1
|
Mohaghegh N, Ahari A, Buttles C, Davani S, Hoang H, Huang Q, Huang Y, Hosseinpour B, Abbasgholizadeh R, Cottingham AL, Farhadi N, Akbari M, Kang H, Khademhosseini A, Jucaud V, Pearson RM, Hassani Najafabadi A. Simvastatin-Loaded Polymeric Nanoparticles: Targeting Inflammatory Macrophages for Local Adipose Tissue Browning in Obesity Treatment. ACS NANO 2024; 18:27764-27781. [PMID: 39342648 DOI: 10.1021/acsnano.4c10742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Obesity is defined as chronic, low-grade inflammation within specific tissues. Given the escalating prevalence of obesity among individuals of all ages, obesity has reached epidemic proportions, posing an important public health challenge. Despite significant advancements in treating obesity, conventional approaches remain largely ineffective or involve severe side effects, thus underscoring the pressing need to explore and develop treatment approaches. Targeted and local immunomodulation using nanoparticles (NPs) can influence fat production and utilization processes. Statins, known for their anti-inflammatory properties, show the potential for mitigating obesity-related inflammation. A localized delivery option offers several advantages over oral and parenteral delivery methods. Here, we developed simvastatin (Sim) encapsulated within PLGA NPs (Sim-NP) for localized delivery of Sim to adipose tissues (ATs) for immunomodulation to treat obesity. In vitro experiments revealed the strong anti-inflammatory effects of Sim-NPs, which resulted in enhanced modulation of macrophage (MΦ) polarization and induction of AT browning. We then extended our investigation to an in vivo mouse model of high-fat-diet (HFD)-induced obesity. Sim-NP administration led to the controlled release of Sim within AT, directly impacting MΦ activity and inducing AT browning while inducing weight loss. Our findings demonstrated that Sim-NP administration effectively inhibited the progression of obesity-related inflammation, controlled white fat production, and enhanced AT modulation. These results highlight the potential of Sim-NP as a potent nanotherapy for treating obesity by modulating the immune system.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Surgery, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Briggs Hall, Davis, California 95616, United States
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90024, United States
| | - Qiang Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Yixuan Huang
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Bahareh Hosseinpour
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Reza Abbasgholizadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice 44-100, Poland
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | | |
Collapse
|
2
|
Amano K, Okabe M, Yoshida T, Oba J, Yoshida S, Wakasugi M, Usui A, Nakata Y, Okudera H. Hyperdry Human Amniotic Membrane as a Protective Dressing for Open Wounds With Exposed Bowel in Mice. J Surg Res 2023; 283:898-913. [PMID: 36915018 DOI: 10.1016/j.jss.2022.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION An enteroatmospheric fistula forms when the exposed bowel is perforated with chronic enteric fistula formation. Currently, there is no established preventative method for this condition. Hyperdry (HD) amniotic membrane (AM) can promote early granulation tissue formation on the exposed viscera and is suitable for dressing intractable wounds as it possesses anti-inflammatory, antibacterial, and immunomodulatory properties. This study investigated whether HD-AM promotes early formation of blood vessel-containing granulation tissue for enteroatmospheric fistula treatment. METHODS An experimental animal model of an open wound with exposed bowel was developed. A 15 × 20 mm wound was prepared on the abdomen of Institute of Cancer Research mice, and the HD-AM was placed. The mice were assigned to one of the following groups: HD-AM group, in which the stromal layer of the HD-AM was placed in contact with the exposed bowel; HD-AM UD group, in which the epithelial layer of the HD-AM was placed in contact with the exposed bowel; and the HD-AM (-) or control group, in which the HD-AM was not used. RESULTS On postoperative days 7 and 14, granulation tissue thickness significantly increased in the HD-AM and HD-AM UD groups compared with that in the HD-AM (-) group. Macrophages accumulated in the HD-AM epithelium only in the HD-AM group. During HD-AM contact, a subset of invading macrophages switched from M1 to M2 phenotype. CONCLUSIONS HD-AM is a practical wound dressing with its scaffolding function, regulation of TGF β-1 and C-X-C motif chemokine 5 (CXCL-5), and ability to induce M1-to-M2 macrophage conversion.
