1
|
Yang Y, Li L, Luo Z, Zhao Y, Mu Y, Zhang Q. Enantioselective Oxidative Stress and DNA Damage Induced by Rac- and S-metolachlor on the Earthworm Eisenia fetida. TOXICS 2023; 11:246. [PMID: 36977011 PMCID: PMC10058842 DOI: 10.3390/toxics11030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Metolachlor is a widely used chiral herbicide. However, information on its enantioselective toxicity to earthworms, an important soil organism, remains limited. Herein, the effects of Rac- and S-metolachlor on oxidative stress and DNA damage in Eisenia fetida were investigated and compared. Moreover, the degradation of both herbicides in the soil was also determined. The results showed that reactive oxygen species (ROS) in E. fetida were more easily induced by Rac-metolachlor than S-metolachlor at a higher concentration (above 16 µg/g). Similarly, the effects of Rac-metolachlor on superoxide dismutase (SOD) activity and DNA damage in E. fetida were more significant than those of S-metolachlor at the same exposure concentration and time. Rac- and S-metolachlor did not result in severe lipid peroxidation. The toxic effects of both herbicides on E. fetida gradually decreased after 7 days as the exposure was prolonged. At the same concentration, S-metolachlor degrades faster than Rac-metolachlor. These results suggest that Rac-metolachlor has a greater effect on E. fetida than S-metolachlor, providing a significant reference for the rational use of metolachlor.
Collapse
Affiliation(s)
- Yong Yang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Li Li
- Comprehensive Law Enforcement Team of Ecological Environment Protection, Rizhao Bureau of Ecological Environment, Rizhao 276826, China
| | - Zhaozhen Luo
- Junan County Agriculture and Rural Bureau, Linyi 276600, China
| | - Yuqiang Zhao
- Junan County Wanghailou State-owned Forest Farm, Linyi 276600, China
| | - Yalin Mu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingming Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Xu C, Wang Y, Zhang R, Zhang J, Sun Y. Molecular characterization and functional analysis of peroxiredoxin 3 (NdPrx3) from Neocaridina denticulata sinensis. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100081. [PMID: 36654784 PMCID: PMC9841174 DOI: 10.1016/j.fsirep.2023.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Peroxiredoxins (Prxs) widely exist in organisms and can prevent oxidative damage. Here, the characterization and biological function of NdPrx3 from Neocaridina denticulata sinensis were analyzed. The coding sequence of NdPrx3 consists of 684 bp open reading frame (ORF), encoding 227 amino acids with a predicted molecular weight of 24.7 kDa and theoretical pI 6.49. Multiple sequence alignments showed that the conserved domains of NdPrx3, including catalytic triad, dimer interface, decamer interface, peroxidatic, and resolving cysteines, were similar to those of other organisms. The phylogenetic relationship demonstrated that NdPrx3 clustered in the Prx3 class. The highest relative expression of NdPrx3 mRNA was confirmed in gill among the nine tissues from healthy shrimp. The transcript level of NdPrx3 was significantly upregulated from 0 h to 48 h and decreased in 72 h under copper challenge, indicating that NdPrx3 may play an important role in the copper challenge of N. denticulata sinensis. In addition, NdPrx3 was recombinantly expressed in E. coli and purified to one band on SDS-PAGE. The DNA protection of rNdPrx3 was verified. The enzymatic assay of the recombinant NdPrx3 indicated that it had the oxidoreductase function and was stable at a low temperature (10-30 °C).
Collapse
Affiliation(s)
- Ce Xu
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
| | - Ying Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
| | - Ruirui Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
| | - Jiquan Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
- Corresponding authors at: School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China.
