1
|
Saadh MJ, Muhammad FA, Alazzawi TS, Fahdil AA, Athab ZH, Tuxtayev J, Alsaikhan F, Farhood B. Regulation of Apoptotic Pathways by MicroRNAs: A Therapeutic Strategy for Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04833-5. [PMID: 40220245 DOI: 10.1007/s12035-025-04833-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder marked by a gradual decline in memory and cognitive functions. It is characterized by the presence of senile plaques, neurofibrillary tangles, and neuronal degeneration, affecting a significant portion of the human population. A key feature of various nervous system disorders, including AD, is extensive cellular death caused by apoptosis, which affects not only neurons but also glial cells. While apoptosis plays a vital role in eliminating certain cells and supporting normal development, alterations or disruptions in apoptotic pathways can lead to harmful neurodegenerative conditions such as AD. Thus, targeting apoptosis presents a promising therapeutic approach for these diseases. MicroRNAs (miRNAs), a class of non-coding RNA, play diverse roles in cellular functions, including proliferation, gene expression regulation, programmed cell death, intercellular communication, and angiogenesis. By modulating regulatory genes, miRNAs can influence apoptosis, either promoting or inhibiting it. Aberrant expression of miRNAs can impact multiple apoptotic pathways, potentially driving the progression of AD and related health issues. This review summarizes recent research on miRNAs and their dual role in exacerbating or protecting against neural cell damage in AD by altering apoptotic pathways. The regulation of apoptosis by miRNAs offers a prospective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Jamshid Tuxtayev
- Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Patiabadi Z, Razmkabir M, EsmailizadehKoshkoiyeh A, Moradi MH, Rashidi A, Mahmoudi P. Whole-genome scan for selection signature associated with temperature adaptation in Iranian sheep breeds. PLoS One 2024; 19:e0309023. [PMID: 39150936 PMCID: PMC11329119 DOI: 10.1371/journal.pone.0309023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
The present study aimed to identify the selection signature associated with temperature adaptation in Iranian sheep breeds raised in cold and hot environments. The Illumina HD ovine SNP600K BeadChip genomic arrays were utilized to analyze 114 animals from eight Iranian sheep breeds, namely Ghezel, Afshari, Shall, Sanjabi, Lori-Bakhtiari, Karakul, Kermani, and Balochi. All animals were classified into two groups: cold-weather breeds and hot-weather breeds, based on the environments to which they are adapted and the regions where they have been raised for many years. The unbiased FST (Theta) and hapFLK tests were used to identify the selection signatures. The results revealed five genomic regions on chromosomes 2, 10, 11, 13, and 14 using the FST test, and three genomic regions on chromosomes 10, 14, and 15 using the hapFLK test to be under selection in cold and hot groups. Further exploration of these genomic regions revealed that most of these regions overlapped with genes previously identified to affect cold and heat stress, nervous system function, cell division and gene expression, skin growth and development, embryo and skeletal development, adaptation to hypoxia conditions, and the immune system. These regions overlapped with QTLs that had previously been identified as being associated with various important economic traits, such as body weight, skin color, and horn characteristics. The gene ontology and gene network analyses revealed significant pathways and networks that distinguished Iranian cold and hot climates sheep breeds from each other. We identified positively selected genomic regions in Iranian sheep associated with pathways related to cell division, biological processes, cellular responses to calcium ions, metal ions and inorganic substances. This study represents the initial effort to identify selective sweeps linked to temperature adaptation in Iranian indigenous sheep breeds. It may provide valuable insights into the genomic regions involved in climate adaptation in sheep.
Collapse
Affiliation(s)
- Zahra Patiabadi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Razmkabir
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | | | | - Amir Rashidi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Peyman Mahmoudi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
3
|
Kim S, Kim N, Kang HM, Jang HJ, Lee AC, Na KJ. Canine Somatic Mutations from Whole-Exome Sequencing of B-Cell Lymphomas in Six Canine Breeds-A Preliminary Study. Animals (Basel) 2023; 13:2846. [PMID: 37760246 PMCID: PMC10525272 DOI: 10.3390/ani13182846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Canine lymphoma (CL) is one of the most common malignant tumors in dogs. The cause of CL remains unclear. Genetic mutations that have been suggested as possible causes of CL are not fully understood. Whole-exome sequencing (WES) is a time- and cost-effective method for detecting genetic variants targeting only the protein-coding regions (exons) that are part of the entire genome region. A total of eight patients with B-cell lymphomas were recruited, and WES analysis was performed on whole blood and lymph node aspirate samples from each patient. A total of 17 somatic variants (GOLIM4, ITM2B, STN1, UNC79, PLEKHG4, BRF1, ENSCAFG00845007156, SEMA6B, DSC1, TNFAIP1, MYLK3, WAPL, ADORA2B, LOXHD1, GP6, AZIN1, and NCSTN) with moderate to high impact were identified by WES analysis. Through a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of 17 genes with somatic mutations, a total of 16 pathways were identified. Overall, the somatic mutations identified in this study suggest novel candidate mutations for CL, and further studies are needed to confirm the role of these mutations.
Collapse
Affiliation(s)
- Sungryong Kim
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| | - Namphil Kim
- Biophotonics and Nano Engineering Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyo-Min Kang
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| | - Hye-Jin Jang
- Department of Biomedical Laboratory Science, Daegu Health College, Daegu 41453, Republic of Korea;
| | | | - Ki-Jeong Na
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| |
Collapse
|
4
|
Zhou Y, Wang Y, Wang Y, Chen L, Wang N, Su Y, Diwu Y, Zhang Q. LncRNA NKILA Exacerbates Alzheimer's Disease Progression by Regulating the FOXA1-Mediated Transcription of TNFAIP1. Neurochem Res 2023:10.1007/s11064-023-03944-6. [PMID: 37217807 DOI: 10.1007/s11064-023-03944-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in the world, which seriously affects AD patients' life quality. Recently, long non-coding RNAs (lncRNAs) have been reported to play a key role in AD pathogenesis, however, the specific mechanism remains unclear. Herein, we aimed to investigate the role of lncRNA NKILA in AD. The learning and memory performance of rats from streptozotocin (STZ)-treated or other treated groups were tested by Morris water maze test. Relative levels of genes and proteins were measured using RT-qPCR and Western blotting. Mitochondrial membrane potential was tested by JC-1 staining. Levels of ROS, SOD, MDA, GSH-Px, and LDH were measured using corresponding commercial kits. Apoptosis was evaluated by TUNEL staining or Flow cytometry assay. RNA Immunoprecipitation (RIP), RNA pulldown, Chromatin immunoprecipitation (ChIP), and dual-luciferase reporter assays were utilized to test the interaction between indicated molecules. STZ treatment caused learning and memory impairment in rats and oxidative stress damage in SH-SY5Y cells. LncRNA NKILA was found to be elevated in the hippocampal tissues of rats and SH-SY5Y cells after STZ exposure. Knockdown of lncRNA NKILA alleviated STZ-induced neuronal damage. Furthermore, lncRNA NKILA could bind to ELAVL1, which regulate the stability of FOXA1 mRNA. Moreover, TNFAIP1 transcription process was controlled by FOXA1, which targeted the promoter of TNFAIP1. In vivo results demonstrated that lncRNA NKILA accelerated STZ-induced neuronal damage and oxidative stress by FOXA1/TNFAIP1 axis. Our findings indicated that knockdown of lncRNA NKILA inhibited the neuronal damage and oxidative stress induced by STZ through the FOXA1/TNFAIP1 axis, thereby alleviating the development of AD, revealing a promising therapeutic axis for AD treatment.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Anatomy, Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China
- Discipline Innovation Team of Shaanxi, University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China
- Shaanxi Key Laboratory of Chinese Medicine Encephalopathy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China
- Shaanxi Key Laboratory of Research on TCM Physical Constitution and Diseases Prevention and Treatment, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China
| | - Yujin Wang
- Department of TCM Diagnosis, Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China
| | - Yalee Wang
- Discipline Innovation Team of Shaanxi, University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China
- Affiliated Hospital of Shaanxi University of Chinese Medicine, No.2 Weiyang West Road, Xianyang, 712046, Shaanxi Province, People's Republic of China
| | - Lianji Chen
- Department of Anatomy, Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China
| | - Nan Wang
- Department of Anatomy, Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China
| | - Yanjin Su
- Department of Endocrinology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China.
| | - Yongchang Diwu
- Discipline Innovation Team of Shaanxi, University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China.
- Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China.
| | - Qi Zhang
- Shaanxi Key Laboratory of Chinese Medicine Encephalopathy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China.
- Shaanxi Key Laboratory of Research on TCM Physical Constitution and Diseases Prevention and Treatment, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi Province, People's Republic of China.
| |
Collapse
|
5
|
Liu Y, Guo Z, Zhu R, Gou D, Jia PP, Pei DS. An insight into sex-specific neurotoxicity and molecular mechanisms of DEHP: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120673. [PMID: 36400143 DOI: 10.1016/j.envpol.2022.120673] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Di-2-Ethylhexyl Phthalate (DEHP) is often used as an additive in polyvinyl chloride (PVC) to give plastics flexibility, which makes DEHP widely used in food packaging, daily necessities, medical equipment, and other products. However, due to the unstable combination of DEHP and polymer, it will migrate to the environment in the materials and eventually contact the human body. It has been recorded that low-dose DEHP will increase neurotoxicity in the nervous system, and the human health effects of DEHP have been paid attention to because of the extensive exposure to DEHP and its high absorption during brain development. In this study, we review the evidence that DEHP exposure is associated with neurodevelopmental abnormalities and neurological diseases based on human epidemiological and animal behavioral studies. Besides, we also summarized the oxidative damage, apoptosis, and signal transduction disorder related to neurobehavioral abnormalities and nerve injury, and described the potential mechanisms of neurotoxicity caused by DEHP. Overall, we found exposure to DEHP during the critical developmental period will increase the risk of neurobehavioral abnormalities, depression, and autism spectrum disorders. This effect is sex-specific and will continue to adulthood and even have an intergenerational effect. However, the research results on the sex-dependence of DEHP neurotoxicity are inconsistent, and there is a lack of systematic mechanisms research as theoretical support. Future investigations need to be carried out in a large-scale population and model organisms to produce more consistent and convincing results. And we emphasize the importance of mechanism research, which can enhance the understanding of the environmental and human health risks of DEHP exposure.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Xiong L, Zhang J, Shi H, Zhu G, Ji X, Li M, Zhu P, Luo K. Downregulation of TNFAIP1 alleviates OGD/R‑induced neuronal damage by suppressing Nrf2/GPX4‑mediated ferroptosis. Exp Ther Med 2022; 25:25. [PMID: 36561622 PMCID: PMC9748634 DOI: 10.3892/etm.2022.11724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
TNFα-induced protein 1 (TNFAIP1) serve a role in neurovascular disease. However, the potential role and molecular mechanism of TNFAIP1 in cerebral ischemia-reperfusion (I/R) remains elusive. In the present study, reverse transcription-quantitative PCR and western blotting were used to assess TNFAIP1 mRNA and protein expression levels in PC12 cells. Furthermore, using Cell Counting Kit-8, flow cytometry and western blotting, cell viability and apoptosis were evaluated. Oxidative stress was evaluated using DCFH-DA staining and ELISA was used for assessment of inflammatory factors. Expression of components in the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and ferroptosis were assessed using western blotting analysis and an iron assay kit. TNFAIP1 expression was significantly upregulated in oxygen glucose deprivation and reperfusion (OGD/R)-injured PC12 cells. However, knocking down TNFAIP1 expression restored PC12 cell viability and decreased apoptosis following OGD/R-challenge. Furthermore, TNFAIP1 silencing significantly suppressed OGD/R-induced oxidative stress and inflammatory damage in PC12 cells. TNFAIP1 knockdown inhibited ferroptosis via activation of the Nrf2 signaling pathway in OGD/R-injured PC12 cells. Erastin treatment reversed the beneficial effects of TNFAIP1 knockdown on PC12 cell viability, apoptosis alleviation, oxidative stress and inflammation following OGD/R treatment. These results suggested that TNFAIP1 knockdown could alleviate OGD/R-induced neuronal cell damage by suppressing Nrf2-mediated ferroptosis, which might lay the foundation for the investigation of targeted-therapy for cerebral I/R injury in clinic.
Collapse
Affiliation(s)
- Lie Xiong
- Central Laboratory, Zhejiang Chinese Medical University-Affiliated Jiaxing Traditional Chinese Medicine Hospital, Jiaxing, Zhejiang 314001, P.R. China
| | - Jingruo Zhang
- Department of Acupuncture, Zhejiang Chinese Medical University-Affiliated Jiaxing Traditional Chinese Medicine Hospital, Jiaxing, Zhejiang 314001, P.R. China
| | - Hanqiang Shi
- Central Laboratory, Zhejiang Chinese Medical University-Affiliated Jiaxing Traditional Chinese Medicine Hospital, Jiaxing, Zhejiang 314001, P.R. China
| | - Gaofeng Zhu
- Department of Acupuncture, Zhejiang Chinese Medical University-Affiliated Jiaxing Traditional Chinese Medicine Hospital, Jiaxing, Zhejiang 314001, P.R. China
| | - Xiaoyan Ji
- Department of Acupuncture, Zhejiang Chinese Medical University-Affiliated Jiaxing Traditional Chinese Medicine Hospital, Jiaxing, Zhejiang 314001, P.R. China
| | - Mengjiao Li
- Department of Acupuncture, Zhejiang Chinese Medical University-Affiliated Jiaxing Traditional Chinese Medicine Hospital, Jiaxing, Zhejiang 314001, P.R. China
| | - Ping Zhu
- Department of Neurosurgery, Zhejiang Chinese Medical University-Affiliated Jiaxing Traditional Chinese Medicine Hospital, Jiaxing, Zhejiang 314001, P.R. China
| | - Kaitao Luo
- Department of Acupuncture, Zhejiang Chinese Medical University-Affiliated Jiaxing Traditional Chinese Medicine Hospital, Jiaxing, Zhejiang 314001, P.R. China,Correspondence to: Dr Kaitao Luo, Department of Acupuncture, Zhejiang Chinese Medical University-Affiliated Jiaxing Traditional Chinese Medicine Hospital, 1501 East Zhongshan Road, Jiaxing, Zhejiang 314001, P.R. China
| |
Collapse
|
7
|
Wen L, Yang QH, Ma XL, Li T, Xiao S, Sun CF. Inhibition of TNFAIP1 ameliorates the oxidative stress and inflammatory injury in myocardial ischemia/reperfusion injury through modulation of Akt/GSK-3β/Nrf2 pathway. Int Immunopharmacol 2021; 99:107993. [PMID: 34330059 DOI: 10.1016/j.intimp.2021.107993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023]
Abstract
Tumor necrosis factor α-induced protein 1 (TNFAIP1) has been documented as a vital regulator of apoptosis and oxidative stress under various pathological conditions. However, whether TNFAIP1 plays a role in myocardial ischemia/reperfusion (I/R) injury has not been well investigated. This work aimed to evaluate the possible role of TNFAIP1 in mediating myocardial I/R injury. Firstly, we demonstrated that TNFAIP1 expression was dramatically increased in rat cardiomyocytes following hypoxia/reoxygenation (H/R) in vitro, and in rat myocardial tissues following I/R treatment in vivo. Silencing of TNFAIP1 alleviated H/R-induced apoptosis, oxidative stress and inflammatory response in rat cardiomyocytes in vitro. Moreover, knockdown of TNFAIP1 ameliorated I/R-induced myocardial injury, infarction size, cardiac apoptosis, oxidative stress and inflammatory response in vivo. Further investigation elucidated that knockdown of TNFAIP1 enhanced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling associated with modulation of the Akt/glycogen synthase kinase-3β (GSK-3β) pathway in vitro and in vivo. Inhibition of Akt markedly abrogated TNFAIP1-knockdown-mediated Nrf2 activation in cardiomyocytes following H/R injury. In addition, suppression of Nrf2 significantly diminished TNFAIP1-knockdown-induced cardioprotective effects in H/R-exposed cardiomyocytes. In summary, this work elucidates that inhibition of TNFAIP1 ameliorates myocardial I/R injury by potentiating Nrf2 signaling via the modulation of the Akt/GSK-3β pathway. Our study highlights a vital role of the TNFAIP1/Akt/GSK-3β/Nrf2 pathway in mediating myocardial I/R injury and suggests TNFAIP1 as an attractive target for treatment of this disease.
