1
|
Carreira V, Standeven AM, Ma JY, Hardisty J, Cohen SM, Kerns WD, Snook S. Inhibitors of TGFβR1/ALK4/JNK3/Flt1 Kinases in Cynomolgus Macaques Lead to the Rapid Induction of Renal Epithelial Tumors. Toxicol Sci 2021; 180:51-61. [PMID: 33483736 DOI: 10.1093/toxsci/kfaa190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two young cynomolgus macaques (Macaca fascicularis) given a small molecule kinase inhibitor ((S)-4-((2-(5-chloro-2-fluorophenyl)-5-isopropylpyrimidin-4-yl)amino)-N-(2-hydroxypropyl)nicotinamide [SCIO-120]) via nasogastric intubation gavage, once-daily for 21 days at 400 mg/kg/day, developed an unusual epithelial proliferative process in the renal parenchyma. Morphological and immunohistochemical characterization of the lesions confirmed an invasive malignant epithelial neoplasm (carcinoma). A similar renal neoplasm was seen in a third macaque after a 14-day exposure to a second kinase inhibitor in the same chemical series ((S) 4-((2-(5-chloro-2-fluorophenyl)-5-methoxypyrimidin-4-yl)amino)-N-cyclopropylnicotinamide [SCIO-974]). Despite remarkably short latency periods, exposure to these kinase inhibitors was likely causally associated with the induction of the renal tumors, as renal carcinomas are exceedingly rare spontaneously in macaques. Both SCIO-120 and SCIO-974 were designed as potent TGFβR1 inhibitors (IC50s 37 and 39 nM, respectively). SCIO-120 and SCIO-974 inhibited additional kinases, most notably closely related ALK4 (IC50 = 34 and 20 nM, respectively), c-Jun n-Terminal kinase 3 (JNK3, IC50 = 10 and 20 nM, respectively), and Fms-related tyrosine kinase 1 (29 and 76 nM, respectively). TGFβR1 has been specifically implicated in epithelial proliferative disorders, including neoplasia. Neither SCIO-120 nor SCIO-974 was genotoxic based on bacterial reverse mutation and/or clastogenicity screening assays. The rapid appearance of renal carcinomas in primates following short-term treatment with nongenotoxic kinase inhibitors is remarkable and suggests that the compounds had noteworthy tumor-enhancing effects, hypothetically linked to their TGFβR1 inhibition activity. These observations have implications for mechanisms of carcinogenesis and TGFβR1 biology.
Collapse
Affiliation(s)
| | - Andrew M Standeven
- Nonclinical Safety, Janssen R&D, South San Francisco, California 94080, USA
| | - Jing Ying Ma
- Nonclinical Safety, Janssen R&D, San Diego, California 92121, USA
| | - Jerry Hardisty
- Experimental Pathology Laboratories (EPL), Sterling, Virginia 20166, USA
| | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA
| | - Williams D Kerns
- Department of Nonclinical Drug Development, Accellient Partners, Evergreen, Colorado, USA
| | - Sandra Snook
- Nonclinical Safety, Janssen R&D, San Diego, California 92121, USA
| |
Collapse
|
2
|
Gu D, Li S, Du M, Tang C, Chu H, Tong N, Zhang Z, Wang M, Chen J. A genetic variant located in the miR-532-5p-binding site of TGFBR1 is associated with the colorectal cancer risk. J Gastroenterol 2019; 54:141-148. [PMID: 29971498 DOI: 10.1007/s00535-018-1490-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/22/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Genome-wide association studies have identified genes in the transforming growth factor-β (TGFβ) signaling pathway that are responsible for regulating carcinogenesis. METHODS We searched for single-nucleotide polymorphisms (SNPs) located within 3'-untranslated regions (3'-UTRs) that might affect the ability of miRNAs to bind genes in the TGFβ pathway for further analysis. We used TaqMan technology to genotype these SNPs in a population-based case-control study of 1147 colorectal cancer patients and 1203 matched controls in a Chinese population. RESULTS The rs1590 variant of TGFBR1 exhibited a significant association with colorectal cancer risk. Compared with individuals carrying the rs1590 TT genotype, individuals carrying the GT/GG genotypes had a decreased risk of colorectal cancer [odd ratio (OR) = 0.82, 95% confidence interval (CI) = 0.68-0.97], which was more evident among older individuals with a family history of cancer. Luciferase assays confirmed that the rs1590 T allele altered the capacity of miR-532-5p to bind TGFBR1. CONCLUSIONS Based on these findings, the rs1590 variant in the 3'-UTR of TGFBR1 may contribute to the susceptibility to colorectal cancer, predominantly by altering miR-532-5p binding.
