1
|
Role of polypyrimidine tract-binding protein 1/yin yang 2 signaling in regulating vascular smooth muscle cell proliferation and neointima hyperplasia. Toxicol Appl Pharmacol 2019; 383:114747. [DOI: 10.1016/j.taap.2019.114747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/22/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022]
|
2
|
Li X, Han F, Liu W, Shi X. PTBP1 promotes tumorigenesis by regulating apoptosis and cell cycle in colon cancer. Bull Cancer 2018; 105:1193-1201. [PMID: 30309622 DOI: 10.1016/j.bulcan.2018.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
Increased expression of polypyrimidine tract-binding protein 1 (PTBP1) has been observed in human ovarian tumors, glioblastomas, and breast cancer, but its biological roles in tumorigenesis is not fully clear. In the present research, we investigated the biological role of PTBP1 in colon cancer. We found that PTBP1 was overexpressed both in colon cancer cell lines and tissues. Tissue microarray analysis (TMA) indicated that low PTBP1 expression predicted a favorable overall survival for colon cancer patients. Using small interfering RNA technology, we found that down-regulation of PTBP1 significantly inhibited colon cancer cell growth/proliferation, and induced cell cycle arrest as well as apoptosis in vitro. Western blot analysis showed that siRNA PTBP1 could up-regulate the expression of cytoC, p53 and Bax as well as down-regulated p85, p-AKT, cyclinD1, CDK4 and Bcl2 compared to the control. Furthermore, Caspase-3 and PARP1 were activated when PTBP1 is knockdown. This study implies that PTBP1 plays an important role in tumorigenesis of colon cancer.
Collapse
Affiliation(s)
- Xiaona Li
- Xinxiang Second People's Hospital, Department of Pharmacy, Xinxiang, PR China
| | - Fei Han
- Army Medical University, College of Preventive Medicine, Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, Chongqing, China
| | - Wenbin Liu
- Army Medical University, College of Preventive Medicine, Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, Chongqing, China
| | - Xiaoyan Shi
- Henan University, Institute of Chinese materia medica, Kaifeng, China.
| |
Collapse
|
3
|
Identification and Characterization of Sindbis Virus RNA-Host Protein Interactions. J Virol 2018; 92:JVI.02171-17. [PMID: 29321325 DOI: 10.1128/jvi.02171-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
Arthropod-borne viruses, such as the members of the genus Alphavirus, are a significant concern to global public health. As obligate intracellular pathogens, RNA viruses must interact with the host cell machinery to establish and complete their life cycles. Despite considerable efforts to define the host-pathogen interactions essential for alphaviral replication, an unbiased and inclusive assessment of alphaviral RNA-protein interactions has not been undertaken. Moreover, the biological and molecular importance of these interactions, in the full context of their molecular function as RNA-binding proteins, has not been fully realized. The data presented here introduce a robust viral RNA-protein discovery method to elucidate the Sindbis virus (SINV) RNA-protein host interface. Cross-link-assisted mRNP purification (CLAMP) assessment revealed an extensive array of host-pathogen interactions centered on the viral RNAs (vRNAs). After prioritization of the host proteins associated with the vRNAs, we identified the site of protein-vRNA interaction by a UV cross-linking and immunoprecipitation sequencing (CLIP-seq) approach and assessed the consequences of the RNA-protein binding event of hnRNP K, hnRNP I, and hnRNP M in regard to viral infection. Here, we demonstrate that mutation of the prioritized hnRNP-vRNA interaction sites effectively disrupts hnRNP-vRNA interaction. Correlating with disrupted hnRNP-vRNA binding, SINV growth kinetics were reduced relative to wild-type parental viral infections in vertebrate and invertebrate tissue culture models of infection. The molecular mechanism leading to reduced viral growth kinetics was found to be dysregulated structural-gene expression. Collectively, this study further defines the scope and importance of the alphavirus host-pathogen vRNA-protein interactions.IMPORTANCE Members of the genus Alphavirus are widely recognized for their potential to cause severe disease. Despite this recognition, there are no antiviral therapeutics, or safe and effective vaccines, currently available to treat alphaviral infection. Alphaviruses utilize the host cell machinery to efficiently establish and complete their life cycle. However, the extent and importance of host-pathogen RNA-protein interactions are woefully undercharacterized. The efforts detailed in this study fill this critical gap, and the significance of this research is 3-fold. First, the data presented here fundamentally expand the scope and understanding of alphavirus host-pathogen interactions. Second, this study identifies the sites of interaction for several prioritized interactions and defines the contribution of the RNA-protein interaction at the molecular level. Finally, these studies build a strategy by which the importance of the given host-pathogen interactions may be assessed in the future, using a mouse model of infection.