Collapse
Affiliation(s)
- Liang Wen
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Cardiology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China
| | - Qing-Hui Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Xiao-Lei Ma
- Department of Cardiology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China
| | - Ting Li
- Department of Cardiology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China
| | - Sa Xiao
- Department of Cardiology, Hanzhong Central Hospital, Hanzhong, Shaanxi 723000, China
| | - Chao-Feng Sun
- Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
8
|
TNFAIP1 Is Upregulated in APP/PS1 Mice and Promotes Apoptosis in SH-SY5Y Cells by Binding to RhoB. J Mol Neurosci 2020; 71:1221-1233. [PMID: 33159672 DOI: 10.1007/s12031-020-01748-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/27/2020] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) poses a significant threat to human life and health. The intraneuronal accumulation of β-amyloid (Aβ) plaques in the brains of AD patients results in neuronal cell death, which is a key factor that triggers multiple changes in the pathogenesis of AD. The inhibition of Aβ-induced neuronal cell death may potentially help in the intervention and treatment of AD. Our previous study reported that tumor necrosis factor α-induced protein 1 (TNFAIP1) is induced by and promotes Aβ25-35-induced neurotoxicity in mouse neuronal cells, but the roles and regulatory mechanisms of TNFAIP1 are still largely unknown. In this study, our experimental results show that TNFAIP1 and p-TNFAIP1 (phosphorylation of TNFAIP1 at Ser280) are overexpressed in the neurons of the cortex and hippocampus in the brains of APP/PS1 mice, and the transcription factor NF-κB is involved in the Aβ-induced upregulation of TNFAIP1. Moreover, our results suggest that TNFAIP1 contributes to the Aβ-induced reactive oxygen species (ROS) production, decreased mitochondrial membrane potential (∆Ψm), and neuronal cell death in human SH-SY5Y cells. We further revealed that Aβ increases the binding of TNFAIP1 to RhoB, and knockdown of RhoB attenuates the TNFAIP1-induced apoptosis of human SH-SY5Y cells. These data suggest that TNFAIP1 is closely associated with AD pathogenesis, and overexpression of TNFAIP1 in the neurons of the brains of AD patients plays a role in apoptosis, at least in part, via RhoB signaling.
Collapse
|
9
|
Liu Z, Zhang H, Sun L, Zhu K, Lang W. miR-29c-3p Increases Cell Viability and Suppresses Apoptosis by Regulating the TNFAIP1/NF-κB Signaling Pathway via TNFAIP1 in Aβ-Treated Neuroblastoma Cells. Neurochem Res 2020; 45:2375-2384. [PMID: 32712875 DOI: 10.1007/s11064-020-03096-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among older people in worldwide. miR-29c-3p was reported to play a role in AD development. However, the detail function of miR-29c-3p in AD remains unclear. The aim of this research is to analyze the functional mechanism of miR-29c-3p in AD. The RNA levels of miR-29c-3p and Tumor necrosis factor-α-inducible protein-1 (TNFAIP1) were detected by Quantitative real time polymerase chain (qRT-PCR) reaction. Western blot assay was carried out to examine the protein levels of TNFAIP1, Bax, B-cell lymphoma-2 (Bcl-2), Cleaved caspase 3, and Nuclear factor-k-gene binding (NF-κB). The interaction between miR-29c-3p and TNFAIP1 was predicted by online tool TargrtScan and verified using the dual luciferase reporter assay and RNA immunoprecipitation RIP (RIP) assay. Besides, cell proliferation and apoptosis rate were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry analysis, respectively. Aβ treatment decreased miR-29c-3p expression and increased TNFAIP1 expression. Overexpression of miR-29c-3p mitigated the effects of Aβ on proliferation and apoptosis. Similarly, knockdown of TNFAIP1 also reversed the effects of Aβ on cell progression. Interestingly, miR-29c-3p suppressed the expression of TNFAIP1 via binding to 3'UTR of TNFAIP1 mRNA. As expected, overexpression of TNFAIP1 reversed the effects of miR-29c-3p on Aβ-mediated cell progression. Besides, we also confirmed that miR-29c-3p affected Aβ-mediated cell progression by regulating TNFAIP1/NF-κB signaling pathway. In conclusion, our findings confirmed that miR-29c-3p attenuated Aβ-induced neurotoxicity through regulation of NF-κB signaling pathway by directly targeting TNFAIP1, providing the potential value for the treatment of AD patients.
Collapse
Affiliation(s)
- Zhongjin Liu
- Department of Neurology, The First Hospital Affiliated to Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Haiyan Zhang
- Department of Histology and Embryology, Qiqihar Medical University, No. 333 Bukui North Road, Jianhua District 161006, Qiqihar, Heilongjiang, China.
| | - Lihui Sun
- Department of Histology and Embryology, Qiqihar Medical University, No. 333 Bukui North Road, Jianhua District 161006, Qiqihar, Heilongjiang, China
| | - Kunjie Zhu
- Department of Functional Science Lab, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Weiya Lang
- Department of Histology and Embryology, Qiqihar Medical University, No. 333 Bukui North Road, Jianhua District 161006, Qiqihar, Heilongjiang, China
| |
Collapse
|
10
|
Yi J, Zhu M, Qiu F, Zhou Y, Shu P, Liu N, Wei C, Xiang S. TNFAIP1 Mediates Formaldehyde-Induced Neurotoxicity by Inhibiting the Akt/CREB Pathway in N2a Cells. Neurotox Res 2020; 38:184-198. [PMID: 32335808 DOI: 10.1007/s12640-020-00199-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Formaldehyde (FA) is a common air pollutant. Exposure to exogenous FA can cause damage to the nervous system, such as learning and memory impairment, balance dysfunction, and sleep disorders. Excessive production of endogenous FA also causes memory impairment and is thought to be associated with Alzheimer's disease (AD). Tumor necrosis factor alpha-induced protein 1 (TNFAIP1) plays a crucial role in neurodevelopment and neurological diseases. However, the role of TNFAIP1 in FA-induced neurotoxicity is unclear. Herein, using a mouse neuroblastoma cell line (N2a cells), we explored the mechanism of TNFAIP1 in FA-induced neurotoxicity, the involvement of the Akt/CREB signaling pathway, and how the expression of TNFAIP1 is regulated by FA. We found that exposure to 100 μM or 200 μM FA for 24 h led to decreased cell viability, increased cell apoptosis and neurite retraction, increased reactive oxygen species (ROS) levels, upregulated protein expression of TNFAIP1 and decreased the levels of phosphorylated Akt and CREB in the Akt/CREB pathway. Knockdown of TNFAIP1 using a TNFAIP1 small interfering RNA (siRNA) expression vector prevented FA from inhibiting the Akt/CREB pathway, thus reducing cell apoptosis and restoring cell viability and neurite outgrowth. Clearance of ROS by vitamin E (Vit E) repressed the FA-mediated upregulation of TNFAIP1 expression. These results suggest that FA increases the expression of TNFAIP1 by inducing oxidative stress and that upregulated TNFAIP1 then inhibits the Akt/CREB pathway, consequently leading to cell apoptosis and neurite retraction. Therefore, TNFAIP1 is a potential target for alleviating FA-induced neurotoxicity and related neurological disorders.