Collapse
Affiliation(s)
- Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.,Department of Biostatistics, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Na Tong
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, China.
| |
Collapse
|
3
|
Zhou R, Huang Y, Cheng B, Wang Y, Xiong B. TGFBR1*6A is a potential modifier of migration and invasion in colorectal cancer cells. Oncol Lett 2018; 15:3971-3976. [PMID: 29467907 DOI: 10.3892/ol.2018.7725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Type 1 transforming growth factor β receptor (TGFBR1)*6A, a common hypomorphic variant of TGFBR1, may act as a susceptibility allele in colorectal cancer. However, the contribution of TGFBR1*6A to colorectal cancer development is largely unknown. To test the hypothesis that TGFBR1*6A promotes colorectal cancer invasion and metastasis via Smad-independent transforming growth factor-β (TGF-β) signaling, the effect of TGFBR1*6A on the invasion of colorectal cancer cells was assessed. pCMV5-TGFBR1*6A-HA plasmids were transfected into SW48 and DLD-1 cells by Lipofectamine-mediated DNA transfection. The effect of TGF-β1 on the proliferation of SW48 and DLD-1 cells transfected with TGFBR1*6A was determined by MTT assay. The effects of the TGF-β1 on the invasion of the transfected SW48 and DLD-1 cells were determined using Matrigel-coated plates. Transforming migrating chambers were used to determine the effects of TGF-β1 on the migration of the transfected SW48 and DLD-1 cells. Western blot analysis was used to determine the expression of phosphorylated (p-) extracellular-signal-regulated kinase (ERK), p-P38 and p-SMAD family member 2 in SW48 cells. Using transfected TGFBR1*6A SW48 and DLD-1 cell lines our group demonstrated that, in comparison with TGFBR1*9A, TGFBR1*6A is capable of switching TGF-β1 growth-inhibitory signals into growth-stimulatory signals which significantly increased the invasion of SW48 and DLD-1 cells. Functional assays indicated that TGFBR1*6A weakened Smad-signaling but increased ERK and p38 signaling, which are crucial mediators of cell migration and invasion. From this, it was possible to conclude that TGFBR1*6A enhanced SW48 cell migration and invasion through the mitogen-activated protein kinase pathway and that it may contribute to colorectal cancer progression in a TGF-β1/Smad signaling-independent manner. This suggests that TGFBR1*6A may possess oncogenic properties and that it may affect the migration and invasion of colorectal cancer cells.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ying Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Boran Cheng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yulei Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
4
|
Han XR, Wen X, Wang S, Hong XW, Fan SH, Zhuang J, Wang YJ, Zhang ZF, Li MQ, Hu B, Shan Q, Sun CH, Bao YX, Lin M, He T, Wu DM, Lu J, Zheng YL. Associations of TGFBR1 and TGFBR2 gene polymorphisms with the risk of hypospadias: a case-control study in a Chinese population. Biosci Rep 2017; 37:BSR20170713. [PMID: 28894026 PMCID: PMC5629700 DOI: 10.1042/bsr20170713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
This case-control study investigated the association of transforming growth factor-β (TGF-β) receptor type I and II (TGFBR1 and TGFBR2) gene polymorphisms with the risk of hypospadias in a Chinese population. One hundred and sixty two patients suffering from hypospadias were enrolled as case group and 165 children who underwent circumcision were recruited as control group. Single nucleotide polymorphisms (SNPs) in TGFBR1 and TGFBR2 genes were selected on the basis of genetic data obtained from HapMap. PCR-restriction fragment length polymorphism (PCR-RFLP) was performed to identify TGFBR1 and TGFBR2 gene polymorphisms and analyze genotype distribution and allele frequency. Logistic regression analysis was conducted to estimate the risk factors for hypospadias. No significant difference was found concerning the genotype and allele frequencies of TGFBR1 rs4743325 polymorphism between the case and control groups. However, genotype and allele frequencies of TGFBR2 rs6785358 in the case group were significantly different in contrast with those in the control group. Patients carrying the G allele of TGFBR2 rs6785358 polymorphism exhibited a higher risk of hypospadias compared with the patients carrying the A allele (P<0.05). The TGFBR2 rs6785358 genotype was found to be significantly related to abnormal pregnancy and preterm birth (both P<0.05). The frequency of TGFBR2 rs6785358 GG genotype exhibited significant differences amongst patients suffering from four different pathological types of hypospadias. Logistic regression analysis revealed that preterm birth, abnormal pregnancy, and TGFBR2 rs6785358 were the independent risk factors for hypospadias. Our study provides evidence that TGFBR2 rs6785358 polymorphism might be associated with the risk of hypospadias.
