovaPadova Italy
| |
Collapse
|
3
|
Holthaus KB, Strasser B, Lachner J, Sukseree S, Sipos W, Weissenbacher A, Tschachler E, Alibardi L, Eckhart L. Comparative Analysis of Epidermal Differentiation Genes of Crocodilians Suggests New Models for the Evolutionary Origin of Avian Feather Proteins. Genome Biol Evol 2018; 10:694-704. [PMID: 29447391 PMCID: PMC5827346 DOI: 10.1093/gbe/evy035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
The epidermis of amniotes forms a protective barrier against the environment and the differentiation program of keratinocytes, the main cell type in the epidermis, has undergone specific alterations in the course of adaptation of amniotes to a broad variety of environments and lifestyles. The epidermal differentiation complex (EDC) is a cluster of genes expressed at late stages of keratinocyte differentiation in both sauropsids and mammals. In the present study, we identified and analyzed the crocodilian equivalent of the EDC. The gene complement of the EDC of both the American alligator and the saltwater crocodile were determined by comparative genomics, de novo gene prediction and identification of EDC transcripts in published transcriptome data. We found that crocodilians have an organization of the EDC similar to that of their closest living relatives, the birds, with which they form the clade Archosauria. Notable differences include the specific expansion of a subfamily of EDC genes in crocodilians and the loss of distinct ancestral EDC genes in birds. Identification and comparative analysis of crocodilian orthologs of avian feather proteins suggest that the latter evolved by cooption and sequence modification of ancestral EDC genes, and that the amplification of an internal highly cysteine-enriched amino acid sequence motif gave rise to the feather component epidermal differentiation cysteine-rich protein in the avian lineage. Thus, sequence diversification of EDC genes contributed to the evolutionary divergence of the crocodilian and avian integuments.
Collapse
Affiliation(s)
- Karin Brigit Holthaus
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), University of Bologna, Italy
| | - Bettina Strasser
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Julia Lachner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine Vienna, Austria
| | | | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| | - Lorenzo Alibardi
- Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BiGeA), University of Bologna, Italy
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Austria
| |
Collapse
|
4
|
Alibardi L. Review: mapping epidermal beta-protein distribution in the lizard Anolis carolinensis shows a specific localization for the formation of scales, pads, and claws. PROTOPLASMA 2016; 253:1405-1420. [PMID: 26597267 DOI: 10.1007/s00709-015-0909-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The epidermis of lizards is made of multiple alpha- and beta-layers with different characteristics comprising alpha-keratins and corneous beta-proteins (formerly beta-keratins). Three main modifications of body scales are present in the lizard Anolis carolinensis: gular scales, adhesive pad lamellae, and claws. The 40 corneous beta-proteins present in this specie comprise glycine-rich and glycine-cysteine-rich subfamilies, while the 41 alpha-keratins comprise cysteine-poor and cysteine-rich subfamilies, the latter showing homology to hair keratins. Other genes for corneous proteins are present in the epidermal differentiation complex, the locus where corneous protein genes are located. The review summarizes the main sites of immunolocalization of beta-proteins in different scales and their derivatives producing a unique map of body distribution for these structural proteins. Small glycine-rich beta-proteins participate in the formation of the mechanically resistant beta-layer of most scales. Small glycine-cysteine beta-proteins have a more varied localization in different scales and are also present in the pliable alpha-layer. In claws, cysteine-rich alpha-keratins prevail over cysteine-poor alpha-keratins and mix to glycine-cysteine-rich beta-proteins. The larger beta-proteins with a molecular mass similar to that of alpha-keratins participate in the formation of the fibrous meshwork present in differentiating beta-cells and likely interact with alpha-keratins. The diverse localization of alpha-keratins, beta-proteins, and other proteins of the epidermal differentiation complex gives rise to variably pliable, elastic, or hard corneous layers in different body scales. The corneous layers formed in the softer or harder scales, in the elastic pad lamellae, or in the resistant claws possess peculiar properties depending on the ratio of specific corneous proteins.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology, Geology and Environmental Sciences, University of Bologna, via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
5
|
Alibardi L. The Process of Cornification Evolved From the Initial Keratinization in the Epidermis and Epidermal Derivatives of Vertebrates: A New Synthesis and the Case of Sauropsids. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:263-319. [DOI: 10.1016/bs.ircmb.2016.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration. Nat Commun 2015; 6:10033. [PMID: 26598231 PMCID: PMC4673495 DOI: 10.1038/ncomms10033] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/26/2015] [Indexed: 01/20/2023] Open
Abstract
Reptiles are the most morphologically and physiologically diverse tetrapods, and have undergone 300 million years of adaptive evolution. Within the reptilian tetrapods, geckos possess several interesting features, including the ability to regenerate autotomized tails and to climb on smooth surfaces. Here we sequence the genome of Gekko japonicus (Schlegel's Japanese Gecko) and investigate genetic elements related to its physiology. We obtain a draft G. japonicus genome sequence of 2.55 Gb and annotated 22,487 genes. Comparative genomic analysis reveals specific gene family expansions or reductions that are associated with the formation of adhesive setae, nocturnal vision and tail regeneration, as well as the diversification of olfactory sensation. The obtained genomic data provide robust genetic evidence of adaptive evolution in reptiles. Geckos are small, agile reptiles with nocturnal habits. Here, the authors sequence the genome of the Schlegel's Japanese Gecko and reveal gene family expansions and reductions associated with formation of adhesive setae, nocturnal vision, tail regeneration, and diversification of olfactory sensation.