Collapse
Affiliation(s)
- Junzhi Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yubo Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Pan Shu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China. .,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China. .,The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
11
|
Li L, Zhang W, Liu Y, Liu X, Cai L, Kang J, Zhang Y, Chen W, Dong C, Zhang Y, Wang M, Wei W, Jia L. The CRL3 BTBD9 E3 ubiquitin ligase complex targets TNFAIP1 for degradation to suppress cancer cell migration. Signal Transduct Target Ther 2020; 5:42. [PMID: 32327643 PMCID: PMC7181851 DOI: 10.1038/s41392-020-0140-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/24/2023] Open
Abstract
Tumor necrosis factor alpha-induced protein 1 (TNFAIP1) modulates a plethora of important biological processes, including tumorigenesis and cancer cell migration. However, the regulatory mechanism of TNFAIP1 degradation remains largely elusive. In the present study, with a label-free quantitative proteomic approach, TNFAIP1 was identified as a novel ubiquitin target of the Cullin-RING E3 ubiquitin ligase (CRL) complex. More importantly, Cul3-ROC1 (CRL3), a subfamily of CRLs, was identified to specifically interact with TNFAIP1 and promote its polyubiquitination and degradation. Mechanistically, BTBD9, a specific adaptor component of CRL3 complex, was further defined to bind and promote the ubiquitination and degradation of TNFAIP1 in cells. As such, downregulation of BTBD9 promoted lung cancer cell migration by upregulating the expression of TNFAIP1, whereas TNFAIP1 deletion abrogated this effect. Finally, bioinformatics and clinical sample analyses revealed that BTBD9 was downregulated while TNFAIP1 was overexpressed in human lung cancer, which was associated with poor overall survival of patients. Taken together, these findings reveal a previously unrecognized mechanism by which the CRL3BTBD9 ubiquitin ligase controls TNFAIP1 degradation to regulate cancer cell migration.
Collapse
Affiliation(s)
- Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wenjuan Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yue Liu
- Department of Laboratory Medicine, Huadong Hospital, Affiliated to Fudan University, Shanghai, China
| | - Xiaojun Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jihui Kang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunjing Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenlian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital, Affiliated to Fudan University, Shanghai, China
| | - Mingsong Wang
- Xinhua Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
12
|
Guo F, Yuan Y. Tumor Necrosis Factor Alpha-Induced Proteins in Malignant Tumors: Progress and Prospects. Onco Targets Ther 2020; 13:3303-3318. [PMID: 32368089 PMCID: PMC7182456 DOI: 10.2147/ott.s241344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor (TNF) is the first cytokine used in tumor biotherapy, but TNF-related drugs are limited by the lack of specific targets. Tumor necrosis factor alpha-induced proteins (TNFAIPs), derived from TNF, is a protein family and participates in proliferation, invasion and metastasis of tumor cells. In order to better understand biological functions and potential roles of TNFAIPs in malignant tumors, this paper in the form of “Gene–Protein–Tumor correlation” summarizes the biological characteristics, physiological functions and mechanisms of TNFAIPs by searching National Center of Biotechnology Information, GeneCards, UniProt and STRING databases. The relationship between TNFAIPs and malignant tumors is analyzed, and protein–protein interaction diagram in members of TNFAIPs is drawn based on TNF for the first time. We find that TNF as a key factor is related to TNFAIP1, TNFAIP3, TNFAIP5, TNFAIP6, TNFAIP8 and TNFAIP9, which can be directly involved in activating TNFAIP1, TNFAIP5, TNFAIP8 and TNFAIP9. We confirm that the mechanism of TNFAIP1, TNFAIP2 and TNFAIP3 inducing tumors may be related to NF-κB signaling pathway, but the mechanism of tumor induction by other members of TNFAIPs is not clear. In the future, translational studies are needed to explore the mechanisms of TNF-TNFAIPs-tumors.
Collapse
Affiliation(s)
- Fang Guo
- Liaoning Provincial Education Department, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang City, Liaoning Province, People's Republic of China.,Department of Oncology, PLA Cancer Center, General Hospital of Northern Theater Command, Shenyang City, Liaoning Province, People's Republic of China
| | - Yuan Yuan
- Liaoning Provincial Education Department, Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
13
|
Qiu F, Zhou Y, Deng Y, Yi J, Gong M, Liu N, Wei C, Xiang S. Knockdown of TNFAIP1 prevents di-(2-ethylhexyl) phthalate-induced neurotoxicity by activating CREB pathway. CHEMOSPHERE 2020; 241:125114. [PMID: 31683445 DOI: 10.1016/j.chemosphere.2019.125114] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer. It has neurotoxicity and exposure to it causes impairment of neurodevelopment, behavior and cognition. However, the molecular mechanisms responsible for the DEHP-induced neurotoxicity are not yet clearly defined. Tumor necrosis factor-induced protein 1 (TNFAIP1) was first discovered in umbilical vein endothelial cells and was further found to be important in the progress of Alzheimer's disease. Herein we explore the mechanism of TNFAIP1 in DEHP-induced neurotoxicity with the involvement of cyclic AMP response elements binding protein (CREB) signaling pathway in a mouse neuroblastoma cell line (N2a cells). We found that exposure to DEHP induced apoptosis and downregulated the expression of brain-derived neurotrophic factor (BDNF), synaptic proteins PSD 95 and synapsin-1 while upregulated the expression of TNFAIP1 and decreased the levels of phosphorylated Akt, CaMK Ⅳ, catalytic subunits of PKA and CREB in CREB signaling pathway. Knockdown of TNFAIP1 using TNFAIP1 small interfering RNA (siRNA) expression vector prevented DEHP from inhibiting CREB pathway, thus reduced apoptosis and restored expression of BDNF, PSD 95 and synapsin-1. Our data indicate that downregulation of TNFAIP1 prevents DEHP-induced neurotoxicity via activating CREB pathway. Therefore, TNFAIP1 is a potential target for relieving the DEHP-induced neurotoxicity and related neurological disorders.
Collapse
Affiliation(s)
- Feng Qiu
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yubo Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yeke Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Junzhi Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Mengting Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ning Liu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
14
|
Xiao Y, Huang S, Qiu F, Ding X, Sun Y, Wei C, Hu X, Wei K, Long S, Xie L, Xun Y, Chen W, Zhang Z, Liu N, Xiang S. Tumor necrosis factor α-induced protein 1 as a novel tumor suppressor through selective downregulation of CSNK2B blocks nuclear factor-κB activation in hepatocellular carcinoma. EBioMedicine 2020; 51:102603. [PMID: 31901862 PMCID: PMC6950786 DOI: 10.1016/j.ebiom.2019.102603] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Background Tumor necrosis factor α-induced protein 1 (TNFAIP1) is frequently downregulated in cancer cell lines and promotes cancer cell apoptosis. However, its role, clinical significance and molecular mechanisms in hepatocellular carcinoma (HCC) are unknown. Methods The expression of TNFAIP1 in HCC tumor tissues and cell lines was measured by Western blot and immunohistochemistry. The effects of TNFAIP1 on HCC proliferation, apoptosis, metastasis, angiogenesis and tumor formation were evaluated by Cell Counting Kit-8 (CCK8), Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL), transwell, tube formation assay in vitro and nude mice experiments in vivo. The interaction between TNFAIP1 and CSNK2B was validated by liquid chromatography-tandem mass spectrometry (LC-MS/MS), Co-immunoprecipitation and Western blot. The mechanism of how TNFAIP1 regulated nuclear factor-kappaB (NF-κB) pathway was analyzed by dual-luciferase reporter, immunofluorescence, quantitative Real-time polymerase chain reaction (RT-qPCR) and Western blot. Findings The TNFAIP1 expression is significantly decreased in HCC tissues and cell lines, and negatively correlated with the increased HCC histological grade. Overexpression of TNFAIP1 inhibits HCC cell proliferation, metastasis, angiogenesis and promotes cancer cell apoptosis both in vitro and in vivo, whereas the knockdown of TNFAIP1 in HCC cell displays opposite effects. Mechanistically, TNFAIP1 interacts with CSNK2B and promotes its ubiquitin-mediated degradation with Cul3, causing attenuation of CSNK2B-dependent NF-κB trans-activation in HCC cell. Moreover, the enforced expression of CSNK2B counteracts the inhibitory effects of TNFAIP1 on HCC cell proliferation, migration, and angiogenesis in vitro and in vivo. Interpretation Our results support that TNFAIP1 can act as a tumor suppressor of HCC by modulating TNFAIP1/CSNK2B/NF-κB pathway, implying that TNFAIP1 may represent a potential marker and a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Ye Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China; Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Shulan Huang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Feng Qiu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yi Sun
- Department of Pathology, Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ke Wei
- Medical school, Hunan University of Traditional Chinese Medicine, Changsha, 410208, China
| | - Shengwen Long
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Lina Xie
- Department of Stomatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yu Xun
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Wen Chen
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhijian Zhang
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Ning Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China.
