1
|
Feng K, He X, Qin L, Ma Z, Liu S, Jia Z, Ren F, Cao H, Wu J, Ma D, Wang X, Xing Z. Construction and validation of a ubiquitination-related prognostic risk score signature in breast cancer. Heliyon 2024; 10:e35553. [PMID: 39170352 PMCID: PMC11336713 DOI: 10.1016/j.heliyon.2024.e35553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Background Breast cancer (BC) is a highly common form of cancer that occurs in many parts of the world. However, early -stage BC is curable. Many patients with BC have poor prognostic outcomes owing to ineffective diagnostic and therapeutic tools. The ubiquitination system and associated proteins were found influencing the outcome of individuals with cancer. Therefore, developing a biomarker associated with ubiquitination genes to forecast BC patient outcomes is a feasible strategy. Objective The primary goal of this work was to develop a novel risk score signature capable of accurately estimate the future outcome of patients with BC by targeting ubiquitinated genes. Methods Univariate Cox regression analysis was conducted utilizing the E1, E2, and E3 ubiquitination-related genes in the GSE20685 dataset. Genes with p < 0.01 were screened again using the Non-negative Matrix Factorization (NMF) algorithm, and the resulting hub genes were composed of a risk score signature. Patients were categorized into two risk groups, and the predictive effect was tested using Kaplan-Meier (KM) and Receiver Operating Characteristic (ROC) curves. This risk score signature was later validated using multiple external datasets, namely TCGA-BRAC, GSE1456, GSE16446, GSE20711, GSE58812 and GSE96058. Immuno-microenvironmental, single-cell, and microbial analyses were also performed. Results The selected gene signature comprising six ubiquitination-related genes (ATG5, FBXL20, DTX4, BIRC3, TRIM45, and WDR78) showed good prognostic power in patients with BC. It was validated using multiple externally validated datasets, with KM curves showing significant differences in survival (p < 0.05). The KM curves also demonstrated superior predictive ability compared to traditional clinical indicators. Single-cell analysis revealed that Vd2 gd T cells were less abundantin the low-risk group, whereas patients in the high-risk group lacked myeloid dendritic cells. Tumor microbiological analysis revealed a notable variation in microorganism diversity between the high- and low-risk groups. Conclusion This study established an risk score signature consisting of six ubiquitination genes, that can accurately forecast the outcome of patients with BC using multiple datasets. It can provide personalized and targeted assistance to provide the evaluation and therapy of individuals having BC.
Collapse
Affiliation(s)
- Kexin Feng
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin He
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ling Qin
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zihuan Ma
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| | - Siyao Liu
- Beijing ChosenMed Clinical Laboratory Co. Ltd., Jinghai Industrial Park, Economic and Technological Development Area, Beijing, 100176, China
| | - Ziqi Jia
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Ren
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiang Wu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongxu Ma
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zeyu Xing
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
2
|
Cui Y, Luo J, Bai N, Yu Z. Deltex E3 ubiquitin ligase 4 promotes thyroid cancer progression through stearoyl-CoA desaturase 1. Funct Integr Genomics 2023; 23:280. [PMID: 37612343 DOI: 10.1007/s10142-023-01215-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
In this study, we aimed to explore the molecular role of Deltex E3 ubiquitin ligase 4 (DTX4) in thyroid cancer (TC) both in vitro and in vivo. The expression level of DTX4 in TC tissues was compared using The Cancer Genome Atlas (TCGA) database. We subsequently evaluated cell proliferation and migration in DTX4 knock down or DTX4 overexpression TC cell lines (TPC-1 and K1) by CCK-8, cell colony formation, and transwell assays. RNA sequencing and KEGG analysis were employed to identify potential genes that interact with DTX4. Our results showed that DTX4 was expressed at higher levels in both TC tissues and cells compared to normal controls. Knock down of DTX4 expression significantly inhibited TC cell progression in vitro. Furthermore, knockdown of endogenous DTX4 by shDTX4 markedly abrogated tumor growth, with significantly smaller tumor size and lower tumor weight in the shDTX4 group compared to the shCtrl group. Conversely, overexpression of DTX4 enhanced TC cell proliferation and migration. Through RNA sequencing, we identified 590 Differentially Expressed Genes (DEGs), with stearoyl-CoA desaturase 1 (SCD) ranking as the top gene. A positive correlation between DTX4 and SCD was observed in TC samples. Additionally, treatment with an SCD inhibitor, A939572, significantly rescued the enhanced growth effect induced by DTX4 overexpression. In conclusion, this study demonstrated that DTX4 promotes TC progression through SCD, indicating that the DTX4/SCD axis could be a promising target for TC therapy.
