1
|
Xing Y, Ma C, Guan H, Shen J, Shen Y, Li G, Sun G, Tian Y, Kang X, Liu X, Li H, Tian W. Multi-Omics Insights into Regulatory Mechanisms Underlying Differential Deposition of Intramuscular and Abdominal Fat in Chickens. Biomolecules 2025; 15:134. [PMID: 39858528 PMCID: PMC11763713 DOI: 10.3390/biom15010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Excessive abdominal fat deposition in chickens disadvantages feed conversion, meat production, and reproductive performance. Intramuscular fat contributes to meat texture, tenderness, and flavor, serving as a vital indicator of overall meat quality. Therefore, a comprehensive analysis of the regulatory mechanisms governing differential deposition of abdominal versus intramuscular fat is essential in breeding higher-quality chickens with ideal fat distribution. This review systematically summarizes the regulatory mechanisms underlying intramuscular and abdominal fat traits at chromatin, genomic, transcriptional, post-transcriptional, translational, and epigenetic-modification scales. Additionally, we summarize the role of non-coding RNAs and protein-coding genes in governing intramuscular and abdominal fat deposition. These insights provide a valuable theoretical foundation for the genetic engineering of high-quality and high-yielding chicken breeds.
Collapse
Affiliation(s)
- Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Chenglin Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Hongbo Guan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Jianing Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Ying Shen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.X.); (C.M.); (H.G.); (J.S.); (Y.S.); (G.L.); (G.S.); (Y.T.); (X.K.); (X.L.)
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization of Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450046, China
- Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou 450046, China
| |
Collapse
|
2
|
Zhi T, Ma A, Liu X, Chen Z, Li S, Jia Y. A multitissue transcriptomic analysis reveals a potential mechanism whereby Brevibacillus laterosporus S62-9 promotes broiler growth. Poult Sci 2024; 103:104050. [PMID: 39106700 PMCID: PMC11343061 DOI: 10.1016/j.psj.2024.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/09/2024] Open
Abstract
Brevibacillus laterosporus S62-9 has been shown to improve broiler growth performance and immunity. In the present study, we aimed to evaluate the effects of B. laterosporus S62-9 on the immunity and lipid metabolism of broilers by means of transcriptomic analysis. A total of 160 1-day-old broilers were randomly allocated to a S62-9 group, the diet of which was supplemented with 106 CFU/g B. laterosporus S62-9 daily, and a control group, which was not. After 42 d of feeding, the broilers in the S62-9 group had higher body mass (7.2%) and feed conversion ratio (5.19%) than the control group. Supplementation with B. laterosporus S62-9 resulted in lower serum total cholesterol and low-density lipoprotein-cholesterol concentrations and higher high-density lipoprotein-cholesterol concentrations. An analysis of the fatty acid composition of the broiler's thigh muscles revealed that the proportions of the unsaturated fatty acids myristoleic acid (C14:1) and arachidonic acid (C20:1) were higher for birds in the S62-9 group. Transcriptomic analysis also showed an upregulation of immunity-related genes in the S62-9 group. Gene Ontology functional enrichment analysis showed that the mitogen-activated protein kinase pathway was enriched in the liver, the defense response was enriched in the duodenum, and immunoglobulin-related entries were enriched in the jejunum of the S62-9 group. Furthermore, the expression of key genes involved in unsaturated fatty acid synthesis (SCD, encoding stearoyl-CoA desaturase) and fatty acid metabolism (HACD2, encoding 3-hydroxyacyl-CoA dehydratase 2) was upregulated in the liver, and the expression of genes associated with fat biosynthesis and accumulation, such as PLIN1, encoding perilipin 1, and FABP4, encoding fatty acid binding protein 4, was upregulated in the ileum of the birds in the S62-9 group. In summary, supplementation with B. laterosporus S62-9 could improve immune defense and the fatty acid metabolism of broiler chickens, thereby enhancing their disease resistance and promoting growth and development.