Collapse
Affiliation(s)
- Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Xiao-Wu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian 223300, P.R. China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Chun-Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Ya-Xing Bao
- Department of Orthopedics, The Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou 221009, P.R. China
| | - Meng Lin
- Department of Urology Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Tan He
- Department of Urology Surgery, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| |
Collapse
|
5
|
Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Transforming growth factor-β signaling pathway-associated genes SMAD2 and TGFBR2 are implicated in metabolic syndrome in a Taiwanese population. Sci Rep 2017; 7:13589. [PMID: 29051557 PMCID: PMC5648797 DOI: 10.1038/s41598-017-14025-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/05/2017] [Indexed: 01/18/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signaling pathway and its relevant genes have been correlated with an increased risk of developing various hallmarks of metabolic syndrome (MetS). In this study, we assessed whether the TGF-β signaling pathway-associated genes of SMAD family member 2 (SMAD2), SMAD3, SMAD4, transforming growth factor beta 1 (TGFB1), TGFB2, TGFB3, transforming growth factor beta receptor 1 (TGFBR1), and TGFBR2 are associated with MetS and its individual components independently, through complex interactions, or both in a Taiwanese population. A total of 3,000 Taiwanese subjects from the Taiwan Biobank were assessed. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Our results showed a significant association of MetS with the two single nucleotide polymorphisms (SNPs) of SMAD2 rs11082639 and TGFBR2 rs3773651. The association of MetS with these SNPs remained significant after performing Bonferroni correction. Moreover, we identified the effect of SMAD2 rs11082639 on high waist circumference. We also found that an interaction between the SMAD2 rs11082639 and TGFBR2 rs3773651 SNPs influenced MetS. Our findings indicated that the TGF-β signaling pathway-associated genes of SMAD2 and TGFBR2 may contribute to the risk of MetS independently and through gene-gene interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Vita Genomics, Inc., Taipei, Taiwan.
- TickleFish Systems Corporation, Seattle, WA, USA.
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
6
|
Ibrahim T, Yazbeck C, Maalouly G, Baz M, Haddad F, Sabbagh C, Chahine G. TGFBR1*6A polymorphism in sporadic and familial colorectal Carcinoma: a case-control study and systematic literature review. J Gastrointest Cancer 2015; 45:441-7. [PMID: 24880985 DOI: 10.1007/s12029-014-9625-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The role of genetic factors in colorectal cancer pathogenesis is widely accepted. Polymorphisms are actually thought to play a role in the unexplained colorectal cancer (CRC) susceptibility. There is conflicting data regarding the role of the transforming growth factor beta receptor 1 polymorphism 6A (TGFBR1*6A) in the increased incidence of CRC. PURPOSE Our aim is to test the association between this polymorphism and sporadic/familial CRC in the Lebanese population paying attention to lead time bias in the control group. This is a case-control study conducted in two Lebanese hospital centers. MATERIALS AND METHODS Cases were diagnosed with CRC during the period of 1 year prior to the study. Controls were healthy subjects aged >50 years with a history of normal colonoscopy during the period of 5 years prior to the beginning of the study. A total of 96 cases (57 sporadic/39 familial) and 97 controls were genotyped. The odds ratios for 6A carrier status was statistically significant for sporadic CRC, odds ratio (OR) = 2.314 (95 % confidence interval (CI) 1.030-5.195) but not for familial CRC. RESULTS No association was found between 6A carrier status and mean age at diagnosis of CRC. This is the first article in the literature to evaluate the association between 6A polymorphism and total, sporadic, and familial CRC in a single study with reduction of bias in the control group. Results are in conjunction with other studies and meta-analysis.