| | - Yuying Sun
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding 071002, China
- Corresponding authors at: School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Feng D, Gao X, Kong W, Wu Z, Yan C, Liu Y, Xing K, Sun Y, Zhang J. An extracellular Cu/Zn superoxide dismutase from Neocaridina denticulata sinensis: cDNA cloning, mRNA expression and characterizations of recombinant protein. FISH & SHELLFISH IMMUNOLOGY 2022; 128:547-556. [PMID: 35998869 DOI: 10.1016/j.fsi.2022.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Neocaridina denticulata sinensis possesses characters of rapid growth, tenacious vitality, short growth cycle, transparent, and easy feeding. Therefore, it is gradually being developed into an animal model for basic research on decapod crustaceans. Herein, a Cu/Zn superoxide dismutase (Cu/Zn-SOD), named as Nd-ecCu/Zn-SOD, was identified and characterized from N. denticulata sinensis. The full-length cDNA sequence of Nd-ecCu/Zn-SOD is 829 bp containing a 684 bp open reading frame, which encodes a protein of 227 amino acid residues with a typical Sod_Cu domain. The quantitative real-time PCR analysis showed that Nd-ecCu/Zn-SOD mRNA was expressed in all the tested tissues. Under challenge with copper, the mRNA expression of Nd-ecCu/Zn-SOD reached the maximum at 6 h, and decreased until 24 h. After 24 h of exposure, its expression was up-regulated significantly at 36 h. After then its expression sharply decreased with a comeback at 48 h. The result indicated that Nd-ecCu/Zn-SOD might play an important role in the stress response of N. denticulata sinensis. The expression of Nd-ecCu/Zn-SOD in gills challenged with Vibrio parahaemolyticus changed in a time-dependent manner. Nd-ecCu/Zn-SOD was lowly expressed in early developmental stages by RNA-Seq technology, yet it showed that a cyclical rise and fall occurred between middle stages and late stages. In addition, Nd-ecCu/Zn-SOD was recombinantly expressed using E. coli and the recombinant protein was purified as a single band on SDS-PAGE. The recombinant Nd-ecCu/Zn-SOD (rNd-ecCu/Zn-SOD) existed enzymatic activity under a wide range of temperature and pH. The exposure of metal ions was found that Zn2+, Mg2+, Ca2+, Ba2+, and Cu2+ could inhibit the enzymatic activity of rNd-ecCu/Zn-SOD, and Mn2+ increased the enzymatic activity of rNd-ecCu/Zn-SOD. These results indicate that Nd-ecCu/Zn-SOD may play a pivotal role in resistant against oxidative damage and act as a biomarker under stressful environment.
Collapse
Affiliation(s)
- Dandan Feng
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Xi Gao
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Weihua Kong
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Zixuan Wu
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Congcong Yan
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yujie Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Kefan Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
Yang Q, Guo K, Zhou X, Tang X, Yu X, Yao W, Wu Z. Histopathology, antioxidant responses, transcriptome and gene expression analysis in triangle sail mussel Hyriopsis cumingii after bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104175. [PMID: 34147569 DOI: 10.1016/j.dci.2021.104175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 05/26/2023]
Abstract
Bacterial disease outbreaks in filter feeder bivalve Hyriopsis cumingii as water contamination become more frequent in the water ecosystem, especially in intensive aquaculture habitats. To characterize host-pathogen interactions between H. cumingii and bacterial infection, we investigated the effects of Stenotrophomonas maltophilia HOP3 and Aeromonas veronii GL1 on the antioxidant response, tissue invasion and transcriptome expression of H. cumingii by infectivity trials. We showed that bacterial infections resulted in tubular necrosis of the hepatopancreas and induced the acute immune response in H. cumingii. The transcriptomic study identified a total of 5957 differentially expressed genes (DEGs) after A. veronii challenge. These DEGs were implicated in 302 KEGG pathways, notably in Apoptosis, Phagosome and Lysosome. The results showed that the relative expressions of all six immune-related DEGs were effectively stimulated with A. veronii, accompanied by tissue differences. Overall, these findings will contribute to an analysis of the immune response of H. cumingii to bacterial infection at the transcriptomic level and its genomic resource for research.
