1
|
Zhang C, Liu X, Tan L. Interaction of arene ruthenium(II) complexes [(η 6-C 6H 6)Ru(L)Cl]PF 6 (L = o-fpip and p-fpip) with the RNA triplex poly(U)*poly(A)•poly(U). J Inorg Biochem 2022; 232:111813. [PMID: 35405487 DOI: 10.1016/j.jinorgbio.2022.111813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
To comprehend the binding properties of η6-arene Ru(II) complexes with poly(U)*poly(A)•poly(U) triplex, two arene Ru(II) complexes with different fluorine substituent positions, [(η6-C6H6)Ru(o-fpip)Cl]PF6 (Ru1,η6-C6H6 = benzene ring, o-fpip = 2-(2'‑fluorine) imidazo [4,5-f] Biver et al. (2008), Gupta et al. (2012) [1, 10] phenanthroline) and [(η6-C6H6)Ru(p-fpip)Cl]PF6 (Ru2,η6-C6H6 = benzene ring, o-fpip = 2-(4'‑fluorine) imidazo [4,5-f] Biver et al. (2008), Gupta et al. (2012) [1, 10] phenanthroline), have been synthesized and characterized in this study. The binding of Ru1 and Ru2 with poly(U)*poly(A)•poly(U) triplex has been investigated by viscosity measurement and spectroscopic methods. Analysis of UV-Vis absorption spectral titrations suggests that Ru1 and Ru2 bind to the triplex through an intercalative mode, but the binding affinity of Ru2 is slightly higher than that of Ru1, which is also verified by viscosity and EB (ethidium bromide) competition measurements. Furthermore, the thermal denaturation experiment shows that Ru1 and Ru2 increase the third-strand stabilization to a similar extent. Interestingly, the two complexes have essentially no effect on the stabilization of the template duplex. Considering the structure of Ru1 and Ru2, conceivably besides the intercalation of ligand, the force stabilizing the triplex should also involve covalent binding and electrostatic interaction. The obtained results will contribute to our understanding of the interaction of arene Ru(II) complexes with the poly(U)*poly(A)•poly(U) triplex.
Collapse
Affiliation(s)
- Chengqing Zhang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
2
|
Substituent effects on the interactions of ruthenium(II) polypyridyl complexes [Ru(bpy)2(6-R-dppz)]2+ (R = hydroxy and fluorine) with the RNA triplex poly(rU)·poly(rA) × poly(rU). Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Wei Y, Zhou Y, Wei Y, Dong C, Wang L. A fluorescent aptasensor based on berberine for ultrasensitive detection of bisphenol A in tap water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1816-1822. [PMID: 33885638 DOI: 10.1039/d1ay00180a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The residues of bisphenol A (BPA) in food packaging and water systems have a potential impact on human health; therefore, its analysis and detection have drawn scientists' attention. In this work, based on the change in fluorescence intensity resulting from the conformational switch of a berberine/BPA-aptamer system in the presence and absence of BPA, an ultra-sensitive fluorescence aptasensing system is proposed, in which BPA-aptamer is employed as the identification unit and berberine as the fluorescent probe. Various factors affecting the detection of BPA, including the concentration of the fluorescent probe, BPA-aptamer, BPA, pH, system stability time and other experimental conditions, were investigated in detail. Under the optimal experimental conditions, the fluorescence intensity of the sensing system of berberine/BPA-aptamer exhibited a good linear correlation with the BPA concentration in the range of 0-1300 μM with a LOD of 32 nM. The proposed fluorescent sensing system also exhibited excellent recoveries of 92.4-102.3% in tap water samples and showed good application prospects for the analysis and detection of BPA.