Collapse
Affiliation(s)
- Tongxin Zhi
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xiangfei Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
3
|
Yang Y, Wang X, Li M, Wang S, Wang H, Chen Q, Lu S. Identification of potential obese-specific biomarkers and pathways associated with abdominal subcutaneous fat deposition in pig using a comprehensive bioinformatics strategy. PeerJ 2024; 12:e17486. [PMID: 38832038 PMCID: PMC11146330 DOI: 10.7717/peerj.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Abdominal subcutaneous fat deposition (ASFD) is not only related to meat quality in the pig industry but also to human health in medicine. It is of great value to elucidate the potential molecular mechanisms of ASFD. The present study aims to identify obese-specific biomarkers and key pathways correlated with ASFD in pigs. The ASF-related mRNA expression dataset GSE136754 was retrieved from the Gene Expression Omnibus (GEO) database and systematically analyzed using a comprehensive bioinformatics method. A total of 565 differentially expressed genes (DEGs) were identified between three obese and three lean pigs, and these DEGs were mainly involved in the p53 signaling pathway, MAPK signaling pathway and fatty acid metabolism. A protein-protein interaction (PPI) network, consisting of 540 nodes and 1,065 edges, was constructed, and the top ten genes with the highest degree scores-ABL1, HDAC1, CDC42, HDAC2, MRPS5, MRPS10, MDM2, JUP, RPL7L1 and UQCRFS1-were identified as hub genes in the whole PPI network. Especially HDAC1, MDM2, MRPS10 and RPL7L1 were identified as potential robust obese-specific biomarkers due to their significant differences in single gene expression levels and high ROC area; this was further verified by quantitative real-time PCR (qRT-PCR) on abdominal subcutaneous fat samples from obese-type (Saba) and lean-type (Large White) pigs. Additionally, a mRNA-miRNA-lncRNA ceRNA network consisting of four potential biomarkers, 15 miRNAs and 51 lncRNAs was established, and two targeted lncRNAs with more connections, XIST and NEAT1, were identified as potentially important regulatory factors. The findings of this study may provide novel insights into the molecular mechanism involved in ASFD.
Collapse
Affiliation(s)
- Yongli Yang
- Faculty of Animal Science and Technology, Yunnan Agricuture University, Kunming, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricuture University, Kunming, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricuture University, Kunming, China
| | - Shuyan Wang
- Faculty of Animal Science and Technology, Yunnan Agricuture University, Kunming, China
| | - Huiyu Wang
- Faculty of Animal Science and Technology, Yunnan Agricuture University, Kunming, China
- Faculty of Animal Science, Xichang University, Xichang, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricuture University, Kunming, China
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricuture University, Kunming, China
| |
Collapse
|
4
|
Zhu J, Wang Y, Su Y, Zheng M, Cui H, Chen Z. RNA sequencing identifies key genes involved in intramuscular fat deposition in chickens at different developmental stages. BMC Genomics 2024; 25:219. [PMID: 38413888 PMCID: PMC10900564 DOI: 10.1186/s12864-023-09819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/20/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Intramuscular fat (IMF) is an important factor in meat quality, and triglyceride (TG) and Phospholipids (PLIP), as the main components of IMF, are of great significance to the improvement of meat quality. RESULTS In this study, we used 30 RNA sequences generated from the transcriptome of chicken breast muscle tissues at different developmental stages to construct a gene expression matrix to map RNA sequence reads to the chicken genome and identify the transcript of origin. We used weighted gene co-expression network analysis (WGCNA) and identified 27 co-expression modules, 10 of which were related to TG and PLIP. We identified 150 highly-connected hub genes related to TG and PLIP, respectively, which were found to be mainly enriched in the adipocytokine signaling pathway, MAPK signaling pathway, mTOR signaling pathway, FoxO signaling pathway, and TGF-beta signaling pathway. Additionally, using the BioMart database, we identified 134 and 145 candidate genes related to fat development in the TG-related module and PLIP-related module, respectively. Among them, RPS6KB1, BRCA1, CDK1, RPS3, PPARGC1A, ACSL1, NDUFAB1, NDUFA9, ATP5B and PRKAG2 were identified as candidate genes related to fat development and highly-connected hub genes in the module, suggesting that these ten genes may be important candidate genes affecting IMF deposition. CONCLUSIONS RPS6KB1, BRCA1, CDK1, RPS3, PPARGC1A, ACSL1, NDUFAB1, NDUFA9, ATP5B and PRKAG2 may be important candidate genes affecting IMF deposition. The purpose of this study was to identify the co-expressed gene modules related to chicken IMF deposition using WGCNA and determine key genes related to IMF deposition, so as to lay a foundation for further research on the molecular regulation mechanism underlying chicken fat deposition.
Collapse
Affiliation(s)
- Jinmei Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongli Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongchun Su
- Guangxi Jingling Agriculture and animal Husbandry Group Co., LTD, Nanning, 530049, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huanxian Cui
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Zhiwu Chen
- Guangxi Jingling Agriculture and animal Husbandry Group Co., LTD, Nanning, 530049, China.