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
15
|
Teng X, Aouacheria A, Lionnard L, Metz KA, Soane L, Kamiya A, Hardwick JM. KCTD: A new gene family involved in neurodevelopmental and neuropsychiatric disorders. CNS Neurosci Ther 2019; 25:887-902. [PMID: 31197948 PMCID: PMC6566181 DOI: 10.1111/cns.13156] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The underlying molecular basis for neurodevelopmental or neuropsychiatric disorders is not known. In contrast, mechanistic understanding of other brain disorders including neurodegeneration has advanced considerably. Yet, these do not approach the knowledge accrued for many cancers with precision therapeutics acting on well-characterized targets. Although the identification of genes responsible for neurodevelopmental and neuropsychiatric disorders remains a major obstacle, the few causally associated genes are ripe for discovery by focusing efforts to dissect their mechanisms. Here, we make a case for delving into mechanisms of the poorly characterized human KCTD gene family. Varying levels of evidence support their roles in neurocognitive disorders (KCTD3), neurodevelopmental disease (KCTD7), bipolar disorder (KCTD12), autism and schizophrenia (KCTD13), movement disorders (KCTD17), cancer (KCTD11), and obesity (KCTD15). Collective knowledge about these genes adds enhanced value, and critical insights into potential disease mechanisms have come from unexpected sources. Translation of basic research on the KCTD-related yeast protein Whi2 has revealed roles in nutrient signaling to mTORC1 (KCTD11) and an autophagy-lysosome pathway affecting mitochondria (KCTD7). Recent biochemical and structure-based studies (KCTD12, KCTD13, KCTD16) reveal mechanisms of regulating membrane channel activities through modulation of distinct GTPases. We explore how these seemingly varied functions may be disease related.
Collapse
Affiliation(s)
- Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Loïc Lionnard
- ISEM, Institut des Sciences de l'Evolution de Montpellier, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Kyle A. Metz
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
- Present address:
Feinberg School of MedicineNorthwestern UniversityChicagoUSA
| | - Lucian Soane
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral SciencesJohns Hopkins School of MedicineBaltimoreMaryland
| | - J. Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and ImmunologyJohns Hopkins University Bloomberg School of Public HealthBaltimoreMaryland
| |
Collapse
|
16
|
Abstract
Thrombus formation is dependent on the interaction of platelets, leukocytes and endothelial cells as well as proteins of the coagulation cascade. This interaction is tightly controlled by phospho-regulated pathways involving protein kinase CK2. A growing number of studies have demonstrated an important role of this kinase in the regulation of primary and secondary hemostasis. Inhibition of CK2 downregulates the expression of important adhesion molecules on platelets and endothelial cells, such as glycoprotein (GP)IIb/IIIa, P-selectin, von Willebrand factor and vascular cell adhesion molecule. Moreover, the reduced CK2-dependent phosphorylation of different coagulation factors prevents the conversion of fibrinogen to fibrin. Targeting these mechanisms may open the door for the development of novel anti-thrombotic therapies.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Beate M Schmitt
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Matthias W Laschke
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| | - Michael D Menger
- a Institute for Clinical & Experimental Surgery , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
17
|
He D, Tan J, Zhang J. miR-137 attenuates Aβ-induced neurotoxicity through inactivation of NF-κB pathway by targeting TNFAIP1 in Neuro2a cells. Biochem Biophys Res Commun 2017; 490:941-947. [PMID: 28655611 DOI: 10.1016/j.bbrc.2017.06.144] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Accumulation of β-amyloid (Aβ) and neuroinflammation are implicated in the pathogenesis and development of Alzheimer's disease (AD). Neuron-enriched miR-137 was aberrantly downregulated and may be associated with the pathogenesis of AD. However, the detailed function of miR-137 in AD pathogenesis and the molecular mechanism have not been elucidated. METHODS The expressions of miR-137 and tumor necrosis factor alpha (TNFα)-induced protein 1 (TNFAIP1) at mRNA and protein levels in primary mouse cortical neurons and Neuro2a (N2a) cells exposed to different concentrations of Aβ25-35 were examined by qRT-PCR and western blot. Luciferase reporter assay was used to confirm the potential target of miR-137. MTT assay, flow cytometry analysis, caspase-3 activity assay, Enzyme-linked immunosorbent assay (ELISA), and western blot were used to detect cell viability, apoptosis, caspase-3 activity, Nuclear factor-kappa B (NF-κB) activity and level, respectively. RESULTS Aβ25-35 downregulated miR-137 and upregulated TNFAIP1 in primary mouse cortical neurons and N2a cells. In addition, miR-137 was found to directly target TNFAIP1 and suppress its mRNA and protein levels. Moreover, miR-137 restoration and TNFAIP1 knockdown facilitate Aβ25-35-induced cell toxicity, apoptosis, caspase-3 activity, and activated NF-κB in N2a cells, which was partially abolished by TNFAIP1 overexpression. CONCLUSION miR-137 attenuated Aβ-induced neurotoxicity through inactivation of NF-κB pathway by targeting TNFAIP1 in N2a cells, shedding light on the molecular mechanism of miR-137 underlying Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Dan He
- Department of Neurology, The People's Hospital of Zhengzhou University, Zhengzhou, 450003, PR China; Department of Neurology, Sanbo Brain Hospital of Capital Medical University, Beijing, 100093, PR China
| | - Jun Tan
- Department of Neurology, The Third Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453000, PR China
| | - Jiewen Zhang
- Department of Neurology, The People's Hospital of Zhengzhou University, Zhengzhou, 450003, PR China.
| |
Collapse
|
18
|
Tan ZW, Xie S, Hu SY, Liao T, Liu P, Peng KH, Yang XZ, He ZL, Tang HY, Cui Y, Peng XN, Zhang J, Zhou C. Caudatin targets TNFAIP1/NF-κB and cytochrome c/caspase signaling to suppress tumor progression in human uterine cancer. Int J Oncol 2016; 49:1638-1650. [DOI: 10.3892/ijo.2016.3662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/18/2016] [Indexed: 11/12/2022] Open
|
19
|
Liu N, Yu Z, Xun Y, Li M, Peng X, Xiao Y, Hu X, Sun Y, Yang M, Gan S, Yuan S, Wang X, Xiang S, Zhang J. TNFAIP1 contributes to the neurotoxicity induced by Aβ25-35 in Neuro2a cells. BMC Neurosci 2016; 17:51. [PMID: 27430312 PMCID: PMC4949755 DOI: 10.1186/s12868-016-0286-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyloid-beta (Aβ) accumulation is a hallmark of Alzheimer's disease (AD) that can lead to neuronal dysfunction and apoptosis. Tumor necrosis factor, alpha-induced protein 1 (TNFAIP1) is an apoptotic protein that was robustly induced in the transgenic C. elegans AD brains. However, the roles of TNFAIP1 in AD have not been investigated. RESULTS We found TNFAIP1 protein and mRNA levels were dramatically elevated in primary mouse cortical neurons and Neuro2a (N2a) cells exposed to Aβ25-35. Knockdown and overexpression of TNFAIP1 significantly attenuated and exacerbated Aβ25-35-induced neurotoxicity in N2a cells, respectively. Further studies showed that TNFAIP1 knockdown significantly blocked Aβ25-35-induced cleaved caspase 3, whereas TNFAIP1 overexpression enhanced Aβ25-35-induced cleaved caspase 3, suggesting that TNFAIP1 plays an important role in Aβ25-35-induced neuronal apoptosis. Moreover, we observed that TNFAIP1 was capable of inhibiting the levels of phosphorylated Akt and CREB, and also anti-apoptotic protein Bcl-2. TNFAIP1 overexpression enhanced the inhibitory effect of Aβ25-35 on the levels of p-CREB and Bcl-2, while TNFAIP1 knockdown reversed Aβ25-35-induced attenuation in the levels of p-CREB and Bcl-2. CONCLUSION These results suggested that TNFAIP1 contributes to Aβ25-35-induced neurotoxicity by attenuating Akt/CREB signaling pathway, and Bcl-2 expression.