Collapse
Affiliation(s)
- Yuxin Wei
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yangyang Zhou
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Yanli Wei
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Li Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
4
|
Tan L, Zhang J. A phenolic hydroxyl in the ortho- and meta-positions on the main ligands effect on the interactions of [Ru(phen) 2(o-HPIP)] 2+ and [Ru(phen) 2(m-HPIP)] 2+ with the poly(U)·poly(A)*poly(U) triplex. J Inorg Biochem 2020; 213:111268. [PMID: 33065523 DOI: 10.1016/j.jinorgbio.2020.111268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 01/14/2023]
Abstract
The association of two ruthenium(II) complexes [Ru(phen)2(o-HPIP)]2+ (Ru1; phen = 1,10-phenanthroline, o-HPIP = 2-(2-hydroxyphenyl)-imidazo[4,5-f][1,10] phenanthroline) and [Ru(phen)2(m-HPIP)]2+ (Ru2; m-HPIP = 2-(3-hydroxyphenyl)-imidazo[4,5-f][1,10]phenan- throline) with the RNA poly(U)·poly(A)⁎poly(U) triplex has been investigated by spectrophotometric titrations and melting experiments in this work. All experimental data reveal an intercalative triplex-binding mode of the two complexes, whereas the binding constant for Ru1 is significantly higher than that for Ru2. Circular dichroism spectroscopic investigations show that the two complexes could bind to the chiral environment of the triplex, but the triplex perturbation effects induced by Ru1 are more marked. Thermal denaturation experiments demonstrate that both Ru1 and Ru2 display a large binding preference and stabilizing effect for the third strand over the Watson-Crick base-paired duplex of the triplex. However, the third-strand stabilizing effect of Ru1 is much more effective than that of Ru2. The obtained results suggest that positions of the phenolic group on the main ligands have significant effect on the binding of the two complexes with poly(U)·poly(A)⁎poly(U) triplex.
Collapse
Affiliation(s)
- Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Jingwen Zhang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| |
Collapse
|
5
|
Jiang L, Liu X, Tan L. Synthesis and characterization of chiral Ru(II) polypyridyl complexes and their binding and stabilizing effects toward triple-helical RNA. J Inorg Biochem 2020; 213:111263. [PMID: 33011626 DOI: 10.1016/j.jinorgbio.2020.111263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/11/2023]
Abstract
Two novel chiral Ru(II) complexes, Λ- and Δ-[Ru(bpy)2(7-CF3-dppz)]2+ (Λ-1 and Δ-1; bpy = 2,2'-bipyridine, 7-CF3-dppz = 7-trifluoromethyl-dipyrido[3,2-a:2',3'-c]phenazine), were synthesized and characterized in this work. The binding and stabilizing effects of Λ-1 and Δ-1 toward the RNA poly(U)•poly(A)*poly(U) triplex were studied by various biophysical techniques. Absorption spectra and fluorescence quenching indicates that the binding affinity of Δ-1 is slightly higher than that Λ-1. Both enantiomers induce significant positive viscosity changes that are indicative of intercalative binding, whereas changes in the relative viscosities of the triplex are found to be more pronounced with Δ-1. Melting experiments indicate that the triplex stabilization effects of both enantiomers are significantly different from each other. With Λ-1, the stabilization of the Watson-Crick base-paired duplex (the template duplex) of the triplex shows a moderate increase, whereas the stabilization of the Hoogsteen base-paired strand (third-strand) exhibits slight decrease under the same conditions, suggesting Λ-1 prefers to stabilize the template duplex rather than third-strand. In stark contrast to Λ-1, Δ-1 can not only strongly stabilize the template duplex, but also moderately increase the third-strand stabilization, even so, which imply that Δ-1 also prefer to stabilize the template duplex instead of the third-strand. These suggest that the [Ru(bpy)2(7-CF3-dppz)]2+ is similar as a non-specific metallointercalator the triplex studied in this work. Combined with our recent research, the obtained results further indicate that Δ- enantiomers rather than Λ-ones of Ru(II) polypyridyl complexes usually exhibit stronger binding and stabilizing effects toward the triplex.