Collapse
Affiliation(s)
- Tony Ibrahim
- Hemato-Oncology Department, Hotel Dieu de France teaching Hospital of Saint Joseph University, 11-5076, Riad El Solh-Beirut, 1107 2180, Beirut, Lebanon,
| | | | | | | | | | | | | |
Collapse
|
7
|
Association between Int7G24A rs334354 polymorphism and cancer risk: a meta-analysis of case-control studies. Sci Rep 2015; 5:11350. [PMID: 26074400 PMCID: PMC4466893 DOI: 10.1038/srep11350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/22/2015] [Indexed: 11/27/2022] Open
Abstract
Accumulating evidences have suggested the potential association between Int7G24A
(rs334354) polymorphism and cancer risk. However, results from epidemiological
studies are controversial. We thus conducted this meta-analysis to clarify the
association. Relevant studies were identified on electronic databases according to
the inclusion criteria. A total of 13 case-control studies containing 4092 cases and
5909 controls were included in our meta-analysis. Odds ratios (ORs) with 95%
confidence intervals (CIs) were applied to assess the association. The results of
the overall population had suggested that Int7G24A polymorphism had an increased
risk for cancer, reaching significant levels in the 2 genetic models (allele model,
OR = 1.25, 95% CI 1.09-1.42,
P = 0.001; dominant model,
OR = 1.24, 95% CI 1.06-1.46,
P < 0.008). Besides, significant association
was found among Asian population (allele model, OR = 1.27,
95% CI 1.11-1.45, P < 0.001; dominant model,
OR = 1.28, 95% CI 1.11-1.49,
P < 0.001), whereas there was non-significant
relationship detected among Caucasian population (allele model,
OR = 1.08, 95% CI 0.92-1.26,
P = 0.352; dominant model,
OR = 1.05, 95% CI 0.87-1.26,
P = 0.639). The present meta-analysis had suggested
that Int7G24A polymorphism of gene TGFBR1 involved in the transforming growth factor
beta (TGF-β) signaling pathway had a significantly increased risk for
cancer development.
Collapse
|
8
|
Ross JP, Lockett LJ, Tabor B, Saunders IW, Young GP, Macrae F, Blanco I, Capella G, Brown GS, Lockett TJ, Hannan GN. Little evidence for association between the TGFBR1*6A variant and colorectal cancer: a family-based association study on non-syndromic family members from Australia and Spain. BMC Cancer 2014; 14:475. [PMID: 24981199 PMCID: PMC4090415 DOI: 10.1186/1471-2407-14-475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Background Genome-wide linkage studies have identified the 9q22 chromosomal region as linked with colorectal cancer (CRC) predisposition. A candidate gene in this region is transforming growth factor β receptor 1 (TGFBR1). Investigation of TGFBR1 has focused on the common genetic variant rs11466445, a short exonic deletion of nine base pairs which results in truncation of a stretch of nine alanine residues to six alanine residues in the gene product. While the six alanine (*6A) allele has been reported to be associated with increased risk of CRC in some population based study groups this association remains the subject of robust debate. To date, reports have been limited to population-based case–control association studies, or case–control studies of CRC families selecting one affected individual per family. No study has yet taken advantage of all the genetic information provided by multiplex CRC families. Methods We have tested for an association between rs11466445 and risk of CRC using several family-based statistical tests in a new study group comprising members of non-syndromic high risk CRC families sourced from three familial cancer centres, two in Australia and one in Spain. Results We report a finding of a nominally significant result using the pedigree-based association test approach (PBAT; p = 0.028), while other family-based tests were non-significant, but with a p-value <; 0.10 in each instance. These other tests included the Generalised Disequilibrium Test (GDT; p = 0.085), parent of origin GDT Generalised Disequilibrium Test (GDT-PO; p = 0.081) and empirical Family-Based Association Test (FBAT; p = 0.096, additive model). Related-person case–control testing using the “More Powerful” Quasi-Likelihood Score Test did not provide any evidence for association (MQLS; p = 0.41). Conclusions After conservatively taking into account considerations for multiple hypothesis testing, we find little evidence for an association between the TGFBR1*6A allele and CRC risk in these families. The weak support for an increase in risk in CRC predisposed families is in agreement with recent meta-analyses of case–control studies, which estimate only a modest increase in sporadic CRC risk among 6*A allele carriers.
Collapse
Affiliation(s)
- Jason P Ross
- CSIRO Preventative Health Flagship, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, Pasche B, Lee C, Grippo PJ. TGF-β: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst 2014; 106:djt369. [PMID: 24511106 DOI: 10.1093/jnci/djt369] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several mechanisms underlying tumor progression have remained elusive, particularly in relation to transforming growth factor beta (TGF-β). Although TGF-β initially inhibits epithelial growth, it appears to promote the progression of advanced tumors. Defects in normal TGF-β pathways partially explain this paradox, which can lead to a cascade of downstream events that drive multiple oncogenic pathways, manifesting as several key features of tumorigenesis (uncontrolled proliferation, loss of apoptosis, epithelial-to-mesenchymal transition, sustained angiogenesis, evasion of immune surveillance, and metastasis). Understanding the mechanisms of TGF-β dysregulation will likely reveal novel points of convergence between TGF-β and other pathways that can be specifically targeted for therapy.