| |
Collapse
|
5
|
Madadi S, Hasasnpour S, Zendehdel M, Vazir B, Jahandideh A. Role of central Adiponectin and its interactions with NPY and GABAergic systems on food intake in neonatal layer chicken. Neurosci Lett 2023; 808:137283. [PMID: 37142113 DOI: 10.1016/j.neulet.2023.137283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND & AIM Adiponectin is a member of the adipokine family and contributes to regulating energy homeostasis, reproduction, and various biological functions, such as insulin receptor signaling pathway sensitivity, mitochondrial biogenesis, oxidative metabolism, neurogenesis, and suppression of inflammation. This study aimed to investigate the effects of intracerebroventricular (ICV) injection of adiponectin and its interaction with the neuropeptide Y (NPY) and GABAergic systems on central appetite regulation in neonatal layer-type chickens. MATERIALS & METHODS In this study, 6 experiments were conducted, each of which included 4 experimental groups. In the first experiment, the chickens were injected with saline and adiponectin (20.73, 41.45, and 62.18 nmol). In the second experiment, saline, adiponectin (62.18 nmol), B5063 (NPY1 receptor antagonist, 2.12 nmol), and simultaneous injections of adiponectin and B5063 were performed. Experiments 3 to 6 were done in the same way to experiment 1, but the chickens were injected with SF22 (NPY2 receptor antagonist, 2.66 nmol), SML0891 (NPY5 receptor antagonist, 2.89 nmol), picrotoxin (GABAA receptor antagonist, 0.89 nmol), CGP54626 (GABAB receptor antagonist, 0.047 nmol) instead of B5063. Feed consumption was measured 120 min after the injection. RESULTS A dose-dependent increase in appetite was observed after the injection of adiponectin (20.73, 41.45, and 62.18 nmol) (P<0.05). The injection of B5063 + adiponectin attenuated the hyperphagic effect of adiponectin (P< 0.05). In addition, co-injection of picrotoxin and adiponectin significantly decreased adiponectin-induced hyperphagia (P<0.05). In addition, adiponectin significantly increased the number of steps, jumps, exploratory food, pecks, and standing time, while decreasing sitting time and rest time (P<0.05). CONCLUSION These results suggest that the hyperphagic effects of adiponectin are probably mediated through NPY1 and GABAA receptors in neonatal layer-type chickens.
Collapse
Affiliation(s)
- Sedigheh Madadi
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hasasnpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Morteza Zendehdel
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453, Tehran, Iran
| | - Bita Vazir
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Jahandideh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Al-Kuraishy HM, Al-Gareeb AI, Gabriela Bungau S, Radu AF, El-Saber Batiha G. The potential molecular implications of adiponectin in the evolution of SARS-CoV-2: Inbuilt tendency. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102347. [PMID: 36211634 PMCID: PMC9524222 DOI: 10.1016/j.jksus.2022.102347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/16/2022]
Abstract
Adiponectin (APN) is an adipokine concerned in the regulation of glucose metabolism, insulin sensitivity and fatty acid oxidation. APN plays a critical role in viral infections by regulating the immune response through its anti-inflammatory/pro-inflammatory axis. Reduction of APN may augment the severity of viral infections because APN inhibits immune cells’ response via suppression of inflammatory signaling pathways and stimulation of adenosine monophosphate protein kinase (AMPK). Moreover, APN inhibits the stimulation of nuclear factor kappa B (NF-κB) and regulates the release of pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukins (IL-18, IL-6). In COVID-19, abnormalities of the fatty tissue due to oxidative stress (OS) and hyperinflammation may inhibit the production and release of APN. APN has lung-protective effect and can prevent SARS-CoV-2-induced acute lung injury (ALI) through the amelioration of endoplasmic reticulum (ER) stress, endothelial dysfunction (ED) and stimulation of peroxisome proliferator-activated receptor-alpha (PPAR-α). It has been established that there is a potential correlation between inflammatory signal transduction pathways and APN that contributes to the development of SARS-CoV-2 infections. Deregulation of these molecular pathways affects the expression of APN and vice versa. In addition, the reduction of APN effect in SARS-CoV-2 infection could be a potential cause of the exacerbation of pro-inflammatory effects which are associated with the disease severity. In this context, exploratory, developmental, and extensive prospective studies are necessary.
Collapse
|
7
|
Zhang D, Wu W, Huang X, Xu K, Zheng C, Zhang J. Comparative analysis of gene expression profiles in differentiated subcutaneous adipocytes between Jiaxing Black and Large White pigs. BMC Genomics 2021; 22:61. [PMID: 33468065 PMCID: PMC7814706 DOI: 10.1186/s12864-020-07361-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
Background Chinese domestic pig breeds are reputed for pork quality, but their low ratio of lean-to-fat carcass weight decreases production efficiency. A better understanding of the genetic regulation network of subcutaneous fat tissue is necessary for the rational selection of Chinese domestic pig breeds. In the present study, subcutaneous adipocytes were isolated from Jiaxing Black pigs a Chinese indigenous pig breed with redundant subcutaneous fat deposition and Large White pigs a lean-type pig breed with relatively low subcutaneous fat deposition. The expression profiles of mRNAs and lncRNAs were compared by RNA-seq analysis to identify biomarkers correlated with the differences of subcutaneous fat deposition between the two breeds. Results A total of 1058 differentially expressed genes and 221 differentially expressed lncRNAs were identified in subcutaneous adipocytes between Jiaxing Black and Large White pigs, which included 275 up-regulated mRNAs, 783 down-regulated mRNAs, 118 up-regulated lncRNAs and 103 down-regulated lncRNAs. Gene Ontology and KEGG pathway enrichment analyses revealed that the differentially expressed genes and differentially expressed lncRNAs were mainly involved in the immune response, cell fate determination, PI3K-Akt signaling pathway and MAPK signaling pathway, which are known to be related to adipogenesis and lipid metabolism. The expression levels of differentially expressed genes and differentially expressed lncRNAs according to the RNA-seq data were verified by quantitative PCR, which showed 81.8% consistency. The differences in MAPK pathway activity between Jiaxing Black and Large White pigs was confirmed by western blot analysis, which revealed elevated p38 phosphorylation in Jiaxing Black pigs. Conclusions This study offers a detailed characterization of mRNAs and lncRNAs in fat- and lean-type pig breeds. The activity of the MAPK signaling pathway was found to be associated with subcutaneous adipogenesis. These results provide new targets for further investigation of the molecular mechanisms regulating subcutaneous fat deposition in pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07361-9.