Collapse
Affiliation(s)
- Lijuan Jiang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
6
|
Wang F, Ma S, Feng Y, Liu X, Tan L. Binding propterties of two Ru(II) polypyridyl complexes containing dppz units and fluorine groups with poly(U)·poly(A) ∗ poly(U) triplex. J Inorg Biochem 2019; 197:110705. [PMID: 31071642 DOI: 10.1016/j.jinorgbio.2019.110705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 01/14/2023]
Abstract
In this work, two Ru(II)-dppz (dppz = dipyrido[3,2-a:2',3'-c]phenazine) complexes containing fluorine substituents, [Ru(bpy)2(7-F-dppz)]2+ (Ru1, bpy = 2,2'-bipyridine, 7-F-dppz = 7-fluorodipyrido[3,2-a:2',3'-c]phenazine) and [Ru(phen)2(7-F-dppz)]2+ (Ru2, phen = 1,10-phenanthroline), have been synthesized and characterized. Binding properties of Ru1 and Ru2 with the RNA poly(U)·poly(A) ∗ poly(U) triplex have been studied by spectroscopic methods and viscosity measurements. The obtained results indicate that the binding differences of the two complexes with the triplex may be attributed to the ancillary ligand effects, implying that the better planarity and greater hydrophobicity of ancillary ligands are advantageous to the π-π stacking interaction between Ru2 and the triplex, thus Ru2 stabilizes the triplex strongly than Ru1. Denaturation of the triplex shows that both Ru1 and Ru2 can not only highly stabilize the template duplex of the triplex, but also significantly stabilize the third strand. Compared with the triplex stabilizing effects for the reported Ru(II)-dppz complexes, thermal melting experiments suggest that the fluorine substituent on the ligand dppz can probably decrease electrostatic repulsion between the three strands of the triplex, thereby Ru1 and Ru2 significantly increase the triplex stabilization. Results obtained from this work further confirm that the substituent electron effect of dppz-based ligands and the planarity and hydrophobicity of ancillary ligands play an important role in the triplex stabilizing effects by Ru(II)-dppz complexes.
Collapse
Affiliation(s)
- Fangfang Wang
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Shuai Ma
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Yongdeng Feng
- College of Chemistry, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xiaohua Liu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
7
|
Song X, Fu B, Lan Y, Chen Y, Wei Y, Dong C. Label-free fluorescent aptasensor berberine-based strategy for ultrasensitive detection of Hg 2+ ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:301-307. [PMID: 29945113 DOI: 10.1016/j.saa.2018.06.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/07/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
A label-free fluorescent aptasensing platform was fabricated and a simple and rapid method to detect Hg2+ ion in aqueous solution was put forward by means of berberine and Hg2+ ion-aptamer are as the fluorescence probe and the recognition element, respectively. Various factors including the concentration of berberine, Hg2+ ion and Hg2+ ion-aptamer, pH effect and the reaction time were investigated in detail. Under the optimal experimental conditions, in the sensing system, the fluorescence intensity changes displayed a calibration response for Hg2+ ion in the range of 0.1 μM to 10.0 μM and the detection limit was of 7.7 nM (S/N = 3). The fabricated label-free fluorescence aptasensor is not only conveniently but also effectively applicable used for analysis of Hg2+ ion in blood serum and tap water samples and the recovery range is of 96.0%-105.7%. In brief, this study offers an easy, economical and stable assay system for detecting Hg2+ ion in rough condition.
Collapse
Affiliation(s)
- Xiuli Song
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, PR China; Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Baochun Fu
- Institute of Horticulture, Shanxi Academy of Agriculture Science, Taiyuan 030031, PR China
| | - Yifeng Lan
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Yanxia Chen
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Yanli Wei
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
8
|
Basu A, Kumar GS. Nucleic acids binding strategies of small molecules: Lessons from alkaloids. Biochim Biophys Acta Gen Subj 2018; 1862:1995-2016. [DOI: 10.1016/j.bbagen.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
|
9
|
Tang W, Zhu Z, Tan L. [Ru(bpy)2(7-CH3-dppz)](2+) and [Ru(phen)2(7-CH3-dppz)](2+) as metallointercalators that affect third-strand stabilization of the poly(U)˙poly(A)*poly(U) triplex. MOLECULAR BIOSYSTEMS 2017; 12:1478-85. [PMID: 26999574 DOI: 10.1039/c6mb00094k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stable RNA triplexes play key roles in many biological processes. However, due to Hoogsteen base pairing, triplexes are thermodynamically less stable than the corresponding duplexes. To understand the factors effecting the stabilization of RNA triplexes by octahedral ruthenium(ii) complexes, two Ru(ii) complexes, [Ru(bpy)2(7-CH3-dppz)](2+) (Ru) and [Ru(phen)2(7-CH3-dppz)](2+) (Ru), have been synthesized and characterized in this work. The interactions of the two Ru(ii) complexes with the poly(U)˙poly(A)*poly(U) triplex are investigated by spectrophotometry, spectrofluorometry, circular dichroism as well as viscometry. The results demonstrate that the two complexes are able to enhance the stability of the RNA triplex and serve as molecular "light switches" for the triplex. However, Ru and Ru affecting the stabilization of the third strand are significantly weaker than that of the Watson-Crick base-paired duplex, suggesting that the binding of the two complexes with the triplex is favored by the Watson-Crick base-paired duplex to a large extent. In addition, considering the nature of Ru and Ru, we presume that their binding differences may be due to different ancillary ligand effects. This study further advances our knowledge on the interaction of RNA triple-stranded structures with metal complexes, particularly with Ru(ii) complexes.