Collapse
|
7
|
Immunoreactivity to the pre-core box antibody shows that most glycine-rich beta-proteins accumulate in lepidosaurian beta-layer and in the corneous layer of crocodilian and turtle epidermis. Micron 2014; 57:31-40. [DOI: 10.1016/j.micron.2013.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022]
|
8
|
Ultrastructural immunocytochemistry for the central region of keratin associated-beta-proteins (beta-keratins) shows the epitope is constantly expressed in reptilian epidermis. Tissue Cell 2013; 45:241-52. [DOI: 10.1016/j.tice.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/22/2013] [Accepted: 01/28/2013] [Indexed: 11/21/2022]
|
9
|
Dalla Valle L, Michieli F, Benato F, Skobo T, Alibardi L. Molecular characterization of alpha-keratins in comparison to associated beta-proteins in soft-shelled and hard-shelled turtles produced during the process of epidermal differentiation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:428-41. [DOI: 10.1002/jez.b.22517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/25/2013] [Accepted: 05/10/2013] [Indexed: 11/10/2022]
Affiliation(s)
- L. Dalla Valle
- Department of Biology; University of Padova; Padova; Italy
| | - F. Michieli
- Department of Biology; University of Padova; Padova; Italy
| | - F. Benato
- Department of Biology; University of Padova; Padova; Italy
| | - T. Skobo
- Department of Biology; University of Padova; Padova; Italy
| | - L. Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna; Italy
| |
Collapse
|
10
|
Greenwold MJ, Sawyer RH. Molecular evolution and expression of archosaurian β-keratins: Diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:393-405. [DOI: 10.1002/jez.b.22514] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/25/2013] [Accepted: 05/04/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Matthew J. Greenwold
- Department of Biological Sciences; University of South Carolina; Columbia; South Carolina
| | - Roger H. Sawyer
- Department of Biological Sciences; University of South Carolina; Columbia; South Carolina
| |
Collapse
|
11
|
Alibardi L. Immunocytochemistry indicates that glycine-rich beta-proteins are present in the beta-layer, while cysteine-rich beta-proteins are present in beta- and alpha-layers of snake epidermis. ACTA ZOOL-STOCKHOLM 2013. [DOI: 10.1111/azo.12030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab and Department of Biology; University of Bologna; Bologna 40126 Italy
| |
Collapse
|
12
|
Alibardi L. Cornification in reptilian epidermis occurs through the deposition of keratin-associated beta-proteins (beta-keratins) onto a scaffold of intermediate filament keratins. J Morphol 2012; 274:175-93. [DOI: 10.1002/jmor.20086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Swadźba E, Rupik W. Cross-immunoreactivity between the LH1 antibody and cytokeratin epitopes in the differentiating epidermis of embryos of the grass snake Natrix natrix L. during the end stages of embryogenesis. PROTOPLASMA 2012; 249:31-42. [PMID: 21222007 DOI: 10.1007/s00709-010-0259-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 12/22/2010] [Indexed: 05/09/2023]
Abstract
The monoclonal anti-cytokeratin 1/10 (LH1) antibody recognizing K1/K10 keratin epitopes that characterizes a keratinized epidermis of mammals cross-reacts with the beta and Oberhäutchen layers covering the scales and gastrosteges of grass snake embryos during the final period of epidermis differentiation. The immunolocalization of the anti-cytokeratin 1/10 (LH1) antibody appears in the beta layer of the epidermis, covering the outer surface of the gastrosteges at the beginning of developmental stage XI, and in the beta layer of the epidermis, covering the outer surface of the scales at the end of developmental stage XI. This antibody cross-reacts with the Oberhäutchen layers in the epidermis covering the outer surface of both scales and gastrosteges at developmental stages XI and XII just before its fusion with the beta layers. After fusion of the Oberhäutchen and beta layers, LH1 immunolabeling is weaker than before. This might suggest that alpha-keratins in these layers of the epidermis are masked by beta-keratins, modified, or degraded. The anti-cytokeratin 1/10 (LH1) antibody stains the Oberhäutchen layer in the epidermis covering the inner surface of the gastrosteges and the hinge regions between gastrosteges at the end of developmental stage XI. However, the Oberhäutchen of the epidermis covering the inner surfaces of the scales and the hinge regions between scales does not show cytokeratin 1/10 (LH1) immunolabeling until hatching. This cross-reactivity suggests that the beta and Oberhäutchen layers probably contain some alpha-keratins that react with the LH1 antibody. It is possible that these alpha-keratins create specific scaffolding for the latest beta-keratin deposition. It is also possible that the LH1 antibody cross-reacts with other epidermal proteins such as filament-associated proteins, i.e., filaggrin-like. The anti-cytokeratin 1/10 (LH1) antibody does not stain the alpha and mesos layers until hatching. We suppose that the differentiation of these layers will begin just after the first postnatal sloughing.