Collapse
Affiliation(s)
- Dawei Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Wenjing Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Xin Huang
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, 066000, Hebei, China
| | - Ke Xu
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, 066000, Hebei, China
| | - Cheng Zheng
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, 066000, Hebei, China
| | - Jin Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
8
|
Liu P, Gao Q, Guan L, Sheng W, Hu Y, Gao T, Jiang J, Xu Y, Qiao H, Xue X, Liu S, Li T. Atorvastatin Attenuates Isoflurane-Induced Activation of ROS-p38MAPK/ATF2 Pathway, Neuronal Degeneration, and Cognitive Impairment of the Aged Mice. Front Aging Neurosci 2021; 12:620946. [PMID: 33519423 PMCID: PMC7840608 DOI: 10.3389/fnagi.2020.620946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Isoflurane, a widely used volatile anesthetic, induces neuronal apoptosis and memory impairments in various animal models. However, the potential mechanisms and effective pharmacologic agents are still not fully understood. The p38MAPK/ATF-2 pathway has been proved to regulate neuronal cell survival and inflammation. Besides, atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, exerts neuroprotective effects. Thus, this study aimed to explore the influence of atorvastatin on isoflurane-induced neurodegeneration and underlying mechanisms. Aged C57BL/6 mice (20 months old) were exposed to isoflurane (1.5%) anesthesia for 6 h. Atorvastatin (5, 10, or 20 mg/kg body weight) was administered to the mice for 7 days. Atorvastatin attenuated the isoflurane-induced generation of ROS and apoptosis. Western blotting revealed a decrease in cleaved caspase-9 and caspase-3 expression in line with ROS levels. Furthermore, atorvastatin ameliorated the isoflurane-induced activation of p38MAPK/ATF-2 signaling. In a cellular study, we proved that isoflurane could induce oxidative stress and inflammation by activating the p38MAPK/ATF-2 pathway in BV-2 microglia cells. In addition, SB203580, a selected p38MAPK inhibitor, inhibited the isoflurane-induced inflammation, oxidative stress, and apoptosis. The results implied that p38MAPK/ATF-2 was a potential target for the treatment of postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Quansheng Gao
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lei Guan
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Weixuan Sheng
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yanting Hu
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Teng Gao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jingwen Jiang
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yongxing Xu
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Hui Qiao
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Bai Y, Yuan P, Zhang H, Ramachandran R, Yang N, Song J. Adiponectin and its receptor genes' expression in response to Marek's disease virus infection of White Leghorns. Poult Sci 2020; 99:4249-4258. [PMID: 32867969 PMCID: PMC7598011 DOI: 10.1016/j.psj.2020.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022] Open
Abstract
Marek’s disease virus (MDV) causes T-cell lymphoma in susceptible chicken and is also related to an imbalance of the lipid metabolism. Adiponectin is a circulatory cytokine secreted from adipose tissue and exerts critical metabolic functions. Although the associations between adiponectin and diseases, including lipid disorder and noncardiac vascular diseases, have been reported, little is known about the relationship between MDV infection and adiponectin. Here, we challenged white Leghorns from Marek’s disease (MD)-susceptible and MD-resistant lines with MDV at 7 D of age and then explored the body weight and plasma lipoprotein levels at 21 D after MDV infection. Meanwhile, adiponectin and the expression of its receptors were detected using quantitative real-time PCR and Western blot. The results showed that MDV infection induced body weight loss in all the experimental birds. Meanwhile, the concentrations of total cholesterol and high-density lipoprotein were lower after the infection, although there was no significant difference (P > 0.05). However, the infection did not affect adiponectin circulating levels in plasma. MD-susceptible birds had much lower plasma adiponectin than MD-resistant birds (P < 0.01). In abdominal fat, there was no significant difference in adiponectin mRNA level. Still, we observed a significant decrease in adiponectin protein concentration, as well as adipoR1 and adipoR2, at both mRNA and protein levels in the infected compared with the noninfected MD-susceptible chickens. In the spleen, MDV infection significantly reduced the adiponectin mRNA expression but increased the protein in MD-susceptible chickens, which decreased both adipoR1 mRNA expression and protein levels. Also interestingly, the adipoR1 mRNA expression level was significantly increased in MD-susceptible chickens in the liver after MDV infection. All findings in the present study provided interesting insights into adiponectin metabolism in chickens after MDV infection, which helps to advance the understanding of lipid metabolism in response to herpesvirus infection.