Collapse
Affiliation(s)
- Yitong Cui
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Luo
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Nanfang Bai
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhaoyan Yu
- Center for Integrative and Translational Medicine, Shandong Public Health Clinical Center, No.46, Lidong Road 250015, Jinan, 230601, Shandong, China.
| |
Collapse
|
3
|
Scalia P, Williams SJ, Suma A, Carnevale V. The DTX Protein Family: An Emerging Set of E3 Ubiquitin Ligases in Cancer. Cells 2023; 12:1680. [PMID: 37443713 PMCID: PMC10340142 DOI: 10.3390/cells12131680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Until recently, Deltex (DTX) proteins have been considered putative E3 ligases, based on the presence of an E3 RING domain in their protein coding sequence. The human DTX family includes DTX1, DTX2, DTX3, DTX3L and DTX4. Despite the fact that our knowledge of this class of E3-ubiquitin ligases is still at an early stage, our understanding of their role in oncogenesis is beginning to unfold. In fact, recently published studies allow us to define specific biological scenarios and further consolidate evidence-based working hypotheses. According to the current evidence, all DTX family members are involved in the regulation of Notch signaling, suggesting a phylogenetically conserved role in the regulation of this pathway. Indeed, additional evidence reveals a wider involvement of these proteins in other signaling complexes and cancer-promoting mechanisms beyond NOTCH signaling. DTX3, in particular, had been known to express two isoform variants (DTX3a and DTX3b). The recent identification and cloning of a third isoform variant in cancer (DTX3c), and its specific involvement in EphB4 degradation in cancer cells, sheds further light on this group of proteins and their specific role in cancer. Herein, we review the cumulative knowledge of this family of E3 Ubiquitin ligases with a specific focus on the potential oncogenic role of DTX isoforms in light of the rapidly expanding findings regarding this protein family's cellular targets and regulated signaling pathways. Furthermore, using a comparative and bioinformatic approach, we here disclose a new putative motif of a member of this family which may help in understanding the biological and contextual differences between the members of these proteins.
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Stephen J. Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA; 93100 Caltanissetta, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Suma
- Institute of Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Vincenzo Carnevale
- Institute of Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
4
|
Chesnokov MS, Yadav A, Chefetz I. Optimized Transcriptional Signature for Evaluation of MEK/ERK Pathway Baseline Activity and Long-Term Modulations in Ovarian Cancer. Int J Mol Sci 2022; 23:13365. [PMID: 36362153 PMCID: PMC9654336 DOI: 10.3390/ijms232113365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most aggressive and lethal of all gynecologic malignancies. The high activity of the MEK/ERK signaling pathway is tightly associated with tumor growth, high recurrence rate, and treatment resistance. Several transcriptional signatures were proposed recently for evaluation of MEK/ERK activity in tumor tissue. In the present study, we validated the performance of a robust multi-cancer MPAS 10-gene signature in various experimental models and publicly available sets of ovarian cancer samples. Expression of four MPAS genes (PHLDA1, DUSP4, EPHA2, and SPRY4) displayed reproducible responses to MEK/ERK activity modulations across several experimental models in vitro and in vivo. Levels of PHLDA1, DUSP4, and EPHA2 expression were also significantly associated with baseline levels of MEK/ERK pathway activity in multiple human ovarian cancer cell lines and ovarian cancer patient samples available from the TCGA database. Initial platinum therapy resistance and advanced age at diagnosis were independently associated with poor overall patient survival. Taken together, our results demonstrate that the performance of transcriptional signatures is significantly affected by tissue specificity and aspects of particular experimental models. We therefore propose that gene expression signatures derived from comprehensive multi-cancer studies should be always validated for each cancer type.
Collapse
Affiliation(s)
| | - Anil Yadav
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- Stem Cell Institute, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Wang L, Sun X, He J, Liu Z. Functions and Molecular Mechanisms of Deltex Family Ubiquitin E3 Ligases in Development and Disease. Front Cell Dev Biol 2021; 9:706997. [PMID: 34513839 PMCID: PMC8424196 DOI: 10.3389/fcell.2021.706997] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a posttranslational modification of proteins that significantly affects protein stability and function. The specificity of substrate recognition is determined by ubiquitin E3 ligase during ubiquitination. Human Deltex (DTX) protein family, which functions as ubiquitin E3 ligases, comprises five members, namely, DTX1, DTX2, DTX3, DTX3L, and DTX4. The characteristics and functional diversity of the DTX family proteins have attracted significant attention over the last decade. DTX proteins have several physiological and pathological roles and are closely associated with cell signal transduction, growth, differentiation, and apoptosis, as well as the occurrence and development of various tumors. Although they have been extensively studied in various species, data on structural features, biological functions, and potential mechanisms of action of the DTX family proteins remain limited. In this review, recent research progress on each member of the DTX family is summarized, providing insights into future research directions and potential strategies in disease diagnosis and therapy.