Collapse
Affiliation(s)
- Wuzhi Tang
- College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Zhiyuan Zhu
- College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China. and Key Lab of Environmentally Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
10
|
Zhu Z, Peng M, Zhang J, Tan L. Interaction of octahedral ruthenium(II) polypyridyl complex [Ru(bpy) 2(PIP)] 2+ with poly(U)·poly(A)*poly(U) triplex: Increasing third-strand stabilization of the triplex without affecting the stability of the duplex. J Inorg Biochem 2017; 169:44-49. [PMID: 28104569 DOI: 10.1016/j.jinorgbio.2017.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023]
Abstract
Triple-helical RNA are of interest because of possible biological roles as well as the potential therapeutic uses of these structures, while the stability of triplexes is usually weaker than that of the Watson-Crick base pairing duplex strand due to the electrostatic repulsion between three polyanionic strands. Therefore, how to increase the stability of the specific sequences of triplexes are of importance. In this paper the binding of a Ru(II) complex, [Ru(bpy)2(PIP)]2+ (bpy=2.2'-bipyridine, PIP=2-phenyl-1H-imidazo[4,5-f]- [1,10]-phenanthroline), with poly(U)·poly(A)*poly(U) triplex has been investigated by spectrophotometry, spectrofluorometry, viscosimetry and circular dichroism. The results suggest that [Ru(bpy)2(PIP)]2+ as a metallointercalator can stabilize poly(U)·poly(A)*poly(U) triplex (where · denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing),while it stabilizes third-strand with no obvious effect on the duplex of poly(U)·poly(A), reflecting the binding of this complex with the triplex is favored by the Hoogsteen paired poly(U) third strand to a great extent.
Collapse
Affiliation(s)
- Zhiyuan Zhu
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Mengna Peng
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Jingwen Zhang
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
11
|
Xiao X, Zhao B, Yang L, Liang X, Ren Y. Probe the Binding Mode of Aristololactam-β-D-glucoside to Phenylalanine Transfer RNA in Silico. ChemistrySelect 2016. [DOI: 10.1002/slct.201600603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xingqing Xiao
- Department of Chemical and Biomolecular Engineering; North Carolina State University; Raleigh, North Carolina 27695-7905 USA
- State Key Laboratory of Chemical Engineering and Department of Chemistry; East China University of Science and Technology; Shanghai 200237 China
| | - Binwu Zhao
- Department of Chemical and Biomolecular Engineering; North Carolina State University; Raleigh, North Carolina 27695-7905 USA
| | - Li Yang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy; Wuhan Institute of Technology; Wuhan, Hubei 430073 China
- State Key Laboratory of Chemical Engineering and Department of Chemistry; East China University of Science and Technology; Shanghai 200237 China
| | - Xiaodong Liang
- Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering; Technical University of Denmark; 2800 Kgs. Lyngby Denmark
| | - Yingqian Ren
- State Key Laboratory of Chemical Engineering and Department of Chemistry; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
12
|
An overview on the interaction of phenazinium dye phenosafranine to RNA triple and double helices. Int J Biol Macromol 2016; 86:345-51. [DOI: 10.1016/j.ijbiomac.2016.01.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/22/2022]
|
13
|
Li J, Sun Y, Zhu Z, Zhao H, Tan L. Binding properties of ruthenium(II) complexes [Ru(bpy)2(ppn)](2+) and [Ru(phen)2(ppn)](2+) with triplex RNA: As molecular "light switches" and stabilizers for poly(U)·poly(A)*poly(U) triplex. J Inorg Biochem 2016; 161:128-33. [PMID: 27287059 DOI: 10.1016/j.jinorgbio.2016.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 01/03/2023]
Abstract