Collapse
Affiliation(s)
- Qinglin Yang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Kefan Guo
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xicheng Zhou
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiaoqi Tang
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Weizhi Yao
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Research Center of Fishery Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Molecular characterization, purification, and antioxidant activity of recombinant superoxide dismutase from the Pacific abalone Haliotis discus hannai Ino. World J Microbiol Biotechnol 2020; 36:115. [PMID: 32661581 PMCID: PMC7359182 DOI: 10.1007/s11274-020-02892-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
Superoxide dismutase (SOD) is an acidic metalloenzyme that scavenges free radicals produced by endogenous and exogenous substances. In the present study, the tissue distribution of the superoxide dismutase HdhCu/Zn-SOD was investigated in Haliotis discus hannai Ino. The expression profile after lipopolysaccharide (LPS) challenge was determined using quantitative real-time polymerase chain reaction (qPCR). To study the antioxidant activity of a recombinant HdhCu/Zn-SOD protein, the HdhCu/Zn-SOD gene was cloned into the pPIC9K vector and transformed into the Pichia pastoris GS115 strain by electroporation. After induction by methanol, the recombinant product was purified using immobilized metal affinity chromatography and confirmed using mass spectrometry. The optimal expression conditions were determined to be incubation with 0.5% methanol at pH 6.0, resulting in a stable expressed product with the molecular weight of approximately 17 kDa and 21 kDa. The enzymatic activity of HdhCu/Zn-SOD consistently increased with increasing Cu2+ concentrations and showed good thermal stability. Recombinant HdhCu/Zn-SOD showed a strong ability to scavenge superoxide anions and hydroxyl radicals and protected L929 cells against the toxicity caused by H2O2 through its in vitro antioxidant activity. The heterologous expression of HdhCu/Zn-SOD in P. pastoris and the antioxidant activity of this enzyme are reported for the first time.
Collapse
|
6
|
Zhang HC, Ma KX, Yang YJ, Shi CY, Chen GW, Liu DZ. CuZnSOD and MnSOD from freshwater planarian Dugesia japonica: cDNA cloning, mRNA expression and enzyme activity in response to environmental pollutants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:12-19. [PMID: 30597290 DOI: 10.1016/j.aquatox.2018.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
As an important antioxidant enzyme, the superoxide dismutase (SOD) can protect aerobic organisms from oxidative damage through catalyzing the dismutation of superoxide into hydrogen peroxide and oxygen. The SODs have been cloned in some species and their dynamic expression or enzymatic activity in response to environmental stressors were investigated. In the current study, the full-length cDNA of two SODs from freshwater planarian Dugesia japonica were firstly cloned (named as DjCuZnSOD and DjMnSOD, respectively). The complete cDNA of DjCuZnSOD consists of 661 nucleotides encoding 186 amino acids while the 765 bp DjMnSOD encodes a polypeptide of 226 residues. Sequence analysis and multiple alignment showed that DjCuZnSOD possesses two CuZnSOD family signature motifs and an N-terminal signal peptide suggesting it is an extracellular secretory protein. DjMnSOD possesses the MnSOD family signature sequence and is predicted to be located in mitochondrion with a mitochondrial targeting sequence. Phylogenetic analysis based on CuZnSOD and MnSOD orthologs from representative species further verified that DjCuZnSOD is an extracellular CuZnSOD while DjMnSOD is a mitochondrial MnSOD. For the purpose of studying their potential role against environmental pollutants, D. japonica were exposed to glyphosate or 1-decyl-3-methylimidazolium bromide ([C10mim]Br), and the mRNA expression levels of DjCuZnSOD and DjMnSOD along with total SOD activity were measured. The results showed that DjCuZnSOD exhibited more sensitive expression profiles in response to environmental pollutants in contrast with DjMnSOD, and the total SOD activity in response to both pollutants was more related to the expression level of DjCuZnSOD than to DjMnSOD, indicating that the mRNA expression of CuZnSOD would be a more sensitive biomarker than MnSOD in monitoring the pollution of aquatic environment and CuZnSOD might play more important role than MnSOD in eliminating superoxide anions caused by pollutants in D. japonica.