Collapse
Affiliation(s)
- Koji Amano
- Department of Emergency Surgery, Sakai City Medical Center, Sakai, Osaka, Japan
| | - Motonori Okabe
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Toshiko Yoshida
- Department of Clinical Biomaterial Application, Medical, University of Toyama, Toyama, Japan.
| | - Jiro Oba
- Department of Emergency & Disaster Medicine, Juntendo University School of Medicine/Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Yoshida
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Masahiro Wakasugi
- Department of Emergency and Disaster Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Akihiro Usui
- Department of Emergency Surgery, Sakai City Medical Center, Sakai, Osaka, Japan
| | - Yasuki Nakata
- Department of Emergency Surgery, Sakai City Medical Center, Sakai, Osaka, Japan
| | - Hiroshi Okudera
- Department of Emergency and Disaster Medicine, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
3
|
D'Arpa P, Leung KP. Pharmaceutical Prophylaxis of Scarring with Emphasis on Burns: A Review of Preclinical and Clinical Studies. Adv Wound Care (New Rochelle) 2022; 11:428-442. [PMID: 33625898 PMCID: PMC9142134 DOI: 10.1089/wound.2020.1236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: The worldwide estimate of burns requiring medical attention each year is 11 million. Each year in the United States, ∼486,000 burn injuries receive medical attention, including 40,000 hospitalizations. Scars resulting from burns can be disfiguring and impair functions. The development of prophylactic drugs for cutaneous scarring could improve the outcomes for burns, traumatic lacerations (>6 million/year treated in U.S. emergency rooms), and surgical incisions (∼250 million/year worldwide). Antiscar pharmaceuticals have been estimated to have a market of $12 billion. Recent Advances: Many small molecules, cells, proteins/polypeptides, and nucleic acids have mitigated scarring in animal studies and clinical trials, but none have received Food and Drug Administration (FDA) approval yet. Critical Issues: The development of antiscar pharmaceuticals involves the identification of the proper dose, frequency of application, and window of administration postwounding for the indicated wound. Risks of infection and impaired healing must be considered. Scar outcome needs to be evaluated after scars have matured. Future Directions: Once treatments have demonstrated safety and efficacy in rodent and/or rabbit and porcine wound models, human testing can begin, such as on artificially created wounds on healthy subjects and on bilateral-surgical wounds, comparing treatments versus vehicle controls on intrapatient-matched wounds, before testing on separate cohorts of patients. Given the progress made in the past 20 years, FDA-approved drugs for improving scar outcomes may be expected.
Collapse
Affiliation(s)
- Peter D'Arpa
- The Geneva Foundation, Tacoma, Washington, USA.,Correspondence: 15104 DuFief Dr, North Potomac, MD 20878, USA.
| | - Kai P. Leung
- Division of Combat Wound Repair, US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA.,Correspondence: Division of Combat Wound Repair, U.S. Army Institute of Surgical Research, 3650 Chambers Pass, Building 3611, Fort Sam Houston, TX 78234-6315, USA.
| |
Collapse
|
4
|
Fang Z, Li J, Wang K, He T, Wang H, Xie S, Yang X, Han J. Autologous Scar-Related Tissue Combined with Skin Grafting for Reconstructing Large Area Burn Scar. J INVEST SURG 2022; 35:1779-1788. [PMID: 35853786 DOI: 10.1080/08941939.2022.2101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND This study introduced a novel method to reconstruct large areas of scarring caused by burns via combining autologous scar-related tissue with spit-thickness skin grafting (ASTCS). METHODS 25 patients underwent reconstruction after scar resection surgeries around the joints were analyzed between Jan 2012 and Jan 2018. Patient demographics and clinical parameters were collected, autologous scar-related tissue was modified to meshed structure, and the split-thickness skin was acquired from the scalp. The scar was resected and punched by a meshing machine with a thickness of 0.3-0.5 mm at a ratio of 1:1. The secondary wounds were covered by the epidermis from a donor site. The surgical areas were bandaged for 7-10 days before the first dressing change. RESULTS 25 patients (mean [SD] age, 26.4 [18.8] years; 16 [64%] men) underwent wounds reconstructive operations due to scar resection were reviewed. Wound location of 9 (22%), 8 (19.5%), 9 (22%), 7 (17.1%) and 8 (19.5%) cases were reconstructed in axillary, hand and wrist, popliteal fossa, elbow and neck, respectively. 39 sites of transplanted tissues survived well, and 2 sites were cured after two weeks of dressing changes. Except the analysis of injury causes, nutritional status, wound area and hospital days, patients with scar deformities in joint areas achieved satisfactory function by assessing the Vancouver Burn Skin Score and the Barthel Index Scale Scores after 12-month follow-up. CONCLUSIONS Combining autologous scar-related tissue with skin grafting provided a novel method for treating large areas of burn scars with better functional outcomes.