Collapse
Affiliation(s)
- Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Sun
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Chen B, Wang SQ, Huang J, Xu W, Lv H, Nie C, Wang J, Zhao H, Liu Y, Li J, Lu C, Zhang J, Chen XB. Knockdown of Kremen2 Inhibits Tumor Growth and Migration in Gastric Cancer. Front Oncol 2021; 10:534095. [PMID: 33489867 PMCID: PMC7817645 DOI: 10.3389/fonc.2020.534095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Kremen2 (Krm2) plays an important role in embryonic development, bone formation, and tumorigenesis as a crucial regulator of classical Wnt/β-catenin signaling pathway. However, the role of Krm2 in gastric cancer is not clear. The aim of this study was to explore the regulatory role of Krm2 in the tumorigenesis and metastasis of gastric cancer. It was demonstrated that, compared to para-cancerous tissues, Krm2 was significantly up-regulated in gastric cancer tissues and was positively correlated with the pathological grade of gastric cancer patients. Given that Krm2 is abundantly expressed in most tested gastric cancer cell lines, Krm2 knockdown cell models were established and further used to construct mice xenograft model. After knocking down Krm2, both the cell survival in vitro and tumorigenesis in vivo of gastric cancer cells were inhibited. At the same time, knockdown of Krm2 induced apoptosis, cell cycle arrest at G2/M phase and repression of migration in gastric cancer cells in vitro. Mechanistically, we found that knockdown of Krm2 suppressed PI3K/Akt pathway. Therefore, we revealed the novel role and the molecular mechanism of Krm2 in promoting the tumorigenesis and metastasis in gastric cancer. Krm2 can be a potent candidate for designing of targeted therapy.
Collapse
Affiliation(s)
- Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Jinxi Huang
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huifang Lv
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Caiyun Nie
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jianzheng Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huichen Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yingjun Liu
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jitian Li
- Department of Biological Sciences, University of Texas, El Paso, TX, United States
| | - Canrong Lu
- Department of General surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jianying Zhang
- Department of Biological Sciences, University of Texas, El Paso, TX, United States
| | - Xiao-Bing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci Rep 2016; 6:38750. [PMID: 27929118 PMCID: PMC5144099 DOI: 10.1038/srep38750] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022] Open
Abstract
Metastasis is associated with poor prognosis in cancers. Exosomes, which are packed with RNA and proteins and are released in all biological fluids, are emerging as an important mediator of intercellular communication. However, the function of exosomes remains poorly understood in cancer metastasis. Here, we demonstrate that exosomes isolated by size-exclusion chromatography from a highly metastatic human oral cancer cell line, HOC313-LM, induced cell growth through the activation of ERK and AKT as well as promoted cell motility of the poorly metastatic cancer cell line HOC313-P. MicroRNA (miRNA) array analysis identified two oncogenic miRNAs, miR-342–3p and miR-1246, that were highly expressed in exosomes. These miRNAs were transferred to poorly metastatic cells by exosomes, which resulted in increased cell motility and invasive ability. Moreover, miR-1246 increased cell motility by directly targeting DENN/MADD Domain Containing 2D (DENND2D). Taken together, our findings support the metastatic role of exosomes and exosomal miRNAs, which highlights their potential for applications in miRNA-based therapeutics.
Collapse
|
8
|
Vo MC, Anh-NguyenThi T, Lee HJ, Nguyen-Pham TN, Jaya Lakshmi T, Jung SH, Kim HJ, Lee JJ. Lenalidomide enhances the function of dendritic cells generated from patients with multiple myeloma. Exp Hematol 2016; 46:48-55. [PMID: 27889516 DOI: 10.1016/j.exphem.2016.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022]
Abstract
Lenalidomide (LEN) has been used as an immunomodulatory drug with direct and indirect anti-tumor effects. In this study, we evaluated the effect of LEN on the differentiation, maturation, and function of dendritic cells (DCs) in patients with multiple myeloma in vitro. Various doses of LEN were added after the monocytes had differentiated into immature DCs and were activated into mature DCs. LEN (5 μg/mL) was the optimal concentration to promote differentiation and maturation of DCs. Immature DCs treated with LEN exhibited enhanced endocytic capacity. Mature DCs treated with LEN produced higher levels of interleukin-12p70, possessed stronger allogeneic T-cell stimulation capacity, reduced the number of suppressor cells, and generated antigen-specific cytotoxic T lymphocytes more potently compared with control DCs. These results suggest that LEN enhanced the function of DCs generated from patients with multiple myeloma by stimulating the capacity of allogeneic T cells, inhibiting the generation of immunosuppressive cells, inducing naïve T cells toward Th1 polarization, and generating potent myeloma-specific cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Truc Anh-NguyenThi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea; Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thanh-Nhan Nguyen-Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea; Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea; Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea; Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.
| |
Collapse
|
9
|
Genes differentially expressed by methylprednisolone in vivo in CD4 T lymphocytes from multiple sclerosis patients: potential biomarkers. THE PHARMACOGENOMICS JOURNAL 2016; 18:98-105. [PMID: 27670768 DOI: 10.1038/tpj.2016.71] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 12/17/2022]
Abstract
Intravenous methylprednisolone (IVMP) is the gold standard treatment in acute relapses of multiple sclerosis. Knowing the response to IVMP in advance could facilitate earlier selection of patients for subsequent courses of therapy. However, molecular mechanisms and changes in gene expression induced by methylprednisolone remain unknown. The aim of the study was to identify in vivo differentially expressed genes in relapsing-remitting multiple sclerosis patients after 3-6 days of treatment with IVMP. For this purpose, whole-genome transcription profiling of CD4+ T lymphocytes was performed before and after treatment with IVMP in 8 relapsing-remitting multiple sclerosis patients during relapse using Human GE 4x44K v2 microarrays. Differentially expressed genes were identified using a paired t test on GeneSpring v13.0 software. A P-value <0.001 and a twofold change were considered significant. Microarray data were confirmed using real-time PCR. Microarray revealed changes in gene expression: four genes were downregulated (B3GNT3, ZNF683, IFNG and TNF) and seven upregulated (DEFA4, CTSG, DEFA8P, AZU1, MPO, ELANE and PRTN3). Pathway analysis revealed the transforming growth factor-β signaling pathway to be affected. Comparison with previously published data on in vitro methylprednisolone-regulated genes showed that SMAD7, TNF and CHI3L1 were also downregulated in vivo in relapsing-remitting multiple sclerosis patients. In summary, we performed the first in vivo transcriptome analysis in CD4+ T lymphocytes before and after the treatment with IVMP in patients with multiple sclerosis. Identification of differentially expressed genes in patients receiving IVMP could improve our understanding of the molecular mechanisms underlying the therapeutic effects of IVMP and highlight potential biomarkers of the response to IVMP.