Stable RNA triplexes play key roles in many biological processes, while triplexes are thermodynamically less stable than the corresponding duplexes due to the Hoogsteen base pairing. To understand the factors affecting the stabilization of RNA triplexes by octahedral ruthenium(II) complexes, the binding of [Ru(bpy)2(ppn)](2+) (1, bpy=2,2'-bipyridine, ppn=2,4-diaminopyrimido[5,6-b]dipyrido[2,3-f:2',3'-h]quinoxaline) and [Ru(phen)2(ppn)](2+) (2, phen=1,10-phenanthroline) to poly(U)·poly(A)*poly(U) (· denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing) has been investigated. The main results obtained here suggest that complexes 1 and 2 can serve as molecular "light switches" and stabilizers for poly(U)·poly(A)*poly(U), while the effectiveness of complex 2 are more marked, suggesting that the hydrophobicity of ancillary ligands has a significant effect on the two Ru(II) complexes binding to poly(U)·poly(A)*poly(U). This study further advances our knowledge on the binding of RNA triplexes with metal complexes, particularly with octahedral ruthenium polypyridyl complexes.
Collapse
Affiliation(s)
- Jia Li
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yanmei Sun
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Zhiyuan Zhu
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Hong Zhao
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Lifeng Tan
- College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Key Lab of Environmentally Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|
14
|
Haque L, Pradhan AB, Bhuiya S, Das S. Exploring the comparative binding aspects of benzophenanthridine plant alkaloid chelerythrine with RNA triple and double helices: a spectroscopic and calorimetric approach. Phys Chem Chem Phys 2016; 17:17202-13. [PMID: 26073991 DOI: 10.1039/c5cp01737h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A comparative study on the interaction of a benzophenanthridine alkaloid chelerythrine (CHL) with RNA triplex poly(U).poly(A)*poly(U) (hereafter U.A*U, .(dot) and *(asterisk) represent Watson-Crick and Hoogsteen base pairing respectively) and its parent duplex poly(A).poly(U) (A.U) was carried out by using a combination of various spectroscopic, viscometric and calorimetric techniques. The interaction was characterized by hypochromic and bathochromic effects in the absorption spectrum, the increase of thermal melting temperature, enhancement in solution viscosity, and perturbation in the circular dichroic spectrum. The binding constant calculated by using spectrophotometric data was in the order of 10(5) for both forms of RNA, but it was greater for triplex RNA (30.2 × 10(5) M(-1)) than duplex RNA (3.6 × 10(5) M(-1)). Isothermal titration calorimetric data are in good agreement with the spectrophotometric data. The data indicated stronger binding of CHL to the triplex structure of RNA compared to the native duplex structure. Thermal melting studies indicated greater stabilization of the Hoogsteen base paired third strand of the RNA triplex compared to its Watson-Crick strands. The mode of binding of CHL to both U.A*U and A.U was intercalation as revealed from fluorescence quenching, viscosity measurements and sensitization of the fluorescence experiment. Thermodynamic data obtained from isothermal calorimetric measurements revealed that association was favoured by both a negative enthalpy change and a positive entropy change. Taken together, our results suggest that chelerythrine binds and stabilizes the RNA triplex more strongly than its respective parent duplex. The results presented here may be useful for formulating effective antigene strategies involving benzophenanthridine alkaloids and the RNA triplex.
Collapse
Affiliation(s)
- Lucy Haque
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | | | | | | |
Collapse
|
15
|
Lohani N, Rajeswari MR. Preferential binding of anticancer drugs to triplex DNA compared to duplex DNA: a spectroscopic and calorimetric study. RSC Adv 2016. [DOI: 10.1039/c6ra03514k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Binding study of adriamycin and actinomycin to triplex DNA formed on the promoter region of hmgb1 gene using spectroscopic and calorimetric technique.