Collapse
Affiliation(s)
- Daniel R Principe
- Affiliations of authors: Department of Medicine, Division of Gastroenterology (DRP, JB, BJ) and Division of Hematology/Oncology (HGM), Department of Surgery, Division of GI Surgical Oncology (DRP, PJG), and Department of Urology (CL), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Biomedical Engineering. McCormick School of Engineering, Northwestern University, Evanston, IL (DRP); Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (JAD); UMR INSERM U1052, CNRS 5286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France (LB); Division of Hematology/Oncology, Department of Medicine, University of Alabama-Birmingham, Birmingham, AL (BP); Department of Pathology and Laboratory Medicine, University of California-Irvine, Irvine, CA (CL)
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhong R, Liu L, Zou L, Sheng W, Zhu B, Xiang H, Chen W, Chen J, Rui R, Zheng X, Yin J, Duan S, Yang B, Sun J, Lou J, Liu L, Xie D, Xu Y, Nie S, Miao X. Genetic variations in the TGF signaling pathway, smoking and risk of colorectal cancer in a Chinese population. Carcinogenesis 2012; 34:936-42. [DOI: 10.1093/carcin/bgs395] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
11
|
Zhao Z, Ba C, Wang W, Wang X, Xue R, Wu X. Vascular endothelial growth factor (VEGF) gene polymorphisms and colorectal cancer: a meta-analysis of epidemiologic studies. Genet Test Mol Biomarkers 2012; 16:1390-4. [PMID: 23005896 DOI: 10.1089/gtmb.2012.0266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Studies investigating the association between vascular endothelial growth factor (VEGF) polymorphisms and colorectal cancer (CRC) risk report conflicting results. To clarify the effect of four VEGF (-460T/C, -634G/C, +936C/T, and -2578C/A) gene polymorphisms on the risk of developing CRC, we carried out a meta-analysis using published data to obtain more precise estimates of risk. METHODS Electronic searches of PubMed and EMBASE were conducted to select studies for this meta-analysis. The principal outcome measure was the odds ratio (OR) with 95% confidence interval (CI) for the risk of CRC associated with four VEGF (-460T/C, -634G/C, +936C/T, and -2578C/A) gene polymorphisms. RESULTS We identified 12 epidemiologic studies, which included 2770 CRC cases and 2568 controls. The combined results based on all studies showed that CRC cases had a significantly higher frequency of VEGF -634GG (OR=1.24, 95% CI=1.06, 1.44) and -2578AA (OR=1.37, 95% CI=1.12, 1.66) genotype and a lower frequency of -634CG (OR=0.82, 95% CI=0.71, 0.95) than controls. When stratifying for race, we found that patients with CRC had a significantly higher frequency of -460TC (OR=1.54, 95% CI=1.22, 1.94), -460CC (OR=2.00, 95% CI=1.50, 2.67), and -2578AA (OR=1.38, 95% CI=1.12, 1.69) and a lower frequency of -2578AA (OR=0.78, 95% CI=0.65, 0.93) genotypes of VEGF than controls, among Caucasians. We also found that patients with CRC had a significantly higher frequency of -634GG (OR=1.61, 95% CI=1.20, 2.15) and a lower frequency of -634CG (OR=0.60, 95% CI=0.46, 0.79) genotypes of VEGF than controls, among Asians. CONCLUSIONS Our meta-analysis suggests that the VEGF -460T/C, -634G/C, and -2578C/A gene polymorphisms are associated with a risk of CRC.