Collapse
|
10
|
Li S, Sun YN, Zhou YT, Zhang CL, Lu F, Liu J, Shang XM. Screening and identification of microRNA involved in unstable angina using gene-chip analysis. Exp Ther Med 2016; 12:2716-2722. [PMID: 27703515 DOI: 10.3892/etm.2016.3646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/02/2016] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence has suggested that microRNA (miRNA) may play a role in the pathogenesis of cardiovascular disease, which has led to a greater understanding of the complex pathophysiological processes underlying unstable angina (UA). The present study aimed to investigate changes in the miRNA expression profiles of patients with UA using gene-chip analysis, in order to further elucidate the pathogenesis of UA. Total RNA was extracted and purified from plasma samples collected from patients with UA and healthy controls. The samples underwent microarray analysis using an Exiqon miRCURY LNA™ microRNA Array. Differentially expressed miRNAs were identified by volcano plot filtering, and were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, functional annotation of the differentially expressed miRNAs involved gene ontology analyses. Among the 212 miRNAs differentially expressed between the two groups, 82 were upregulated and 130 were downregulated. Notably, the results of the RT-qPCR were consistent with the gene-chip results. The miRNAs identified in the present study may be potential novel biomarkers for the prevention and early diagnosis of UA. Furthermore, the results of the present study suggested that UA occurs as a result of complex and dynamic processes regulated by numerous factors, including multiple miRNAs.
Collapse
Affiliation(s)
- Si Li
- Department of Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ya-Nan Sun
- Department of Cardiology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yun-Tao Zhou
- Department of Cardiology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Chun-Lai Zhang
- Department of Cardiology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Feng Lu
- Department of Cardiology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jia Liu
- Department of Cardiology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xiao-Ming Shang
- Department of Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
11
|
Liu WM, Scott KA, Dennis JL, Kaminska E, Levett AJ, Dalgleish AG. Naltrexone at low doses upregulates a unique gene expression not seen with normal doses: Implications for its use in cancer therapy. Int J Oncol 2016; 49:793-802. [DOI: 10.3892/ijo.2016.3567] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/23/2016] [Indexed: 11/06/2022] Open
|
12
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
13
|
Hou C, Qin G, Liu T, Geng T, Gao K, Pan Z, Qian H, Guo X. Transcriptome analysis of silkworm, Bombyx mori, during early response to Beauveria bassiana challenges. PLoS One 2014; 9:e91189. [PMID: 24618587 PMCID: PMC3949756 DOI: 10.1371/journal.pone.0091189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/08/2014] [Indexed: 11/19/2022] Open
Abstract
Host–pathogen interactions are complex processes and it is a central challenge to reveal these interactions. Fungal infection of silkworm, Bombyx mori, may induce a variety of responsive reaction. However, little is known about the molecular mechanism of silkworm immune response against the fungal infection. To obtain an overview of the interaction between silkworm and an entomopathogenic fungus Beauveria bassiana, Digital Gene Expression profiling, a tag based high-throughput transcriptome sequencing method, was employed to screen and identify differentially expressed genes (DEGs, FDR≤0.001, ∣log2ratio∣≥1) of silkworm larvae during early response against B. bassiana infection. Total 1430 DEGs including 960 up-regulated and 470 down-regulated ones were identified, of which 627 DEGs can be classified into GO categories by Gene Ontology (GO) analysis. KEGG pathways analysis of these DEGs suggested that many biological processes, such as defense and response, signal transduction, phagocytosis, regulation of gene expression, RNA splicing, biosynthesis and metabolism, protein transport etc. were involved in the interaction between the silkworm and B. bassiana. A number of differentially expressed fungal genes were also identified by mapping the sequencing tags to B. bassiana genome. These results provided new insights to the molecular mechanism of silkworm immune response to B. bassiana infection.