Collapse
Affiliation(s)
- Zhuoqun Fang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China.,Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jun Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Songtao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China
| |
Collapse
|
5
|
Papathanasiou E, Scott AR, Trotman CA, Beale C, Price LL, Huggins GS, Zhang Y, Georgakoudi I, Van Dyke TE. Specialized Pro-Resolving Mediators Reduce Scarring After Cleft Lip Repair. Front Immunol 2022; 13:871200. [PMID: 35572588 PMCID: PMC9094441 DOI: 10.3389/fimmu.2022.871200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Residual scarring after cleft lip repair surgery remains a challenge for both surgeons and patients and novel therapeutics are critically needed. The objective of this preclinical experimental study was to evaluate the impact of the methyl-ester of pro-resolving lipid mediator lipoxin A4 (LXA4-ME) on scarring in a novel rabbit model of cleft lip repair. Methods A defect of the lip was surgically created and repaired in eight six-week old New Zealand white rabbits to simulate human cleft lip scars. Rabbits were randomly assigned to topical application of PBS (control) or 1 ug of LXA4-ME (treatment). 42 days post surgery all animals were euthanized. Photographs of the cleft lip area defect and histologic specimens were evaluated. Multiple scar assessment scales were used to compare scarring. Results Animals treated with LXA4-ME exhibited lower Visual Scar Assessment scores compared to animals treated with PBS. Treatment with LXA4-ME resulted in a significant reduction of inflammatory cell infiltrate and density of collagen fibers. Control animals showed reduced 2D directional variance (orientation) of collagen fibers compared to animals treated with LXA4-ME demonstrating thicker and more parallel collagen fibers, consistent with scar tissue. Conclusions These data suggest that LXA4-ME limits scarring after cleft lip repair and improves wound healing outcomes in rabbits favoring the resolution of inflammation. Further studies are needed to explore the mechanisms that underlie the positive therapeutic impact of LXA4-ME on scarring to set the stage for future human clinical trials of LXA4-ME for scar prevention or treatment after cleft lip repair.
Collapse
Affiliation(s)
- Evangelos Papathanasiou
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, United States
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States
| | - Andrew R. Scott
- Department of Otolaryngology – Head & Neck Surgery, Tufts University School of Medicine, Boston, MA, United States
| | - Carroll Ann Trotman
- College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Corinna Beale
- Tufts Comparative Medicine Services, Tufts University, Boston, MA, United States
| | - Lori Lyn Price
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, MA, United States
- Institute of Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, United States
| | - Gordon S. Huggins
- Molecular Cardiology Research Institute and Cardiology Division, Tufts Medical Center and Tufts University School of Medicine, Boston, MA, United States
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| | - Thomas E. Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Faculty of Medicine, Harvard University, Boston, MA, United States
| |
Collapse
|
6
|
Mistry R, Veres M, Issa F. A Systematic Review Comparing Animal and Human Scarring Models. Front Surg 2022; 9:711094. [PMID: 35529910 PMCID: PMC9073696 DOI: 10.3389/fsurg.2022.711094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction A reproducible, standardised model for cutaneous scar tissue to assess therapeutics is crucial to the progress of the field. A systematic review was performed to critically evaluate scarring models in both animal and human research. Method All studies in which cutaneous scars are modelling in animals or humans were included. Models that were focused on the wound healing process or those in humans with scars from an existing injury were excluded. Ovid Medline® was searched on 25 February 2019 to perform two near identical searches; one aimed at animals and the other aimed at humans. Two reviewers independently screened the titles and abstracts for study selection. Full texts of potentially suitable studies were then obtained for analysis. Results The animal kingdom search yielded 818 results, of which 71 were included in the review. Animals utilised included rabbits, mice, pigs, dogs and primates. Methods used for creating scar tissue included sharp excision, dermatome injury, thermal injury and injection of fibrotic substances. The search for scar assessment in humans yielded 287 results, of which 9 met the inclusion criteria. In all human studies, sharp incision was used to create scar tissue. Some studies focused on patients before or after elective surgery, including bilateral breast reduction, knee replacement or midline sternotomy. Discussion The rabbit ear scar model was the most popular tool for scar research, although pigs produce scar tissue which most closely resembles that of humans. Immunodeficient mouse models allow for in vivo engraftment and study of human scar tissue, however, there are limitations relating to the systemic response to these xenografts. Factors that determine the use of animals include cost of housing requirements, genetic traceability, and ethical concerns. In humans, surgical patients are often studied for scarring responses and outcomes, but reproducibility and patient factors that impact healing can limit interpretation. Human tissue use in vitro may serve as a good basis to rapidly screen and assess treatments prior to clinical use, with the advantage of reduced cost and setup requirements.