Collapse
Affiliation(s)
- Neelam Lohani
- Department of Biochemistry
- All India Institute of Medical Sciences
- New Delhi
- India
| | | |
Collapse
|
16
|
Zhang H, Liu X, He X, Liu Y, Tan L. Experimental and density functional theory (DFT) studies on the interactions of Ru(II) polypyridyl complexes with the RAN triplex poly(U)˙poly(A)*poly(U). Metallomics 2015; 6:2148-56. [PMID: 25313017 DOI: 10.1039/c4mt00175c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is renewed interest in investigating triple helices because these novel structures have been implicated as a possible means of controlling cellular processes by endogenous or exogenous mechanisms. Due to the Hoogsteen base pairing, triple helices are, however, thermodynamically less stable than the corresponding duplexes. The poor stability of triple helices limits their practical applications under physiological conditions. In contrast to DNA triple helices, small molecules stabilizing RNA triple helices at present are less well established. Furthermore, most of these studies are limited to organic compounds and, to a far lesser extent, to metal complexes. In this work, two Ru(II) complexes, [Ru(bpy)2(btip)](2+) (Ru1) and [Ru(phen)2(btip)](2+) (Ru2), have been synthesized and characterized. The binding properties of the two metal complexes with the triple RNA poly(U)˙poly(A)*poly(U) were studied by various biophysical and density functional theory methods. The main results obtained here suggest that the slight binding difference in Ru1 and Ru2 may be attributed to the planarity of the intercalative ligand and the LUMO level of Ru(II) complexes. This study further advances our knowledge on the triplex RNA-binding by metal complexes, particularly Ru(II) complexes.
Collapse
Affiliation(s)
- Hong Zhang
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | | | | | | | | |
Collapse
|
17
|
He X, Li J, Zhang H, Tan L. Effect of a Ru(II) polypyridyl complex [Ru(bpy)2(mdpz)]2+ on the stabilization of the RNA triplex poly(U)·poly(A)*poly(U). MOLECULAR BIOSYSTEMS 2015; 10:2552-7. [PMID: 25010433 DOI: 10.1039/c4mb00304g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is renewed interest in investigating triplex nucleic acids because triplexes may be implicated in a range of cellular functions. However, the stabilization of triplex nucleic acids is essential to achieve their biological functions. In contrast to triplex DNA, little has been reported concerning the recognition of triplex RNA by transition-metal complexes at present. We report here a ruthenium(ii) polypyridyl complex, [Ru(bpy)2(mdpz)](2+) (bpy = 2,2'-bipyridine; mdpz = 7,7'-methylenedioxyphenyl-dipyrido-[3,2-a:2',3'-c]phenazine), as a sensitive luminescent probe for poly(U)·poly(A)*poly(U), which can strongly stabilize the triplex RNA from 37.5 to 53.1 °C in solution. The main results further advance our knowledge on the triplex RNA-binding by metal complexes, particularly ruthenium(ii) complexes.
Collapse
Affiliation(s)
- Xiaojun He
- College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | | | | | | |
Collapse
|
18
|
Li J, Sun Y, Xie L, He X, Tan L. Effect of ancillary ligands on the interaction of ruthenium(II) complexes with the triplex RNA poly(U)·poly(A)*poly(U). J Inorg Biochem 2014; 143:56-63. [PMID: 25528478 DOI: 10.1016/j.jinorgbio.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 01/01/2023]
Abstract
Two new Ru(II) complexes with 1,8-naphthalimide group, [Ru(phen)2(pnip)](2+) (Ru1; phen=1,10-phenanthroline, pnip=2-[N-(p-phenyl)-1,8-napthalimide]imidazo[4',5'-f][1,10]phenanthroline) and [Ru(bpy)2(pnip)](2+) (Ru2; bpy=2,2'-bipyridine), have been synthesized and characterized. The interactions of Ru1 and Ru2 with the triplex RNA poly(U)•poly(A)*poly(U) (where • denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing) were studied by various biophysical. Electronic spectra established that the binding affinity for Ru1 was greater than that for Ru2. Fluorescence and viscosity studies gave convincing evidence for a true intercalative binding of both complexes with the RNA triplex. UV melting studies confirmed that the two complexes could stabilize the triplex, whereas the effects of the two complexes on the stability of the Hoogsteen base-paired strand ploy(U) and the Watson-Crick base-paired duplex poly(U)•poly(A) of the triplex were different. In the case of Ru1, the increase of the thermal stability of the Hoogsteen base-paired strand was stronger than that of the Watson-Crick base-paired duplex. However, an opposite effect was observed in the case of Ru2. Circular dichroic studies suggested that the RNA triplex undergoes a conformational transition in the presence of Ru1, whereas the helicity of the RNA triplex still remains A-type in the presence of Ru2. The main results obtained here further advance our knowledge on the interaction of RNA triple-stranded structures with metal complexes, particularly ruthenium(II) complexes.