Collapse
Affiliation(s)
- Chengxiang Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Guangxing Qin
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Ting Liu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Tao Geng
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Kun Gao
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhonghua Pan
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Heying Qian
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- * E-mail:
| |
Collapse
|
14
|
Ma L, Xie Y, Gu ZY, Wang BB, Li FC, Xu KZ, Shen WD, Li B. Characteristics of phoxim-exposed gene transcription in the silk gland of silkworms. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:391-397. [PMID: 24267702 DOI: 10.1016/j.pestbp.2013.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 06/02/2023]
Abstract
Silkworm (Bombyx mori), a model Lepidoptera insect, is an important economic insect. Its silk gland is the important organ for silk protein synthesis and secretion. Phoxim exposure causes deficient cocooning of silkworm and has become one of the major negative factors for the silk industry. To study the impact of phoxim exposure on silk gland, using gene chip technology, we examined differentially expressed genes in silk gland after silkworms were exposed to phoxim (4.0μg/mL) for 24h. Functional annotation, classification and KEGG signaling pathway analysis were performed. The results showed that out of 3206 genes detected in silk gland after phoxim exposure, 270 were differentially expressed significantly, including 249 up-regulated genes and 21 down-regulated genes. These differentially expressed genes related to apoptosis, detoxification and protein degradation were selected. Using qRT-PCR, the expression levels of 9 genes involved in apoptosis, detoxification and protein degradation were validated. In addition, the expression profiles of three related fibroin synthesis genes (Fib-H, Fib-L and P25) were analyzed. Our results showed that phoxim exposure induced apoptosis of silk gland cells and inhibition of fibroin synthesis. This may be the cause of deficient silkworm cocooning.
Collapse
Affiliation(s)
- L Ma
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Henry JY, Labarthe MC, Meyer B, Dasgupta P, Dalgleish AG, Galustian C. Enhanced cross-priming of naive CD8+ T cells by dendritic cells treated by the IMiDs® immunomodulatory compounds lenalidomide and pomalidomide. Immunology 2013; 139:377-85. [PMID: 23374145 DOI: 10.1111/imm.12087] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 12/30/2022] Open
Abstract
The IMiDs(®) immunomodulatory compounds lenalidomide and pomalidomide are agents with anti-inflammatory, immunomodulatory and anti-cancer activity. An excellent success rate has been shown for multiple myeloma in phase I/II clinical trials leading to Food and Drug Administration approval of lenalidomide. One mechanism by which these drugs could enhance anti-tumour immunity may be through enhanced dendritic cell (DC) function. Thalidomide, a compound structurally related to lenalidomide and pomalidomide, is known to enhance DC function, and we have investigated whether its analogues, pomalidomide and lenalidomide, also have functional effects on DCs. We used mouse bone marrow-derived DCs treated with 5 or 10 μm pomalidomide, or lenalidomide from day 1 of culture. Treatment with IMiD(®) immunomodulatory compounds increased expression of Class I (H2-Kb), CD86, and pomalidomide also increased Class II (I-Ab) expression in bone marrow-derived DCs, as measured by flow cytometry. Fluorescent bead uptake was increased by up to 45% when DCs were treated with 5 or 10 μm pomalidomide or lenalidomide compared with non-treated DCs. Antigen presentation assays using DCs primed with ovalbumin, and syngeneic T cells from transgenic OTI and OTII mice (containing MHC restricted, ovalbumin-specific, T cells) showed that both pomalidomide and lenalidomide effectively increased CD8(+) T-cell cross-priming (by up to 47%) and that pomalidomide alone was effective in increasing CD4(+) T-cell priming (by 30%). Our observations suggest that pomalidomide and lenalidomide enhance tumour antigen uptake by DCs with an increased efficacy of antigen presentation, indicating a possible use of these drugs in DC vaccine therapies.
Collapse
Affiliation(s)
- Jake Y Henry
- Centre for Infection and Immunity, Division of Clinical Sciences, St George's University of London, London, UK
| | | | | | | | | | | |
Collapse
|
16
|
Baronchelli S, Bentivegna A, Redaelli S, Riva G, Butta V, Paoletta L, Isimbaldi G, Miozzo M, Tabano S, Daga A, Marubbi D, Cattaneo M, Biunno I, Dalprà L. Delineating the cytogenomic and epigenomic landscapes of glioma stem cell lines. PLoS One 2013; 8:e57462. [PMID: 23468990 PMCID: PMC3585345 DOI: 10.1371/journal.pone.0057462] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/24/2013] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and malignant type of glioma, is characterized by a poor prognosis and the lack of an effective treatment, which are due to a small sub-population of cells with stem-like properties, termed glioma stem cells (GSCs). The term "multiforme" describes the histological features of this tumor, that is, the cellular and morphological heterogeneity. At the molecular level multiple layers of alterations may reflect this heterogeneity providing together the driving force for tumor initiation and development. In order to decipher the common "signature" of the ancestral GSC population, we examined six already characterized GSC lines evaluating their cytogenomic and epigenomic profiles through a multilevel approach (conventional cytogenetic, FISH, aCGH, MeDIP-Chip and functional bioinformatic analysis). We found several canonical cytogenetic alterations associated with GBM and a common minimal deleted region (MDR) at 1p36.31, including CAMTA1 gene, a putative tumor suppressor gene, specific for the GSC population. Therefore, on one hand our data confirm a role of driver mutations for copy number alterations (CNAs) included in the GBM genomic-signature (gain of chromosome 7- EGFR gene, loss of chromosome 13- RB1 gene, loss of chromosome 10-PTEN gene); on the other, it is not obvious that the new identified CNAs are passenger mutations, as they may be necessary for tumor progression specific for the individual patient. Through our approach, we were able to demonstrate that not only individual genes into a pathway can be perturbed through multiple mechanisms and at different levels, but also that different combinations of perturbed genes can incapacitate functional modules within a cellular networks. Therefore, beyond the differences that can create apparent heterogeneity of alterations among GSC lines, there's a sort of selective force acting on them in order to converge towards the impairment of cell development and differentiation processes. This new overview could have a huge importance in therapy.