Collapse
Affiliation(s)
- Riyam Mistry
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Correspondence: Riyam Mistry
| | - Mark Veres
- John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Rodrigues AE, Dolivo D, Li Y, Mustoe TA, Galiano R, Hong SJ. Comparison of Thermal Burn-Induced and Excisional-Induced Scarring in Animal Models: A Review of the Literature. Adv Wound Care (New Rochelle) 2022; 11:150-162. [PMID: 34841897 DOI: 10.1089/wound.2021.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Significance: Scar formation is a natural result of mammalian wound healing. In humans and other mammals, however, deep dermal wounds and thermal injuries often result in formation of hypertrophic scars, leading to substantial morbidity and lending great importance to development of therapeutic modalities for burn scars. Clinical Issues: Thus, preclinical burn wound models that adequately simulate processes underlying human burn-induced wound healing, particularly those processes leading to chronic inflammation and development of hypertrophic scars, are critical to developing further treatment paradigms for clinical use. Approach: In this study, we review literature describing various burn models, focusing on their characteristics and the functional readouts that lead to generation of useful data. We also briefly discuss recent work using human ex vivo skin culture as an alternative to animal models, as well as our own development of rabbit ear wound models for burn scars, and assess the pros and cons of these models compared to other models. Future Direction: Understanding of the strengths and weaknesses of preclinical burn wound models will enable choice of the most appropriate wound model to answer particular clinically relevant questions, furthering research aimed at treating burn scars.
Collapse
Affiliation(s)
- Adrian E. Rodrigues
- Division of Plastic Surgery, Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - David Dolivo
- Division of Plastic Surgery, Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yingxing Li
- Division of Plastic Surgery, Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas A. Mustoe
- Division of Plastic Surgery, Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert Galiano
- Division of Plastic Surgery, Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Seok Jong Hong
- Division of Plastic Surgery, Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Cheng S, Lv R, Xu J, Hirman AR, Du L. IGF-1-Expressing Placenta-Derived Mesenchymal Stem Cells Promote Scalding Wound Healing. J Surg Res 2021; 265:100-113. [PMID: 33895582 DOI: 10.1016/j.jss.2021.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/01/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Stem cell-based regenerative therapy is a novel approach to severe damaged skin. Perinatal tissues such as placenta are considered as promising alternatives. The present study aimed to investigate the effect of insulin-like growth factor-1 (IGF-1)-expressing placenta-derived mesenchymal stem cells (hPMSCs) on healing of burn wounds. MATERIALS AND METHODS hPMSCs were isolated from human placenta, and IGF-1 was transducted into hPMSCs via lentivirus. Flow cytometry and MTT assay were performed to assess cell apoptosis and viability, respectively. Immunostaining of CK19 and ki67 was for evaluating epithelial differentiation ability and cell proliferation. For in vivo studies, we established a mouse model of scalding and performed local administration of IGF-1-expressing hPMSCs via subcutaneous injection. Wound histology was analyzed with H&E staining. The expression of fibrogenic cytokines was detected by western blot. The production of pro-inflammatory factors was measured by ELISA. RESULTS Overexpression of IGF-1 promoted cell proliferation and epithelial differentiation of hPMSCs in vitro and in vivo. Mice with burn injury displayed increased wound contraction and healing rates following treatment with IGF-1-expressing hPMSCs. There was less inflammatory infiltration and reduced collagen disposition in the presence of IGF-1 at the wound site. Administration of IGF-1-expressing hPMSCs suppressed inflammation by decreasing the levels of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6. Besides, IGF-1 increased VEGF expression, and decreased TGF-β1, collagen I and collagen III expressions in vivo. CONCLUSIONS IGF-1-expressing PMSCs promotes cell proliferation and epithelial differentiation, inhibits inflammation and collagen deposition, and thus contributes to wound healing.