Collapse
Affiliation(s)
- He-Cai Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ke-Xue Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu-Juan Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - De-Zeng Liu
- Institute of Natural Resources, Heilongjiang Academy of Science, Harbin 150031, China
| |
Collapse
|
7
|
Xie Y, Chen H, Zheng S, Zhang X, Mu S. Molecular characterization of cu/Zn SOD gene in Asian clam Corbicula fluminea and mRNA expression and enzymatic activity modulation induced by metals. Gene 2018; 663:189-195. [DOI: 10.1016/j.gene.2018.04.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
|
8
|
Jiang F, Yue X, Wang H, Liu B. Transcriptome profiles of the clam Meretrix petechialis hepatopancreas in response to Vibrio infection. FISH & SHELLFISH IMMUNOLOGY 2017; 62:175-183. [PMID: 28110034 DOI: 10.1016/j.fsi.2017.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/23/2016] [Accepted: 01/17/2017] [Indexed: 05/27/2023]
Abstract
Microbial diseases have received much attention due to their enormous destruction of aquaculture, and Vibrio parahaemolyticus is one of the main pathogens that cause bacterial disease in the clam Meretrix petechialis. To better understand the molecular mechanisms of the immune response to Vibrio in M. petechialis, RNA-Seq was applied to explore global expression changes of hepatopancreas from this clam after Vibrio challenge. There were 199,318,966 clean reads obtained by Illumina sequencing, which were further assembled into 214,577 transcripts, and then 147,255 unigenes with an N50 of 1393 bp were identified. Gene ontology (GO) analysis revealed 21 biological process subcategories, 15 cellular component subcategories and 12 molecular function subcategories. A total of 8358 unigenes were mapped onto 267 biological signaling pathways by KEGG, among which there were 16 pathways related to the immune system. In total, 206 differentially expressed genes (DEGs) were identified, including 113 up-regulated unigenes and 93 down-regulated unigenes. In these DEGs, 96 DEGs were annotated in at least one database, accounting for 46.60% of all significant DEGs. To validate the transcriptome dataset, 15 DEGs were selected for real-time qPCR confirmation and the results showed that expression patterns of 13 genes (86.7%) agreed well with the RNA-Seq analysis. Fourteen of the 206 DEGs were annotated to be immune-related genes, and we examined the expression patterns of four immune-related DEGs using clams post immersion challenge. This study enriched the M. petechialis transcriptome database and provided insight into the immune response of M. petechialis against Vibrio infection.
Collapse
Affiliation(s)
- Fengjuan Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hongxia Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266000, Qingdao, China.
| |
Collapse
|
9
|
Zhang HC, Shi CY, Sun LQ, Wang F, Chen GW. Toxic effects of ionic liquid 1-octyl-3-methylimidazolium bromide on the antioxidant defense system of freshwater planarian, Dugesia japonica. Toxicol Ind Health 2015; 32:1675-83. [PMID: 25812565 DOI: 10.1177/0748233715573692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activities of antioxidant enzymes and the levels of glutathione (GSH) and malondialdehyde (MDA) were determined when freshwater planarian Dugesia japonica was exposed to different concentrations of 1-octyl-3-methylimidazolium bromide ([C8mim]Br) for one, three, and five days. The results showed that superoxide dismutase (SOD) activity began to increase in all treated groups after three days of exposure, while catalase (CAT) activity was inhibited after the first day, but increased notably on the fifth day except for the lowest concentration group. The activity of glutathione peroxidase (GPX) was induced from the first day of exposure and increased significantly after five days in all treated groups. During the experiment, the levels of intracellular GSH in all treated groups were higher than that of the control group. Changes in MDA suggest that [C8mim]Br is toxic to D japonica and may result in lipid peroxidation in planarian. Our results also indicate that GPX as well as GSH seem to be more sensitive biomarkers of oxidative stress compared with SOD and CAT.
Collapse
Affiliation(s)
- He-Cai Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Li-Qun Sun
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Fan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
10
|
Lu X, Wang C, Liu B. The role of Cu/Zn-SOD and Mn-SOD in the immune response to oxidative stress and pathogen challenge in the clam Meretrix meretrix. FISH & SHELLFISH IMMUNOLOGY 2015; 42:58-65. [PMID: 25449371 DOI: 10.1016/j.fsi.2014.10.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/08/2014] [Accepted: 10/23/2014] [Indexed: 06/04/2023]
Abstract
The copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD) could effectively eliminate reactive oxygen species (ROS) and maintain the redox balance of immune system. In the present study, the potential synergy of Cu/Zn-SOD and Mn-SOD in immune system was investigated in the clam Meretrix meretrix. The expression of Cu/Zn-SOD mainly distributed in hepatopancreas and that of Mn-SOD was higher in gill of M. meretrix, and their mRNA and protein activity paralleled with each other. In response to H2O2 challenge, Cu/Zn-SOD mRNA showed significantly higher level at 24 h post-challenge and Mn-SOD mRNA was significantly higher at 12 and 24 h post-challenge in the experimental clams than in the control clams (P<0.05). After injection with Vibrio-parahaemolyticus-related bacterium (MM21), the Cu/Zn-SOD mRNA was significantly up-regulated at 24 h and 48 h post-injection and Mn-SOD mRNA was significantly higher at 24 h post-injection in MM21-injected clams than in control clams (P<0.05), suggesting that both of them might involve in the immune defense to Vibrio challenge. The mRNA expression of Cu/Zn-SOD and Mn-SOD was examined in a Vibrio-resistant population and a control population after MM21 immersion challenge. The increased transcription of Cu/Zn-SOD and Mn-SOD in the resistant population suggested both of them could benefit the immune system to defend against pathogen infection. As expression of Mn-SOD mRNA depended on stimuli and was more easily inducible, its response to H2O2 and Vibrio challenge was earlier than Cu/Zn-SOD. Our study suggested the redox balance might play an important role in M. meretrix to resist pathogen infection.