Collapse
Affiliation(s)
- Ning Liu
- College of Medicine, Hunan Normal University, Changsha, China.,Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Yu Xun
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Miaomiao Li
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaoning Peng
- College of Medicine, Hunan Normal University, Changsha, China
| | - Ye Xiao
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Manjun Yang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shiquan Gan
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shishan Yuan
- College of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Department of Neurology and Radiology, Massachusetts General Hospital, Neuroscience Program, Harvard Medical School, Boston, MA, USA
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
20
|
Lentz MR, Shideler T. Phosphorylation of bovine papillomavirus E1 by the protein kinase CK2 near the nuclear localization signal does not influence subcellular distribution of the protein in dividing cells. Arch Virol 2015; 161:165-9. [PMID: 26467928 DOI: 10.1007/s00705-015-2641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/07/2015] [Indexed: 11/25/2022]
Abstract
The bovine papillomavirus E1 helicase is essential for viral replication. In dividing cells, DNA replication maintains, but does not increase, the viral genome copy number. Replication is limited by low E1 expression and an E1 nucleocytoplasmic shuttling mechanism. Shuttling is controlled in part by phosphorylation of E1 by cellular kinases. Here we investigate conserved sites for phosphorylation by kinase CK2 within the E1 nuclear localization signal. When these CK2 sites are mutated to either alanine or aspartic acid, no change in replication phenotype is observed, and there is no effect on the subcellular distribution of E1, which remains primarily nuclear. This demonstrates that phosphorylation of E1 by CK2 at these sites is not a factor in regulating viral DNA replication in dividing cells.
Collapse
Affiliation(s)
- Michael R Lentz
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA.
| | - Tess Shideler
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, 32224, USA
- Department of Pathology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
21
|
Liu N, Wei K, Xun Y, Yang X, Gan S, Xiao H, Xiao Y, Yan F, Xie G, Wang T, Yang Y, Zhang J, Hu X, Xiang S. Transcription factor cyclic adenosine monophosphate responsive element binding protein negatively regulates tumor necrosis factor alpha-induced protein 1 expression. Mol Med Rep 2015; 12:7763-9. [PMID: 26398148 DOI: 10.3892/mmr.2015.4336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 08/17/2015] [Indexed: 11/05/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα)-induced protein 1 (TNFAIP1) was originally identified as a protein involved in DNA replication, DNA damage repair, apoptosis and the progression of certain diseases, such as Alzheimer's disease. In the present study, forskolin, a stimulant of cyclic adenosine monophosphate (cAMP), was found to significantly reduce human TNFAIP1 mRNA levels and TNFAIP1 promoter activity in the SKNSH human neuroblastoma cell line as indicated by polymerase chain reaction analysis and a luciferase reporter assay. The association between transcription factor cAMP response element‑binding protein (CREB) and TNFAIP1 was further investigated using loss- and gain of function-studies with western blot analysis and luciferase reporter assays. The CREB-specific inhibitor KG‑501 significantly increased TNFAIP1 protein levels, while overexpression of wild‑type CREB, but not CREB mutated at ser133a or its DNA-binding site, significantly decreased human TNFAIP1 protein levels and TNFAIP1 promoter activity in SKNSH cells. Furthermore, two CRE sites located at ‑285 and ‑425 bp of the human TNFAIP1 promoter were identified to be responsible for CREB‑induced inhibition of human TNFAIP1 promoter activity. Chromatin immunoprecipitation assays confirmed that CREB bound to the TNFAIP1 promoter region harboring these two CRE sites. A further luciferase reporter assay demonstrated that CREB phosphorylation on ser133 was responsible for forskolin‑induced inhibition of TNFAIP1 expression. In conclusion, the present study suggested that CREB is a negative regulator of the TNFAIP1 gene.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Ke Wei
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yu Xun
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiaoxu Yang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Shiquan Gan
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Hui Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Ye Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Feng Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Guie Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Tingting Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yinke Yang
- Department of Molecular Medicine, College of Biology, Hunan University, Changsha, Hunan 410081, P.R. China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
22
|
Lin GN, Corominas R, Lemmens I, Yang X, Tavernier J, Hill DE, Vidal M, Sebat J, Iakoucheva LM. Spatiotemporal 16p11.2 protein network implicates cortical late mid-fetal brain development and KCTD13-Cul3-RhoA pathway in psychiatric diseases. Neuron 2015; 85:742-54. [PMID: 25695269 DOI: 10.1016/j.neuron.2015.01.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/17/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Abstract
The psychiatric disorders autism and schizophrenia have a strong genetic component, and copy number variants (CNVs) are firmly implicated. Recurrent deletions and duplications of chromosome 16p11.2 confer a high risk for both diseases, but the pathways disrupted by this CNV are poorly defined. Here we investigate the dynamics of the 16p11.2 network by integrating physical interactions of 16p11.2 proteins with spatiotemporal gene expression from the developing human brain. We observe profound changes in protein interaction networks throughout different stages of brain development and/or in different brain regions. We identify the late mid-fetal period of cortical development as most critical for establishing the connectivity of 16p11.2 proteins with their co-expressed partners. Furthermore, our results suggest that the regulation of the KCTD13-Cul3-RhoA pathway in layer 4 of the inner cortical plate is crucial for controlling brain size and connectivity and that its dysregulation by de novo mutations may be a potential determinant of 16p11.2 CNV deletion and duplication phenotypes.
Collapse
Affiliation(s)
- Guan Ning Lin
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Roser Corominas
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Irma Lemmens
- Department of Medical Protein Research, VIB, and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Xinping Yang
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - David E Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; Beyster Center for Genomics of Psychiatric Diseases, University of California San Diego, La Jolla, CA 92093, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
The identification of loci for immune traits in chickens using a genome-wide association study. PLoS One 2015; 10:e0117269. [PMID: 25822738 PMCID: PMC4378930 DOI: 10.1371/journal.pone.0117269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022] Open
Abstract
The genetic improvement of disease resistance in poultry continues to be a challenge. To identify candidate genes and loci responsible for these traits, genome-wide association studies using the chicken 60k high density single nucleotide polymorphism (SNP) array for six immune traits, total serum immunoglobulin Y (IgY) level, numbers of, and the ratio of heterophils and lymphocytes, and antibody responses against Avian Influenza Virus (AIV) and Sheep Red Blood Cell (SRBC), were performed. RT-qPCR was used to quantify the relative expression of the identified candidate genes. Nine significantly associated SNPs (P < 2.81E-06) and 30 SNPs reaching the suggestively significant level (P < 5.62E-05) were identified. Five of the 10 SNPs that were suggestively associated with the antibody response to SRBC were located within or close to previously reported QTL regions. Fifteen SNPs reached a suggestive significance level for AIV antibody titer and seven were found on the sex chromosome Z. Seven suggestive markers involving five different SNPs were identified for the numbers of heterophils and lymphocytes, and the heterophil/lymphocyte ratio. Nine significant SNPs, all on chromosome 16, were significantly associated with serum total IgY concentration, and the five most significant were located within a narrow region spanning 6.4kb to 253.4kb (P = 1.20E-14 to 5.33E-08). After testing expression of five candidate genes (IL4I1, CD1b, GNB2L1, TRIM27 and ZNF692) located in this region, changes in IL4I1, CD1b transcripts were consistent with the concentrations of IgY, while abundances of TRIM27 and ZNF692 showed reciprocal changes to those of IgY concentrations. This study has revealed 39 SNPs associated with six immune traits (total serum IgY level, numbers of, and the ratio of heterophils and lymphocytes, and antibody responses against AIV and SRBC) in Beijing-You chickens. The narrow region spanning 247kb on chromosome 16 is an important QTL for serum total IgY concentration. Five candidate genes related to IgY level validated here are novel and may play critical roles in the modulation of immune responses. Potentially useful candidate SNPs for marker-assisted selection for disease resistance are identified. It is highly likely that these candidate genes play roles in various aspects of the immune response in chickens.