Collapse
Affiliation(s)
- Shaohang Cheng
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Runxiao Lv
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Xu
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Abdul Razaq Hirman
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Du
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Zhang J, Shi W, Xue G, Ma Q, Cui H, Zhang L. Improved Therapeutic Efficacy of Topotecan Against A549 Lung Cancer Cells with Folate-targeted Topotecan Liposomes. Curr Drug Metab 2020; 21:902-909. [PMID: 32851958 DOI: 10.2174/1389200221999200820163337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Among all cancers, lung cancer has high mortality among patients in most of the countries in the world. Targeted delivery of anticancer drugs can significantly reduce the side effects and dramatically improve the effects of the treatment. Folate, a suitable ligand, can be modified to the surface of tumor-selective drug delivery systems because it can selectively bind to the folate receptor, which is highly expressed on the surface of lung tumor cells. OBJECTIVE This study aimed to construct a kind of folate-targeted topotecan liposomes for investigating their efficacy and mechanism of action in the treatment of lung cancer in preclinical models. METHODS We conjugated topotecan liposomes with folate, and the liposomes were characterized by particle size, entrapment efficiency, cytotoxicity to A549 cells and in vitro release profile. Technical evaluations were performed on lung cancer A549 cells and xenografted A549 cancer cells in female nude mice, and the pharmacokinetics of the drug were evaluated in female SD rats. RESULTS The folate-targeted topotecan liposomes were proven to show effectiveness in targeting lung tumors. The anti-tumor effects of these liposomes were demonstrated by the decreased tumor volume and improved therapeutic efficacy. The folate-targeted topotecan liposomes also lengthened the topotecan blood circulation time. CONCLUSION The folate-targeted topotecan liposomes are effective drug delivery systems and can be easily modified with folate, enabling the targeted liposomes to deliver topotecan to lung cancer cells and kill them, which could be used as potential carriers for lung chemotherapy.