Collapse
|
4
|
Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, Yeager ME, Fini MA, Morrell NW, Pullamsetti SS, Velegala S, Seeger W, McKinsey TA, Sucharov CC, Stenmark KR. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 2013; 114:67-78. [PMID: 24122720 DOI: 10.1161/circresaha.114.301633] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. OBJECTIVE We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. METHODS AND RESULTS We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. CONCLUSIONS Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly proliferative, migratory, and inflammatory phenotype of hypertensive pulmonary adventitial fibroblasts. Thus, therapies directed at restoring miR-124 function, including histone deacetylase inhibitors, should be investigated.
Collapse
Affiliation(s)
- Daren Wang
- From the Department of Pediatrics (D.W., H.Z., M.L., M.G.F., A.R.F., B.A.K., M.E.Y., M.A.F.), Department of Medicine (T.A.M., C.C.S.), Department of Medicine and Pediatrics (K.R.S.), Department of Medicine (N.W.M.), Department of Lung Development and Remodeling (S.S.P., S.V., W.S.), Department of Medicine (H.Z.), University of Colorado Anschutz Medical Campus, Aurora, CO; University of Cambridge, Cambridge, United Kingdom (N.W.M.); Addenbrooke's & Papworth Hospitals, Cambridge, United Kingdom (N.W.M.); Max-Planck-Institute for Heart and Lung Research; University of Giessen and Marburg Lung Center, Bad Nauheim, Germany (S.S.P., S.V., W.S.); and Shengjing Hospital of China Medical University, Shenyang, China (H.Z.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shibasaki T, Tokunaga A, Sakamoto R, Sagara H, Noguchi S, Sasaoka T, Yoshida N. PTB Deficiency Causes the Loss of Adherens Junctions in the Dorsal Telencephalon and Leads to Lethal Hydrocephalus. Cereb Cortex 2012; 23:1824-35. [DOI: 10.1093/cercor/bhs161] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
6
|
Promoter microsatellites as modulators of human gene expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:41-54. [PMID: 23560304 DOI: 10.1007/978-1-4614-5434-2_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microsatellites in and around genes have been shown to modulate levels of gene expression in multiple organisms, ranging from bacteria to humans. Here we will discuss promoter microsatellites known to modulate gene expression, with a few key examples related to the human brain. Many of the microsatellites we discuss are highly conserved in mammals, indicating that selection may favor their retention as "tuning knobs" of gene expression. We will also discuss the mechanisms by which microsatellites in promoters can alter gene expression as they expand and contract, with particular attention to secondary structures like Z-DNA and H-DNA. We suggest that promoter microsatellites, especially those that are highly conserved, may be an important source of human phenotypic variation.
Collapse
|
7
|
Suckale J, Wendling O, Masjkur J, Jäger M, Münster C, Anastassiadis K, Stewart AF, Solimena M. PTBP1 is required for embryonic development before gastrulation. PLoS One 2011; 6:e16992. [PMID: 21423341 PMCID: PMC3040740 DOI: 10.1371/journal.pone.0016992] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/18/2011] [Indexed: 12/27/2022] Open
Abstract
Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.
Collapse
Affiliation(s)
- Jakob Suckale
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Olivia Wendling
- Department of Functional Genomics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) & ICS (Institut Clinique de la Souris), Illkirch, France
| | - Jimmy Masjkur
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Melanie Jäger
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
| | - Konstantinos Anastassiadis
- Center for Regenerative Therapies Dresden, BioInnovationsZentrum Dresden University of Technology, Dresden, Germany
| | - A. Francis Stewart
- Genomics, BioInnovationsZentrum, Dresden University of Technology, Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, Paul Langerhans Institute Dresden, School of Medicine and University Clinic ‘Carl Gustav Carus,’ Dresden University of Technology, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|