Collapse
Affiliation(s)
- Simona Baronchelli
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
- Science and Technology Park, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Angela Bentivegna
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - Serena Redaelli
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - Gabriele Riva
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - Valentina Butta
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | - Laura Paoletta
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | | | - Monica Miozzo
- Department of Pathophysiology and Organ Transplant, University of Milan, Milan, Italy
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Tabano
- Department of Pathophysiology and Organ Transplant, University of Milan, Milan, Italy
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Daga
- Department of Hematology-Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria San Martino- Istituto Scientifico Tumori (IST) Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Daniela Marubbi
- Department of Hematology-Oncology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliera Universitaria San Martino- Istituto Scientifico Tumori (IST) Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Monica Cattaneo
- Science and Technology Park, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Ida Biunno
- Institute of Genetics and Biomedical Research-National Research Council, Milan, Italy
| | - Leda Dalprà
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
- Department of Surgical Pathology, S. Gerardo Hospital, Monza, Italy
- * E-mail:
| |
Collapse
|
17
|
Redaelli S, Bentivegna A, Foudah D, Miloso M, Redondo J, Riva G, Baronchelli S, Dalprà L, Tredici G. From cytogenomic to epigenomic profiles: monitoring the biologic behavior of in vitro cultured human bone marrow mesenchymal stem cells. Stem Cell Res Ther 2012; 3:47. [PMID: 23168092 PMCID: PMC3580477 DOI: 10.1186/scrt138] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 09/03/2012] [Accepted: 11/02/2012] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent cells that can differentiate into different cell lineages and have emerged as a promising tool for cell-targeted therapies and tissue engineering. Their use in a therapeutic context requires large-scale in vitro expansion, increasing the probability of genetic and epigenetic instabilities. Some evidence shows that an organized program of replicative senescence is triggered in human BM-MSCs (hBM-MSCs) on prolonged in vitro expansion that includes alterations in phenotype, differentiation potential, telomere length, proliferation rates, global gene-expression patterns, and DNA methylation profiles. METHODS In this study, we monitored the chromosomal status, the biologic behavior, and the senescence state of hBM-MSCs derived from eight healthy donors at different passages during in vitro propagation. For a more complete picture, the telomere length was also monitored in five of eight donors, whereas the genomic profile was evaluated in three of eight donors by array-comparative genomic hybridization (array-CGH). Finally, an epigenomic profile was delineated and compared between early and late passages, by pooling DNA of hBM-MSCs from four donors. RESULTS Our data indicate that long-term culture severely affects the characteristics of hBM-MSCs. All the observed changes (that is, enlarged morphology, decreased number of cell divisions, random loss of genomic regions, telomere shortening) might be regulated by epigenetic modifications. Gene Ontology analysis revealed that specific biologic processes of hBM-MSCs are affected by variations in DNA methylation from early to late passages. CONCLUSIONS Because we revealed a significant decrease in DNA methylation levels in hBM-MSCs during long-term culture, it is very important to unravel how these modifications can influence the biologic features of hBM-MSCs to keep track of this organized program and also to clarify the conflicting observations on hBM-MSC malignant transformation in the literature.