Collapse
Affiliation(s)
- Ying Bai
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038 P.R. China
| | - Ping Yuan
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742 USA
| | - Huanmin Zhang
- USDA, ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823 USA
| | - Ramesh Ramachandran
- Department of Animal Science, Pennsylvania State University, University Park, PA, 16802 USA
| | - Ning Yang
- Department of Animal Breeding and Genetics, College of Animal Sciences, China Agricultural, Beijing, 100193 P.R. China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, 20742 USA.
| |
Collapse
|
10
|
Association of three SNPs in adiponectin gene with lipid traits of Tianzhu Black Muscovy (Cairina moschata). Mol Biol Rep 2018; 46:325-332. [DOI: 10.1007/s11033-018-4475-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
|
11
|
Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine 2018; 112:116-131. [PMID: 29937410 DOI: 10.1016/j.cyto.2018.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 12/14/2022]
Abstract
Adiponectin, the most prevalent adipo-cytokine in plasma plays critical metabolic and anti-inflammatory roles is fast emerging as an important molecular target for the treatment of metabolic disorders. Adiponectin action is critical in multiple organs including cardio-vascular system, muscle, liver, adipose tissue, brain and bone. Adiponectin signaling in bone has been a topic of active investigation lately. Human association studies and multiple mice models of gene deletion/modification failed to define a clear cause and effect of adiponectin signaling in bone. The most plausible reason could be the multimeric forms of adiponectin that display differential binding to receptors (adipoR1 and adipoR2) with cell-specific receptor variants in bone. Discovery of small molecule agonist of adipoR1 suggested a salutary role of this receptor in bone metabolism. The downstream signaling of adipoR1 in osteoblasts involves stimulation of oxidative phosphorylation leading to increased differentiation via the likely suppression of wnt inhibitor, sclerostin. On the other hand, the inflammation modulatory effect of adiponectin signaling suppresses the RANKL (receptor activator of nuclear factor κ-B ligand) - to - OPG (osteprotegerin) ratio in osteoblasts leading to the suppression of osteoclastogenic response. This review will discuss the adiponectin signaling and its role in skeletal homeostasis and critically assess whether adipoR1 could be a therapeutic target for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Shyamsundar Pal China
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India.
| |
Collapse
|
12
|
Schindler M, Pendzialek M, Grybel KJ, Seeling T, Gürke J, Fischer B, Navarrete Santos A. Adiponectin stimulates lipid metabolism via AMPK in rabbit blastocysts. Hum Reprod 2018; 32:1382-1392. [PMID: 28472298 PMCID: PMC5850832 DOI: 10.1093/humrep/dex087] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/12/2017] [Indexed: 01/02/2023] Open
Abstract
STUDY QUESTION How does a maternal diabetic hyperadiponectineamia affect signal transduction and lipid metabolism in rabbit preimplantation blastocysts? SUMMARY ANSWER In a diabetic pregnancy increased levels of adiponectin led to a switch in embryonic metabolism towards a fatty acid-dependent energy metabolism, mainly affecting genes that are responsible for fatty acid uptake and turnover. WHAT IS KNOWN ALREADY Although studies in cell culture experiments have shown that adiponectin is able to regulate lipid metabolism via 5′-AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor α (PPARα), data on the effects of adiponectin on embryonic lipid metabolism are not available. In a diabetic pregnancy in rabbits, maternal adiponectin levels are elevated fourfold and are accompanied by an increase in intracellular lipid droplets in blastocysts, implying consequences for the embryonic hormonal and metabolic environment. STUDY DESIGN, SIZE, DURATION Rabbit blastocysts were cultured in vitro with adiponectin (1 μg/ml) and with the specific AMPK-inhibitor Compound C for 15 min, 1 h and 4 h (N ≥ 3 independent experiments: for RNA analysis, n ≥ 4 blastocysts per treatment group; for protein analysis three blastocysts pooled per sample and three samples used per experiment). Adiponectin signalling was verified in blastocysts grown in vivo from diabetic rabbits with a hyperadiponectinaemia (N ≥ 3 independent experiments, n ≥ 4 samples per treatment group, eight blastocysts pooled per sample). PARTICIPANTS/MATERIALS, SETTING, METHODS In these blastocysts, expression of molecules involved in adiponectin signalling [adaptor protein 1 (APPL1), AMPK, acetyl-CoA carboxylase (ACC), p38 mitogen-activated protein kinases (p38 MAPK)], lipid metabolism [PPARα, cluster of differentiation 36 (CD36), fatty acid transport protein 4 (FATP4), fatty acid binding protein (FABP4), carnitine palmityl transferase 1 (CPT1), hormone-senstive lipase (HSL), lipoprotein lipase (LPL)] and members of the insulin/insulin-like growth factor (IGF)-system [IGF1, IGF2, insulin receptor (InsR), IGF1 receptor (IGF1R)] were analyzed by quantitative RT-PCR and western blot. Analyses were performed in both models, i.e. adiponectin stimulated blastocysts (in vitro) and in blastocysts grown in vivo under increased adiponectin levels caused by a maternal diabetes mellitus. MAIN RESULTS AND THE ROLE OF CHANCE In both in vitro and in vivo models adiponectin increased AMPK and ACC phosphorylation, followed by an activation of the transcription factor PPARα, and CPT1, the key enzyme of β-oxidation (all P < 0.05 versus control). Moreover, mRNA levels of the fatty acid transporters CD36, FATP4 and FABP4, and HSL were upregulated by adiponectin/AMPK signalling (all P < 0.05 versus control). Under diabetic developmental conditions the amount of p38 MAPK was upregulated (P < 0.01 versus non-diabetic), which was not observed in blastocysts cultured in vitro with adiponectin, indicating that the elevated p38 MAPK was not related to adiponectin. However, a second effect of adiponectin has to be noted: its intensification of insulin sensitivity, by regulating IGF availability and InsR/IGF1R expression. LARGE SCALE DATA Not applicable. LIMITATIONS REASONS FOR CAUTION There are two main limitations for our study. First, human and rabbit embryogenesis can only be compared during blastocyst development. Therefore, the inferences from our findings are limited to the embryonic stages investigated here. Second, the increased adiponectin levels and lack of maternal insulin is only typical for a diabetes mellitus type one model. WIDER IMPLICATIONS OF THE FINDINGS This is the first mechanistic study demonstrating a direct influence of adiponectin on lipid metabolism in preimplantation embryos. The numbers of young women with a diabetes mellitus type one are increasing steadily. We have shown that preimplantation embryos are able to adapt to changes in the uterine milieu, which is mediated by the adiponectin/AMPK signalling. A tightly hormonal control during pregnancy is essential for survival and proper development. In this control process, adiponectin plays a more important role than known so far. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the German Research Council (DFG RTG ProMoAge 2155), the EU (FP7 Epihealth No. 278418, FP7-EpiHealthNet N°317146), COST Action EpiConcept FA 1201 and SALAAM BM 1308. The authors have no conflict(s) of interest to disclose.
Collapse
Affiliation(s)
- Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Mareike Pendzialek
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Katarzyna Joanna Grybel
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Tom Seeling
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Jacqueline Gürke
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Halle (Saale), Germany
| |
Collapse
|
13
|
Effect of different levels of feed restriction and fish oil fatty acid supplementation on fat deposition by using different techniques, plasma levels and mRNA expression of several adipokines in broiler breeder hens. PLoS One 2018; 13:e0191121. [PMID: 29364913 PMCID: PMC5783386 DOI: 10.1371/journal.pone.0191121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/28/2017] [Indexed: 12/17/2022] Open
Abstract
Background Reproductive hens are subjected to a restricted diet to limit the decline in fertility associated with change in body mass. However, endocrine and tissue responses to diet restriction need to be documented. Objective We evaluated the effect of different levels of feed restriction, with or without fish oil supplementation, on metabolic parameters and adipokine levels in plasma and metabolic tissues of reproductive hens. Methods We designed an in vivo protocol involving 4 groups of hens; RNS: restricted (Rt) unsupplemented, ANS: ad libitum (Ad, receiving an amount of feed 1.7 times greater than animals on the restricted diet) unsupplemented, RS: Rt supplemented, and AS: Ad supplemented. The fish oil supplement was used at 1% of the total diet composition. Results Hens fed with the Rt diet had a significantly (P < 0.0001) lower growth than Ad hens, while the fish oil supplementation had no effect on these parameters. Furthermore, the bioelectrical impedance analysis (BIA) and the fat ultrasonographic examinations produced similar results to the other methods that required animals to be killed (carcass analysis and weight of adipose tissue). In addition, the Rt diet significantly (P < 0.05) decreased plasma levels of triglycerides, phospholipids, glucose and ADIPOQ, and fish oil supplementation decreased plasma levels of RARRES2. We also showed a positive correlation between insulin values and ADIPOQ or NAMPT or RARRES2 values, and a negative correlation of fat percentage to RARRES2 values. Moreover, the effects of the Rt diet and fish oil supplementation on the mRNA expression depended on the factors tested and the hen age. Conclusions Rt diet and fish oil supplementation are able to modulate metabolic parameters and the expression of adipokines and their receptors in metabolic tissue.