Collapse
Affiliation(s)
- Xia Lu
- Key Laboratory of Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chao Wang
- Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baozhong Liu
- Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
11
|
Effects of heat on the biological activity of wild Cordyceps sinensis. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2015. [DOI: 10.1016/j.jtcms.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Le Bris C, Richard G, Paillard C, Lambert C, Seguineau C, Gauthier O, Pernet F, Guérard F. Immune responses of phenoloxidase and superoxide dismutase in the manila clam Venerupis philippinarum challenged with Vibrio tapetis--Part I: Spatio-temporal evolution of enzymes' activities post-infection. FISH & SHELLFISH IMMUNOLOGY 2015; 42:16-24. [PMID: 25449703 DOI: 10.1016/j.fsi.2014.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023]
Abstract
Manila clams, Venerupis philippinarum (Adams and Reeve, 1850), were experimentally challenged with two Vibrio tapetis strains: CECT4600T, the causative agent of Brown Ring Disease (BRD); and LP2 supposedly non-pathogenic in V. philippinarum. Changes in phenoloxidase (PO) and superoxide dismutase (SOD), two major enzymes involved in immunity, were studied in two tissues, the mantle and hemolymph for 30 days after infection in the extrapallial cavity. Bacterial infection in V. philippinarum resulted in modulation of PO and SOD activities that was both tissue- and time-dependent. A response at early times was detected in the mantle and was associated with significant increases in PO and SOD activities in LP2- and CECT4600T-challenged clams 36 h post injection. This first response in the mantle could be explained by the proximity to the injection region (extrapallial cavity). In the hemolymph the response occurred at later times and was associated with an increase in PO activity and a decrease in SOD activity. As hemolymph is a circulating fluid, this response delay could be due to an "integration time" needed by the organism to counteract the infection. Injections also impacted PO and SOD activities in both tissues and confirmed a difference in pathogenicity between the two V. tapetis strains.
Collapse
Affiliation(s)
- Cédric Le Bris
- UMR 6539 CNRS UBO IRD IFREMER, LEMAR - IUEM - UBO, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Gaëlle Richard
- UMR 6539 CNRS UBO IRD IFREMER, LEMAR - IUEM - UBO, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France
| | - Christine Paillard
- UMR 6539 CNRS UBO IRD IFREMER, LEMAR - IUEM - UBO, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France
| | - Christophe Lambert
- UMR 6539 CNRS UBO IRD IFREMER, LEMAR - IUEM - UBO, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France
| | - Catherine Seguineau
- UMR 6539 CNRS UBO IRD IFREMER, LEMAR - IUEM - UBO, Ifremer, Laboratoire de Physiologie des Invertébrés, Technopôle Brest-Iroise BP 70, 29280 Plouzané, France
| | - Olivier Gauthier
- UMR 6539 CNRS UBO IRD IFREMER, LEMAR - IUEM - UBO, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France
| | - Fabrice Pernet
- UMR 6539 CNRS UBO IRD IFREMER, LEMAR - IUEM - UBO, Ifremer, Laboratoire de Physiologie des Invertébrés, Technopôle Brest-Iroise BP 70, 29280 Plouzané, France
| | - Fabienne Guérard
- UMR 6539 CNRS UBO IRD IFREMER, LEMAR - IUEM - UBO, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Technopôle Brest-Iroise - Rue Dumont d'Urville, 29280 Plouzané, France
| |
Collapse
|