Collapse
Affiliation(s)
- Serena Redaelli
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, via Cadore 48, 20900, Monza, Italy
- S. Gerardo Hospital, Medical Genetics Laboratory, via Pergolesi 33, 20900, Monza, Italy
| | - Angela Bentivegna
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, via Cadore 48, 20900, Monza, Italy
- S. Gerardo Hospital, Medical Genetics Laboratory, via Pergolesi 33, 20900, Monza, Italy
| | - Dana Foudah
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Mariarosaria Miloso
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Juliana Redondo
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Gabriele Riva
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Simona Baronchelli
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Leda Dalprà
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, via Cadore 48, 20900, Monza, Italy
- S. Gerardo Hospital, Medical Genetics Laboratory, via Pergolesi 33, 20900, Monza, Italy
| | - Giovanni Tredici
- Department of Surgery and Interdisciplinary Medicine, University of Milan-Bicocca, via Cadore 48, 20900, Monza, Italy
| |
Collapse
|
18
|
Rozewski DM, Herman SEM, Towns WH, Mahoney E, Stefanovski MR, Shin JD, Yang X, Gao Y, Li X, Jarjoura D, Byrd JC, Johnson AJ, Phelps MA. Pharmacokinetics and tissue disposition of lenalidomide in mice. AAPS JOURNAL 2012; 14:872-82. [PMID: 22956478 DOI: 10.1208/s12248-012-9401-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 08/08/2012] [Indexed: 02/01/2023]
Abstract
Lenalidomide is a synthetic derivative of thalidomide exhibiting multiple immunomodulatory activities beneficial in the treatment of several hematological malignancies. Murine pharmacokinetic characterization necessary for translational and further preclinical investigations has not been published. Studies herein define mouse plasma pharmacokinetics and tissue distribution after intravenous (IV) bolus administration and bioavailability after oral and intraperitoneal delivery. Range finding studies used lenalidomide concentrations up to 15 mg/kg IV, 22.5 mg/kg intraperitoneal injections (IP), and 45 mg/kg oral gavage (PO). Pharmacokinetic studies evaluated doses of 0.5, 1.5, 5, and 10 mg/kg IV and 0.5 and 10 mg/kg doses for IP and oral routes. Liquid chromatography-tandem mass spectrometry was used to quantify lenalidomide in plasma, brain, lung, liver, heart, kidney, spleen, and muscle. Pharmacokinetic parameters were estimated using noncompartmental and compartmental methods. Doses of 15 mg/kg IV, 22.5 mg/kg IP, and 45 mg/kg PO lenalidomide caused no observable toxicity up to 24 h postdose. We observed dose-dependent kinetics over the evaluated dosing range. Administration of 0.5 and 10 mg/kg resulted in systemic bioavailability ranges of 90-105% and 60-75% via IP and oral routes, respectively. Lenalidomide was detectable in the brain only after IV dosing of 5 and 10 mg/kg. Dose-dependent distribution was also observed in some tissues. High oral bioavailability of lenalidomide in mice is consistent with oral bioavailability in humans. Atypical lenalidomide tissue distribution was observed in spleen and brain. The observed dose-dependent pharmacokinetics should be taken into consideration in translational and preclinical mouse studies.
Collapse
Affiliation(s)
- Darlene M Rozewski
- Division of Pharmaceutics, College of Pharmacy, 230 Parks Hall, 500W. 12th Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
SEPT4 is regulated by the Notch signaling pathway. Mol Biol Rep 2011; 39:4401-9. [DOI: 10.1007/s11033-011-1228-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 09/12/2011] [Indexed: 11/26/2022]
|
20
|
Fu BH, Wu ZZ, Qin J. Effects of integrin α6β1 on migration of hepatocellular carcinoma cells. Mol Biol Rep 2011; 38:3271-6. [PMID: 21359644 DOI: 10.1007/s11033-010-0308-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 09/03/2010] [Indexed: 02/05/2023]
Abstract
In this study, we applied specific blocking antibodies for integrin α6 or β1 subunit, and evaluated the in vitro effects of integrins α6β1 on the adhesion, chemotaxis and migration of hepatocellular carcinoma (HCC) cell line SMMC-7721 to type IV collagen. The adhesion force and cell migration, as measured by a micropipette aspiration system and Boyden chamber assay respectively, was dramatically reduced when either integrin subunits was blocked. The chemotaxis, as determined using a dual-micropipette system, was only affected by the antibody against β1 subunit. This study suggests that integrin α6β1 is an important cell surface receptor that mediates the adhesion of SMMC-7721 to type IV collagen. But the α6 subunit has minimal effect on pseudopod formation in response to type IV collagen. Therefore, the integrin α6β1-mediated cell migration is, at least in part, through the regulation on the cell adhesion step.
Collapse
Affiliation(s)
- Bian-Hong Fu
- College of Resources and Environmental Sciences, Chongqing University, Chongqing 400044, China.
| | | | | |
Collapse
|
21
|
Li J, Neumann I, Volkmer I, Staege MS. Down-regulation of achaete-scute complex homolog 1 (ASCL1) in neuroblastoma cells induces up-regulation of insulin-like growth factor 2 (IGF2). Mol Biol Rep 2010; 38:1515-21. [PMID: 20842449 DOI: 10.1007/s11033-010-0259-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
Neuroblastoma (NB) is the most common extra-cranial solid pediatric tumor. The prognosis of patients with NB has been improved during the last decades. However, treatment results for patients with advanced tumor stages are still unsatisfying. NB cells are characterized by a high tendency for spontaneous or induced differentiation. During differentiation, down-regulation of the basic helix-loop-helix transcription factor achaete-scute complex homolog 1 (ASCL1) has been observed but the consequences of ASCL1 down-regulation have not been elucidated. We used RNA interference to knock-down ASCL1 in NB cells. DNA microarray analysis was used for the identification of ASCL1-regulated genes. Furthermore, conventional and quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used for validation of ASCL1-regulated genes. Down-regulation of ASCL1 influenced the expression of several genes. After down-regulation of ASCL1, we observed very high expression of insulin-like growth factor 2 (IGF2), a factor that is known to be induced during differentiation of NB cells. RT-PCR indicated up-regulation of multiple IGF2 transcript variants after ASCL1 knock-down. Our data suggest that the ASCL1-pathway is responsible for the up-regulation of IGF2 during NB differentiation.