Collapse
|
14
|
Guo R, Han M, Song J, Liu J, Sun Y. Adiponectin and its receptors are involved in hypertensive vascular injury. Mol Med Rep 2017; 17:209-215. [PMID: 29115432 PMCID: PMC5780128 DOI: 10.3892/mmr.2017.7878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 09/07/2017] [Indexed: 01/08/2023] Open
Abstract
Adipocyte-derived adiponectin (APN) is involved in the protection against cardiovascular disease, but the endogenous APN and its receptor expression in the perivascular adipocytes and their role in hypertensive vascular injury remain unclear. The present study aimed to detect endogenous APN and its receptor expression and their protective effects against hypertensive vascular injury. APN was mainly expressed in the perivascular adipocytes, while its receptors AdipoR1 and AdipoR2 were ubiquitously expressed in the blood vessels. Angiotensin II (Ang II)-induced hypertension resulted in a significant decrease of APN and AdipoR1 and AdipoR2 in the perivascular adipocytes and vascular cells. The migration assay used demonstrated that APN attenuated Ang II-induced vascular smooth muscle cells migration and p38 phosphorylation Furthermore, the in vivo study demonstrated that APN receptor agonist AdipoRon attenuated Ang II-induced hypertensive vascular hypertrophy and fibrosis. Taken together, the present study indicated that perivascular adipocytes-derived APN attenuated hypertensive vascular injury possibly via its receptor-mediated inhibition of p38 signaling pathway.
Collapse
Affiliation(s)
- Ruimin Guo
- Emergency Medicine, Putuo Hospital Affiliated to Shanghai Traditional Chinese Medicine University, Shanghai 200333, P.R. China
| | - Min Han
- Emergency Medicine, Putuo Hospital Affiliated to Shanghai Traditional Chinese Medicine University, Shanghai 200333, P.R. China
| | - Juan Song
- Emergency Medicine, Putuo Hospital Affiliated to Shanghai Traditional Chinese Medicine University, Shanghai 200333, P.R. China
| | - Jun Liu
- Emergency Medicine, Putuo Hospital Affiliated to Shanghai Traditional Chinese Medicine University, Shanghai 200333, P.R. China
| | - Yanni Sun
- Emergency Medicine, Putuo Hospital Affiliated to Shanghai Traditional Chinese Medicine University, Shanghai 200333, P.R. China
| |
Collapse
|
15
|
Adiponectin Is Involved in Connective Tissue Growth Factor-Induced Proliferation, Migration and Overproduction of the Extracellular Matrix in Keloid Fibroblasts. Int J Mol Sci 2017; 18:ijms18051044. [PMID: 28498357 PMCID: PMC5454956 DOI: 10.3390/ijms18051044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Adiponectin, an adipocyte-derived hormone, exerts pleiotropic biological effects on metabolism, inflammation, vascular homeostasis, apoptosis and immunity. Recently, adiponectin has been suggested to attenuate the progression of human dermal fibrosis. Connective tissue growth factor (CTGF) is induced in keloids and is thought to be participated in the formation of keloid fibrosis. However, the roles played by adiponectin in keloids remain unclear. In this study, we explored the effects of adiponectin on CTGF-induced cell proliferation, migration and the deposition of extracellular matrix (ECM) and their associated intracellular signalling pathways in keloid fibroblasts (KFs). We also explored possible mechanisms of keloid pathogenesis. Primary fibroblast cultures were established from foreskin biopsies and skin biopsies from patients with keloids. The expression of adiponectin and adiponectin receptors (adipoRs) was evaluated by reverse transcription-PCR (RT-PCR), quantitative real-time RT-PCR, immunofluorescence staining, and immunohistochemical analysis. Next, KFs and normal dermal fibroblasts (NFs) were treated with CTGF in the presence or absence of adiponectin. A cell counting kit-8 (CCK-8) and the Transwell assay were used to examine cell proliferation and migration. The level of the collagen I, fibronectin (FN) and α-smooth muscle actin (α-SMA) mRNAs and proteins were determined by quantitative real-time RT-PCR and western blotting. The effects of RNA interference (RNAi) targeting the adipoR genes were detected. Phosphorylation of adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase-protein kinase (PI3K-Akt) were examined by western blotting to further investigate the signalling pathways. Furthermore, inhibitors of signal transduction pathways were investigated. The expression levels of adiponectin and adipoRs were significantly decreased in keloids compared with those in normal skin tissue. Adiponectin suppressed the CTGF-induced KFs, but not NFs, proliferation, migration and ECM production. Moreover, adiponectin inhibited the phosphorylation of AMPK, p38 and extracellular-regulated kinase (ERK), but not that of Jun N-terminal kinase (JNK) or Akt, in CTGF-treated KFs. The activity of adiponectin-mediated signalling pathways was attenuated by small interfering RNAs (siRNAs) targeting adipoR1 (but not siRNAs targeting adipoR2, T-cadherin or calreticulin), AMPK (Compound C), p38 (SB203580) inhibitors, and mitogen-activated protein kinase kinase (MEK) inhibitor (PD98059). Based on our results, adiponectin suppresses CTGF-induced KFs proliferation, migration and ECM overproduction. One of the underlying mechanisms is the activation of the adipoR1, AMPK, p38, and ERK signalling pathways. Therefore, adiponectin may play an important role in the progression of keloids, suggesting a potential novel target for keloid treatment.