Collapse
Affiliation(s)
- Zigang Zhao
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Lin L, Li G, Zhang Z, Wen M, Xu W, Cai J, Zhou B, Liu J. Association of epidermal growth factor +61 A/G polymorphism in Chinese patients with colon cancer. Genet Test Mol Biomarkers 2012; 16:1142-1145. [PMID: 22621366 DOI: 10.1089/gtmb.2012.0109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epidermal growth factor (EGF) plays an important role in tumorigenesis. The association between the +61 A/G polymorphism of the EGF gene and colon cancer risk remains controversial and unclear. The objective of this study was to investigate the association between EGF +61 A/G polymorphism and colon cancer risk in a Chinese population. A hospital-based case-control study was conducted to assess the possible association between EGF +61 A/G polymorphism and colon cancer risk. A total of 180 colon cancer patients and 180 cancer-free healthy controls were recruited in the Chinese population. Genomic DNA was isolated from peripheral blood, and gene polymorphisms were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Colon cancer patients had a significantly higher frequency of +61 GG genotype (odds ratio [OR]=1.93, 95% confidence interval [CI]=1.07, 3.50; p=0.03) than that of controls. When stratified by the tumor location, tumor size, growth pattern, differentiation, and tumor-node-metastasis (TNM) stage of colon cancer, no statistically significant results were observed. Our study revealed that EGF +61 GG genotype was associated with a higher risk of colon cancer in Chinese population.
Collapse
Affiliation(s)
- Lin Lin
- Department of Gastrointestinal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Association between TGFBR1 polymorphisms and cancer risk: a meta-analysis of 35 case-control studies. PLoS One 2012; 7:e42899. [PMID: 22905183 PMCID: PMC3414489 DOI: 10.1371/journal.pone.0042899] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/12/2012] [Indexed: 12/15/2022] Open
Abstract
Background Numerous epidemiological studies have evaluated the association between TGFBR1 polymorphisms and the risk of cancer, however, the results remain inconclusive. To derive a more precise estimation of the relation, we conducted a comprehensive meta-analysis of all available case-control studies relating the TGFBR1*6A and IVS7+24G>A polymorphisms of the TGFBR1 gene to the risk of cancer. Methods Eligible studies were identified by search of electronic databases. Overall and subgroup analyses were performed. Odds ratio (OR) and 95% confidence interval (CI) were applied to assess the associations between TGFBR1*6A and IVS7+24G>A polymorphisms and cancer risk. Results A total of 35 studies were identified, 32 with 19,767 cases and 18,516 controls for TGFBR1*6A polymorphism and 12 with 4,195 cases and 4,383 controls for IVS7+24G>A polymorphism. For TGFBR1*6A, significantly elevated cancer risk was found in all genetic models (dominant OR = 1.11, 95% CI = 1.04∼1.18; recessive: OR = 1.36, 95% CI = 1.11∼1.66; additive: OR = 1.13, 95% CI = 1.05∼1.20). In subgroup analysis based on cancer type, increased cancer risk was found in ovarian and breast cancer. For IVS7+24G>A, significant correlation with overall cancer risk (dominant: OR = 1.39, 95% CI = 1.15∼1.67; recessive: OR = 2.23, 95% CI = 1.26∼3.92; additive: OR = 1.43, 95% CI = 1.14∼1.80) was found, especially in Asian population. In the subgroup analysis stratified by cancer type, significant association was found in breast and colorectal cancer. Conclusions Our investigations demonstrate that TGFBR1*6A and IVS7+24G>A polymorphisms of TGFBR1 are associated with the susceptibility of cancer, and further functional research should be performed to explain the inconsistent results in different ethnicities and cancer types.
Collapse
|
14
|
Valle L. Debate about TGFBR1 and the susceptibility to colorectal cancer. World J Gastrointest Oncol 2012; 4:1-8. [PMID: 22347533 PMCID: PMC3277874 DOI: 10.4251/wjgo.v4.i1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 10/21/2011] [Accepted: 10/28/2011] [Indexed: 02/05/2023] Open
Abstract
Recent years have witnessed enormous progress in our understanding of the genetic predisposition to colorectal cancer (CRC). Estimates suggest that all or most genetic susceptibility mechanisms proposed so far, ranging from high-penetrance genes to low-risk alleles, account for about 60% of the population-attributable fraction of CRC predisposition. In this context, there is increasing interest in the gene encoding the transforming growth factor β receptor 1 (TGFBR1); first when over a decade ago a common polymorphism in exon 1 (rs11466445, TGFBR1*6A/9A) was suggested to be a risk allele for CRC, then when linkage studies identified the chromosomal region where the gene is located as susceptibility locus for familial CRC, and more recently when the allele-specific expression (ASE) of the gene was proposed as a risk factor for CRC. Published data on the association of TGFBR1 with CRC, regarding polymorphisms and ASE and including sporadic and familial forms of the disease, are often contradictory. This review gives a general overview of the most relevant studies in order to clarify the role of TGFBR1 in the field of CRC genetic susceptibility.
Collapse
Affiliation(s)
- Laura Valle
- Laura Valle, Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|