Collapse
Affiliation(s)
- Jialing Li
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst Grube Str 40, 06097 Halle, Germany
| | | | | | | |
Collapse
|
22
|
Cazzin C, Mion S, Caldara F, Rimland JM, Domenici E. Microarray analysis of cultured rat hippocampal neurons treated with brain derived neurotrophic factor. Mol Biol Rep 2010; 38:983-90. [PMID: 20535563 DOI: 10.1007/s11033-010-0193-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 05/21/2010] [Indexed: 01/06/2023]
Abstract
Brain derived neurotrophic factor (BDNF) has been shown to exert multiple actions on neurons. It plays a role in neuronal growth and maintenance and use-dependent plasticity, such as long-term potentiation and learning. This neurotrophin is believed to regulate neuronal plasticity by modifying neuronal excitability and morphology. There is experimental evidence for both an acute and a long-term effect of BDNF on synaptic transmission and structure but the molecular mechanisms underlying these events have not been completely clarified. In order to study the BDNF-induced molecular changes, the set of genes modulated in cultured hippocampal neurons by BDNF treatment was investigated after subchronic treatment with the neurotrophin. Microarray analysis performed with these cells, revealed increased expression of mRNA encoding the neuropeptides neuropeptide Y and somatostatin, and of the secreted peptide VGF (non acronymic), all of which participate in neurotransmission. In addition, the expression of genes apolipoprotein E (ApoE), delta-6 fatty acid desaturase (Fads2) and matrix metalloproteinase 14 (Mmp14), which play a role in neuronal remodelling, was also enhanced. More studies are needed to investigate and confirm the role of these genes in synaptic plasticity, but the results reported in this paper show that microarray analysis of hippocampal cultures can be used to expand our current knowledge of the molecular events triggered by BDNF in the hippocampus.
Collapse
Affiliation(s)
- Chiara Cazzin
- Neuroscience Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Center, via Fleming, 4, 37135, Verona, Italy.
| | | | | | | | | |
Collapse
|
23
|
Microarray analysis of the gene expression profile in the midgut of silkworm infected with cytoplasmic polyhedrosis virus. Mol Biol Rep 2010; 38:333-41. [PMID: 20349281 DOI: 10.1007/s11033-010-0112-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/16/2010] [Indexed: 12/16/2022]
Abstract
In order to obtain an overall view on silkworm response to Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) infection, a microarray system comprising 22,987 oligonucluotide 70-mer probes was employed to compare differentially expressed genes in the midguts of BmCPV-infected and normal silkworm larvae. At 72 h post-inoculation, 258 genes exhibited at least 2.0-fold differences in expression level. Out of these, 135 genes were up-regulated, while 123 genes were down-regulated. According to gene ontology (GO), 140 genes were classified into GO categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicates that 35 genes were involved in 10 significant (P<0.05) KEGG pathways. The expressions of genes related to valine, leucine, and isoleucine degradation, retinol metabolism, and vitamin B6 metabolism were all down-regulated. The expressions of genes involved in ribosome and proteasome pathway were all up-regulated. Quantitative real-time polymerase chain reaction was performed to validate the expression patterns of 13 selected genes of interest. The results suggest that BmCPV infection resulted in the disturbance of protein and amino acid metabolism and a series of major physiological and pathological changes in silkworm. Our results provide new insights into the molecular mechanism of BmCPV infection and host cell response.
Collapse
|
24
|
Liu WM, Henry JY, Meyer B, Bartlett JB, Dalgleish AG, Galustian C. Inhibition of metastatic potential in colorectal carcinoma in vivo and in vitro using immunomodulatory drugs (IMiDs). Br J Cancer 2009; 101:803-12. [PMID: 19638977 PMCID: PMC2736839 DOI: 10.1038/sj.bjc.6605206] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Thalidomide and lenalidomide are FDA approved for the treatment of multiple myeloma and, along with pomalidomide, are being investigated in various other cancers. Although these agents display immunomodulatory, anti-angiogenic and anti-apoptotic effects, little is known about their primary mode of therapeutic action in patients with cancer. METHODS As part of a continuing research effort, we have investigated the effects of these agents on the metastatic capacity of murine colorectal cancer cell lines both in vivo and in vitro. Allied to these, we have studied their effects on the molecular pathways associated with metastasis. RESULTS Results indicate that thalidomide, lenalidomide and pomalidomide significantly inhibit the metastatic capability of colorectal carcinoma cells. Anchorage-independent growth, used as a coarse indicator of transformation, was significantly reduced, as were migratory capacity and invasive competence. In addition, an in vivo experimental metastasis model also showed that treatment with the drugs resulted in a significantly lower number of metastatic pulmonary nodules relative to control mice. Allied to these cellular and phenotypic changes were alterations in molecular markers of metastasis and in intracellular signalling competency. CONCLUSIONS These results provide evidence that in addition to their immunomodulatory effects, thalidomide, lenalidomide and pomalidomide can impair the metastatic capacity of tumours, and that this mechanism may involve alterations to cell signalling functionality.
Collapse
Affiliation(s)
- W M Liu
- Division of Cellular and Molecular Medicine, Department of Oncology, St George's, University of London, London SW17 0RE, UK.
| | | | | | | | | | | |
Collapse
|