Collapse
|
16
|
Zhang T, Zhang X, Han K, Zhang G, Wang J, Xie K, Xue Q, Fan X. Analysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken. PLoS One 2017; 12:e0172389. [PMID: 28199418 PMCID: PMC5310915 DOI: 10.1371/journal.pone.0172389] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/03/2017] [Indexed: 02/04/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate metabolic tissue development and function, including adipogenesis. However, little is known about the function and profile of lncRNAs in intramuscular preadipocyte differentiation in chicken. Here, we identified lncRNAs in chicken intramuscular preadipocytes at different differentiation stages using RNA sequencing. A total of 1,311,382,604 clean reads and 25,435 lncRNAs were obtained from 12 samples. In total, 7,433 differentially expressed genes (4,698 lncRNAs and 2,735 mRNAs) were identified by pairwise comparison. These 7,433 differentially expressed genes were grouped into 11 clusters based on their expression patterns by K-means clustering. Using Weighted Gene Coexpression Network Analysis, we identified four stage-specific modules positively related to I0, I2, I4, and I6 stages and two stage-specific modules negatively related to I0 and I2 stages, respectively. Many well-known and novel pathways associated with intramuscular preadipocyte differentiation were identified. We also identified hub genes in each stage-specific module and visualized them in Cytoscape. Our analysis revealed many highly-connected genes, including XLOC_058593, BMP3, MYOD1, and LAMP3. This study provides a valuable resource for chicken lncRNA study and improves our understanding of the biology of preadipocyte differentiation in chicken.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiangqian Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Kunpeng Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
- * E-mail:
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Qian Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiaomei Fan
- Vazyme Biotech Co.,Ltd., Economic and Technological Development Zone, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Zhang R, Lin Y, Zhi L, Liao H, Zuo L, Li Z, Xu Y. Expression profiles and associations of adiponectin and adiponectin receptors with intramuscular fat in Tibetan chicken. Br Poult Sci 2017; 58:151-157. [DOI: 10.1080/00071668.2016.1268252] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- R. Zhang
- College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Y. Lin
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - L. Zhi
- College of Life Sciences, Hubei Normal University, Huangshi, China
| | - H. Liao
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - L. Zuo
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Z. Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Y. Xu
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| |
Collapse
|
18
|
Wiesenborn DS, Menon V, Zhi X, Do A, Gesing A, Wang Z, Bartke A, Altomare DA, Masternak MM. The effect of calorie restriction on insulin signaling in skeletal muscle and adipose tissue of Ames dwarf mice. Aging (Albany NY) 2015; 6:900-12. [PMID: 25411241 PMCID: PMC4247389 DOI: 10.18632/aging.100700] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long-living Ames dwarf (df/df) mice are homozygous for a mutation of the Prop1(df) gene. As a result, mice are deficient in growth hormone (GH), prolactin (PRL) and thyrotropin (TSH). In spite of the hormonal deficiencies, df/df mice live significantly longer and healthier lives compared to their wild type siblings. We studied the effects of calorie restriction (CR) on the expression of insulin signaling genes in skeletal muscle and adipose tissue of normal and df/df mice. The analysis of genes expression showed that CR differentially affects the insulin signaling pathway in these insulin target organs. Moreover, results obtained in both normal and Ames dwarf mice indicate more direct effects of CR on insulin signaling genes in adipose tissue than in skeletal muscle. Interestingly, CR reduced the protein levels of adiponectin in the epididymal adipose tissue of normal and Ames dwarf mice, while elevating adiponectin levels in skeletal muscle and plasma of normal mice only. In conclusion, our findings suggest that both skeletal muscle and adipose tissue are important mediators of insulin effects on longevity. Additionally, the results revealed divergent effects of CR on expression of genes in the insulin signaling pathway of normal and Ames dwarf mice.
Collapse
Affiliation(s)
- Denise S Wiesenborn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Vinal Menon
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA. Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina Columbia, SC 29209, USA
| | - Xu Zhi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA. Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Andrew Do
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Zhihui Wang
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA. Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 61-866 Poznan
| |
Collapse
|