Collapse
|
24
|
ZHANG CHENGLIN, WANG CE, YAN WANGJUN, GAO RUI, LI YONGHUA, ZHOU XUHUI. Knockdown of TNFAIP1 inhibits growth and induces apoptosis in osteosarcoma cells through inhibition of the nuclear factor-κB pathway. Oncol Rep 2014; 32:1149-55. [DOI: 10.3892/or.2014.3291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/30/2014] [Indexed: 11/05/2022] Open
|
25
|
Liu H, Yang L, Zhao Y, Zeng G, Wu Y, Chen Y, Zhang J, Zeng Q. Estrogen is a novel regulator of Tnfaip1 in mouse hippocampus. Int J Mol Med 2014; 34:219-27. [PMID: 24737445 DOI: 10.3892/ijmm.2014.1742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/26/2014] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑induced protein 1 (Tnfaip1), also known as B12, has been previously identified as a tumor necrosis factor-α (TNF-α)-inducible protein and is involved in the cytokinesis signaling pathway, DNA synthesis, innate immunity, cell apoptosis, Alzheimer's disease (AD) and type 2 diabetic nephropathy. However, little is known regarding the expression of Tnfaip1 in various tissues or its accurate role in these physiological functions. The focus of this study was on Tnfaip1 expression in different tissues, with a high expression in mouse hippocampus being identified. The age- and gender‑related expression of Tnfaip1 in hippocampus was also investigated. The distribution of Tnfaip1 was mapped using fluorescent immunostaining. Although immunoactivity was found in the CA1, CA3 and DG subregions of the hippocampus in E17.5 and P6 mice, strong staining was only detected in the CA3 subregion in adult mice. These data suggested that Tnfaip1 expression in hippocampus may be regulated by estrogen. Further study showed that the expression of Tnfaip1 in the hippocampus was significantly increased in ovariecto-mized mice compared to Sham mice. In cultured primary hippocampal cells, Tnfaip1 showed different expression levels in different treatments of estrogen or estrogen receptor antagonists. Additional experiments demonstrated the existence of a binding site of ERβ in the Tnfaip1 promoter region, and that ERβ was able to upregulate Tnfaip1 expression. Our study identified a new regulatory factor and a primary regulatory mechanism of Tnfaip1 expression in hippocampus. Since both hippocampus and estrogen are crucial in AD, the results also showed a potential association between Tnfaip1 and hippocampal-related diseases, such as AD, which may be affected by the estrogen level.
Collapse
Affiliation(s)
- Hui Liu
- Department of Life Science, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Liping Yang
- Department of Enviromental Science, Changsha Environmental Protection College, Changsha, Hunan 410004, P.R. China
| | - Yingchun Zhao
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA 70112, USA
| | - Guihua Zeng
- Department of Enviromental Science, Changsha Environmental Protection College, Changsha, Hunan 410004, P.R. China
| | - Yaosong Wu
- Laboratory of Molecular Biology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 410208, P.R. China
| | - Yulong Chen
- Laboratory of Molecular Biology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 410208, P.R. China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology, Ministry of Education of China, Department of Biochemistry and Molecular Biology, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Qingru Zeng
- Department of Life Science, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| |
Collapse
|
26
|
Zhang X, Li X, Tan Z, Liu X, Yang C, Ding X, Hu X, Zhou J, Xiang S, Zhou C, Zhang J. MicroRNA-373 is upregulated and targets TNFAIP1 in human gastric cancer, contributing to tumorigenesis. Oncol Lett 2013; 6:1427-1434. [PMID: 24179536 PMCID: PMC3813807 DOI: 10.3892/ol.2013.1534] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/08/2013] [Indexed: 01/04/2023] Open
Abstract
The role of microRNAs (miRNAs) in regulating gene expression is currently an area of intense interest. Previous studies have shown that miRNA-372 plays crucial roles in gastric tumorigenesis by targeting the mRNA of tumor necrosis factor, α-induced protein 1 (TNFAIP1). The present study showed that miR-373 is upregulated in gastric adenocarcinoma tissue and gastric carcinoma cell lines when compared to normal gastric tissues. The overexpression of miR-373 in the gastric cancer cells increased cell proliferation. A bioinformatics search revealed a conserved target site within the 3′ untranslated region (UTR) of TNFAIP1, an immediate-early response gene of the endothelium induced by TNF-α. The overexpression of miR-373 caused the suppression of a luciferase reporter containing the TNFAIP1 3′UTR in the HEK293 cells and reduced the levels of TNFAIP1 protein in the AGS cells. The mRNA levels of TNFAIP1 in the gastric cancer and normal gastric tissues were negatively correlated with the expression levels of miR-373 in these tissues. Moreover, the knockdown of TNFAIP1 had a similar effect to the overexpression of miR-373. The overexpression of TNFAIP1 may partly rescue the inhibition of proliferation caused by the inhibitor, miR-373-ASO. Taken together, these findings demonstrate an oncogenic role for miR-373, similar to that of miR-372, in controlling cell growth through the downregulation of TNFAIP1.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Skoblov M, Marakhonov A, Marakasova E, Guskova A, Chandhoke V, Birerdinc A, Baranova A. Protein partners of KCTD proteins provide insights about their functional roles in cell differentiation and vertebrate development. Bioessays 2013; 35:586-96. [PMID: 23592240 DOI: 10.1002/bies.201300002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The KCTD family includes tetramerization (T1) domain containing proteins with diverse biological effects. We identified a novel member of the KCTD family, BTBD10. A comprehensive analysis of protein-protein interactions (PPIs) allowed us to put forth a number of testable hypotheses concerning the biological functions for individual KCTD proteins. In particular, we predict that KCTD20 participates in the AKT-mTOR-p70 S6k signaling cascade, KCTD5 plays a role in cytokinesis in a NEK6 and ch-TOG-dependent manner, KCTD10 regulates the RhoA/RhoB pathway. Developmental regulator KCTD15 represses AP-2α and contributes to energy homeostasis by suppressing early adipogenesis. TNFAIP1-like KCTD proteins may participate in post-replication DNA repair through PCNA ubiquitination. KCTD12 may suppress the proliferation of gastrointestinal cells through interference with GABAb signaling. KCTD9 deserves experimental attention as the only eukaryotic protein with a DNA-like pentapeptide repeat domain. The value of manual curation of PPIs and analysis of existing high-throughput data should not be underestimated.