Collapse
Affiliation(s)
- Jia Li
- College of Chemistry, Xiangtan University, Xiangtan, PR China
| | - Yanmei Sun
- College of Chemistry, Xiangtan University, Xiangtan, PR China
| | - Lingjun Xie
- College of Chemistry, Xiangtan University, Xiangtan, PR China
| | - Xiaojun He
- College of Chemistry, Xiangtan University, Xiangtan, PR China
| | - Lifeng Tan
- Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, PR China.
| |
Collapse
|
19
|
He XJ, Tan LF. Interactions of octahedral ruthenium(II) polypyridyl complexes with the RNA triplex poly(U)•poly(A)*poly(U) effect on the third-strand stabilization. Inorg Chem 2014; 53:11152-9. [PMID: 25272364 DOI: 10.1021/ic5017565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Stable triplexes play key roles in many biological processes. Due to the Hoogsteen base pairing, triplexes are, however, thermodynamically less stable than the corresponding duplexes. The poor stabilization of these structures limits their practical applications under physiological conditions. To understand the factors effect on the stabilization of RNA triplexes by octahedral ruthenium(II) complexes, the interactions of [RuL2(uip)](2+) {where L = 2,2'-bipyridine (bpy) or 1,10-phenanthroline phen, uip = 2-(5-uracil)-1H-imidazo[4,5-f][1,10]phenanthroline} with the RNA triplex poly(U)•poly(A)*poly(U) are examined by spectrophotometry, spectrofluorometry, circular dichroism, and viscosimetry in this work. The main results obtained here suggest that the third-strand stabilization depends on the hydrophobicity effects of ancillary ligands bpy and phen.
Collapse
Affiliation(s)
- Xiao-Jun He
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University , Xiangtan 411105, PR China
| | | |
Collapse
|
20
|
Basu A, Jaisankar P, Kumar GS. Binding of novel 9-O-N-aryl/arylalkyl amino carbonyl methyl berberine analogs to poly(U)-poly(A)·poly(U) triplex and comparison to the duplex poly(A)-poly(U). Mol Biol Rep 2014; 41:5473-83. [PMID: 24874303 DOI: 10.1007/s11033-014-3421-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/17/2014] [Indexed: 12/14/2022]
Abstract
Interaction of the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted analogs of the anticancer isoquinoline alkaloid berberine with RNA triplex, poly(U)-poly(A) · poly(U) has been studied in comparison to the duplex poly(A)-poly(U), using multiple biophysical techniques. Spectrophotometric and spectrofluorimetric studies established the non-cooperative binding mode of all the analogs with both the duplex and the triplex. However, berberine exhibited cooperative binding with poly(A)-poly(U) and non-cooperative binding with poly(U)-poly(A) · poly(U). Analog BER1 showed the highest affinity to both the duplex and the triplex followed by BER2 and BER3. The overall binding affinity varied as BER1 > BER2 > BER3 > BER. The magnitude of the quantum efficiency values (Q > 1) revealed that energy was transferred from the bases of the triplex and the duplex to the analogs. Comparative ferrocyanide quenching and viscosity studies unambiguously established a stronger intercalative geometry of the analogs to both the triplex and the duplex in comparison to berberine. Circular dichroism studies revealed that the alkaloids perturbed the conformation of both RNA helices. The binding of all the alkaloids was found to be exothermic from isothermal titration studies. Binding of the analogs was highly entropy driven while that of berberine was enthalpy dominated. The results presented here reveal strong and specific binding of these new berberine analogs to the RNA triplex and duplex and highlight the remarkable influence of the 9-substitution on the interaction profile.
Collapse
Affiliation(s)
- Anirban Basu
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700 032, India
| | | | | |
Collapse
|