Collapse
Affiliation(s)
- Elwira Swadźba
- Department of Animal Histology and Embryology, Silesian University, Katowice, Poland
| | | |
Collapse
|
14
|
Díaz-Hernández V, Marmolejo-Valencia A, Harfush M, Merchant-Larios H. Formation of the genital ridges is preceded by a domain of ectopic Sox9-expressing cells in Lepidochelys olivacea. Dev Biol 2011; 361:156-66. [PMID: 22008791 DOI: 10.1016/j.ydbio.2011.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/22/2011] [Accepted: 10/01/2011] [Indexed: 11/16/2022]
Abstract
Bipotential gonads represent the structural framework from which alternative molecular sex determination networks have evolved. Maintenance of Sox9 expression in Sertoli cells is required for the structural and functional integrity of male gonads in mammals and probably in most amniote vertebrates. However, spatial and temporal patterns of Sox9 expression have diversified along evolution. Species with temperature sex determination are an interesting predictive model since one of two alternative developmental outcomes, either ovary or testis occurs under controlled laboratory conditions. In the sea turtle Lepidochelys olivacea, Sox9 is expressed in the medullary cords of bipotential gonads when incubated at both female- or male-promoting temperature (FT or MT). Sox9 is then turned off in presumptive ovaries, while it remains turned on in testes. In the current study, Sox9 was used as a marker of the medullary cell lineage to investigate if the medullary cords originate from mesothelial cells at the genital ridges where Sox9 is upregulated, or, if they derive from a cell population specified at an earlier developmental stage, which maintains Sox9 expression. Using immunofluorescence and in situ hybridization, embryos were analyzed prior to, during and after gonadal sex determination. A T-shaped domain (T-Dom) formed by cytokeratin (CK), N-cadherin (Ncad) and SOX9-expressing cells was found at the upper part of the hindgut dorsal mesentery. The arms of the T-Dom were extended to both sides towards the ventromedial mesonephric ridge before the thickening of the genital ridges, indicating that they contained gonadal epithelial cell precursors. Thereafter, expression of Sox9 was maintained in medullary cords while it was downregulated at the surface epithelium of bipotential gonads in both FT and MT. This result contrasts with observations in mammals and birds, in which Sox9 upregulation starts at a later stage in the inner cells underlying the Sox9-negative surface epithelium, suggesting that the establishment of a self-regulatory Sox9 loop required for Sertoli cell determination has evolved. The T-shaped domain at the upper part of the hindgut dorsal mesentery found in the current study may represent the earliest precursor of the genital ridges, previously unnoticed in amniote vertebrates.
Collapse
|
15
|
Greenwold MJ, Sawyer RH. Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:609-16. [DOI: 10.1002/jez.b.21436] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/20/2011] [Accepted: 07/25/2011] [Indexed: 11/12/2022]
|
16
|
Alibardi L. Histology, ultrastructure, and pigmentation in the horny scales of growing crocodilians. ACTA ZOOL-STOCKHOLM 2010. [DOI: 10.1111/j.1463-6395.2010.00469.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Greenwold MJ, Sawyer RH. Genomic organization and molecular phylogenies of the beta (beta) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution. BMC Evol Biol 2010; 10:148. [PMID: 20482795 PMCID: PMC2894828 DOI: 10.1186/1471-2148-10-148] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 05/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The epidermal appendages of reptiles and birds are constructed of beta (beta) keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian beta-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their beta-keratins, but to study their molecular evolution in archosaurians. RESULTS The subfamilies (claw, feather, feather-like, and scale) of beta-keratin genes are clustered in the same 5' to 3' order on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the chicken demonstrates that all feather beta-keratin clades are expressed. CONCLUSIONS Similarity in the overall genomic organization of beta-keratins in Galliformes and Passeriformes suggests similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages in the lineage leading to birds was accompanied by duplication and divergence of an ancestral beta-keratin gene cluster. As morphological diversification of epidermal appendages occurred and the beta-keratin multigene family expanded, novel beta-keratin genes were selected for novel functions within appendages such as feathers.
Collapse
Affiliation(s)
- Matthew J Greenwold
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29205, USA
| | - Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29205, USA
| |
Collapse
|