Collapse
Affiliation(s)
- Mikhail Skoblov
- Research Center for Medical Genetics RAMS, Moscow, Russian Federation, Russia
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhou C, Li X, Zhang X, Liu X, Tan Z, Yang C, Zhang J. microRNA-372 maintains oncogene characteristics by targeting TNFAIP1 and affects NFκB signaling in human gastric carcinoma cells. Int J Oncol 2012; 42:635-42. [PMID: 23242208 DOI: 10.3892/ijo.2012.1737] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/23/2012] [Indexed: 11/06/2022] Open
Abstract
Aberrant microRNA (miRNA) expression has been investigated in gastric cancer, which is one of the most common malignancies. However, the roles of miRNAs in gastric cancer remain largely unknown. In the present study, we found that microRNA-372 (miR-372) directly targets tumor necrosis factor, α-induced protein 1 (TNFAIP1), and is involved in the regulation of the NFκB signaling pathway. Furthermore, overexpression of TNFAIP1 induced changes in AGS cells similar to those in AGS cells treated with miR-372-ASO. Collectively, these findings demonstrate an oncogenic role for miR-372 in controlling cell growth and apoptosis through downregulation of TNFAIP1. This novel molecular basis provides new insights into the etiology of gastric cancer.
Collapse
Affiliation(s)
- Chang Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hu X, Yan F, Wang F, Yang Z, Xiao L, Li L, Xiang S, Zhou J, Ding X, Zhang J. TNFAIP1 interacts with KCTD10 to promote the degradation of KCTD10 proteins and inhibit the transcriptional activities of NF-κB and AP-1. Mol Biol Rep 2012; 39:9911-9. [PMID: 22810651 DOI: 10.1007/s11033-012-1858-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 06/11/2012] [Indexed: 11/30/2022]
Abstract
The broad-complex, tramtrack, and bric-a-brac/poxvirus and zinc finger domain-containing protein tumor necrosis factor, alpha-induced protein 1 (TNFAIP1) was first identified as a gene whose expression can be induced by the tumor necrosis factor alpha. Some studies showed that TNFAIP1 may function in DNA replication, apoptosis and human diseases. However, the definite functions and the mechanisms of TNFAIP1 are poorly known. In this study, we performed a yeast two-hybrid assay and used TNFAIP1 as the bait to screen human brain cDNA library. Potassium channel tetramerisation domain containing 10 (KCTD10) was identified as TNFAIP1-interacting partner. The KCTD10-TNFAIP1 interaction was then confirmed by the in vitro GST pull-down assays and the in vivo co-immunoprecipitation and colocalization assays. In addition, protein degradation and ubiquitin assays revealed TNFAIP1 overexpression resulted in ubiquitin-mediated degradation of KCTD10 proteins, which was significantly alleviated with the proteasome inhibitor MG132 treatment. Furthermore, transient transfection assays with two reporters showed that TNFAIP1 and KCTD10 inhibited the transcriptional activities of nuclear factor kappa B (NF-κB) and activating protein-1 reporters. Taken together, our results indicated the novel interaction and function between KCTD10 and TNFAIP1 in human PDIP1 family.
Collapse
Affiliation(s)
- Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cai L, Pan H, Trzciński K, Thompson CM, Wu Q, Kramnik I. MYBBP1A: a new Ipr1's binding protein in mice. Mol Biol Rep 2010; 37:3863-8. [PMID: 20221700 PMCID: PMC3084015 DOI: 10.1007/s11033-010-0042-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/24/2010] [Indexed: 12/16/2022]
Abstract
Infection with mycobacterium tuberculosis (MTB) can cause different outcomes in hosts with variant genetic backgrounds. Previously, we identified an intracellular pathogen resistance 1 (Ipr1) gene with the role of resistance of MTB infection in mice model. However, until now, its binding proteins have been little known even for its human homology, SP110. In this study, the homology for mouse Ipr1 in canines was found to have an extra domain structure, h.1.5.1. And 30 potential candidate proteins were predicted to bind canine Ipr1, which were characterized of the interacting structure with the h.1.5.1. Among them, MYBBP1A was verified to bind with both Ipr1 and eGFP-Ipr1 in mouse macrophage J774A.1 clone 21 cells using co-immunoprecipitation method. And with the constructed high-confidence Ipr1-involved network, we suggested that Ipr1 might be involved in apoptosis pathway via MYBBP1A.
Collapse
Affiliation(s)
- Lei Cai
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 667 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Jiang GX, Zhong XY, Cui YF, Liu W, Tai S, Wang ZD, Shi YG, Zhao SY, Li CL. IL-6/STAT3/TFF3 signaling regulates human biliary epithelial cell migration and wound healing in vitro. Mol Biol Rep 2010; 37:3813-8. [PMID: 20229017 DOI: 10.1007/s11033-010-0036-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/24/2010] [Indexed: 12/15/2022]
Abstract
Interleukin-6 (IL-6), through activation of the signal transducer and activator of transcription 3 (STAT3) and trefoil factor family 3 (TFF3), has been implicated in the promotion of mouse biliary epithelial cell (BEC) proliferation and migration. However, it is still unclear whether the IL-6/STAT3/TFF3 signaling had similar effects on human BECs. Here, we showed that exposure of human BECs to recombinant IL-6 resulted in STAT3 phosphorylation and increased the expression of TFF3 at both mRNA and protein levels. Moreover, inhibition of STAT3 using RNA interference significantly abrogated IL-6-induced TFF3 expression. In an in-vitro wound healing model, IL-6 facilitated human BEC migration. This promotion of cell migration by IL-6 was blocked when STAT3 was knocked down. Interestingly, the addition of exogenous TFF3 could rescue the cell migration defects caused by STAT3 silencing. In conclusion, our data indicate that STAT3 plays a critical role in IL-6-induced TFF3 expression in human BECs and the IL-6/STAT3/TFF3 signaling is involved in human BEC migration and wound healing.
Collapse
Affiliation(s)
- Gui-xing Jiang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Grinchuk OV, Motakis E, Kuznetsov VA. Complex sense-antisense architecture of TNFAIP1/POLDIP2 on 17q11.2 represents a novel transcriptional structural-functional gene module involved in breast cancer progression. BMC Genomics 2010; 11 Suppl 1:S9. [PMID: 20158880 PMCID: PMC2822537 DOI: 10.1186/1471-2164-11-s1-s9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background A sense-antisense gene pair (SAGP) is a gene pair where two oppositely transcribed genes share a common nucleotide sequence region. In eukaryotic genomes, SAGPs can be organized in complex sense-antisense architectures (CSAGAs) in which at least one sense gene shares loci with two or more antisense partners. As shown in several case studies, SAGPs may be involved in cancers, neurological diseases and complex syndromes. However, CSAGAs have not yet been characterized in the context of human disease or cancer. Results We characterize five genes (TMEM97, IFT20, TNFAIP1, POLDIP2 and TMEM199) organized in a CSAGA on 17q11.2 (we term this the TNFAIP1/POLDIP2 CSAGA) and demonstrate their strong and reproducible co-regulatory transcription pattern in breast cancer tumours. Genes of the TNFAIP1/POLDIP2 CSAGA are located inside the smallest region of recurrent amplification on 17q11.2 and their expression profile correlates with the DNA copy number of the region. Survival analysis of a group of 410 breast cancer patients revealed significant survival-associated individual genes and gene pairs in the TNFAIP1/POLDIP2 CSAGA. Moreover, several of the gene pairs associated with survival, demonstrated synergistic effects. Expression of genes-members of the TNFAIP1/POLDIP2 CSAGA also strongly correlated with expression of genes of ERBB2 core region of recurrent amplification on 17q12. We clearly demonstrate that the observed co-regulatory transcription profile of the TNFAIP1/POLDIP2 CSAGA is maintained not only by a DNA amplification mechanism, but also by chromatin remodelling and local transcription activation. Conclusion We have identified a novel TNFAIP1/POLDIP2 CSAGA and characterized its co-regulatory transcription profile in cancerous breast tissues. We suggest that the TNFAIP1/POLDIP2 CSAGA represents a clinically significant transcriptional structural-functional gene module associated with amplification of the genomic region on 17q11.2 and correlated with expression ERBB2 amplicon core genes in breast cancer. Co-expression pattern of this module correlates with histological grades and a poor prognosis in breast cancer when over-expressed. TNFAIP1/POLDIP2 CSAGA maps the risks of breast cancer relapse onto the complex genomic locus on 17q11.2.
Collapse
|