Collapse
Affiliation(s)
- Jingxin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiyue Shi
- College of Agriculture, Purdue University, West Lafayette, IN 47907, United States
| | - Gangqiang Xue
- Department of Pharmaceutic Preparation, The Fourth Hospital of Shijiazhuang City, Shijiazhuang, Heibei Province, China
| | - Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Oba J, Okabe M, Yoshida T, Soko C, Fathy M, Amano K, Kobashi D, Wakasugi M, Okudera H. Hyperdry human amniotic membrane application as a wound dressing for a full-thickness skin excision after a third-degree burn injury. BURNS & TRAUMA 2020; 8:tkaa014. [PMID: 32733973 PMCID: PMC7382972 DOI: 10.1093/burnst/tkaa014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/08/2020] [Indexed: 12/18/2022]
Abstract
Background Severe burn injuries create large skin defects that render the host susceptible to bacterial infections. Burn wound infection often causes systemic sepsis and severe septicemia, resulting in an increase in the mortality of patients with severe burn injuries. Therefore, appropriate wound care is important to prevent infection and improve patient outcomes. However, it is difficult to heal a third-degree burn injury. The aim of this study was to investigate whether hyperdry human amniotic membrane (HD-AM) could promote early granulation tissue formation after full-thickness skin excision in third-degree burn injury sites in mice. Methods After the development of HD-AM and creation of a third-degree burn injury model, the HD-AM was either placed or not placed on the wound area in the HD-AM group or HD-AM group, respectively. The groups were prepared for evaluation on postoperative days 1, 4 and 7. Azan staining was used for granulation tissue evaluation, and estimation of CD163, transforming growth factor beta-1 (TGF-β1), vascular endothelial growth factor (VEGF), CD31, alpha-smooth muscle actin (α-SMA) and Iba1 expression was performed by immunohistochemical staining. Quantitative reverse-transcription polymerase chain reaction (PCR) was used to investigate gene expression of growth factors, cell migration chemokines and angiogenic and inflammatory markers. Results The HD-AM group showed significant early and qualitatively good growth of granulation tissue on the full-thickness skin excision site. HD-AM promoted early-phase inflammatory cell infiltration, fibroblast migration and angiogenesis in the granulation tissue. Additionally, the early infiltration of cells of the immune system was observed. Conclusions HD-AM may be useful as a new wound dressing material for full-thickness skin excision sites after third-degree burn injuries, and may be a new therapeutic technique for improving the survival rate of patients with severe burn injuries.
Collapse
Affiliation(s)
- Jiro Oba
- Department of Emergency and Disaster Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Motonori Okabe
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Toshiko Yoshida
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Chika Soko
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Moustafa Fathy
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan.,Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Koji Amano
- Department of Emergency Surgery, Sakai City Medical Center, Sakai, Osaka 594-8304, Japan
| | - Daisuke Kobashi
- Department of Emergency and Disaster Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masahiro Wakasugi
- Department of Emergency and Disaster Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Okudera
- Department of Emergency and Disaster Medicine, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
11
|
Rosowski EE. Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Dis Model Mech 2020; 13:13/1/dmm041889. [PMID: 31932292 PMCID: PMC6994940 DOI: 10.1242/dmm.041889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The specific roles of the two major innate immune cell types – neutrophils and macrophages – in response to infection and sterile inflammation are areas of great interest. The larval zebrafish model of innate immunity, and the imaging capabilities it provides, is a source of new research and discoveries in this field. Multiple methods have been developed in larval zebrafish to specifically deplete functional macrophages or neutrophils. Each of these has pros and cons, as well as caveats, that often make it difficult to directly compare results from different studies. The purpose of this Review is to (1) explore the pros, cons and caveats of each of these immune cell-depleted models; (2) highlight and place into a broader context recent key findings on the specific functions of innate immune cells using these models; and (3) explore future directions in which immune cell depletion methods are being expanded. Summary: Macrophages and neutrophils are distinct innate immune cells with diverse roles in diverse inflammatory contexts. Recent research in larval zebrafish using cell-specific depletion methods has revealed new insights into these cells' functions.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
12
|
Hong L, Shen M, Fang J, Wang Y, Bao Z, Bu S, Zhu Y. Hyaluronic acid (HA)-based hydrogels for full-thickness wound repairing and skin regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:150. [PMID: 30196396 DOI: 10.1007/s10856-018-6158-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
In this work, two kinds of hyaluronic acid (HA)-based hydrogels were fabricated: one is made from physical freezing-thawing of HA solution (HA1), and the other is from chemical cross-linking of HA and polysaccharide (HA2). They were applied to repair full-thickness skin defects with New Zealand rabbits as the test animals, using powder HA and cotton dress as the references. The wound starts to heal after wounds were disinfected with iodine followed by coating with HA2, HA1, HA and cotton dress (the control), respectively. They were recorded as 4 treatments (groups), HA2, HA1, HA and the control. The healing progress was followed and tested in the duration of 56 days, and the biological repairing mechanism was explored. From the wound area alteration, white blood cell (WBC) measurements and H&E staining, HA2 was the most promising treatment in promoting the wound healing with least serious scar formation. Immunochemistry analyses and real-time PCR tests of the bio-factors involved in the wound healing, vascular endothelial growth factor (VEGF), alpha-smooth muscle actin (α-SMA) and transforming growth factor beta-1 (TGF-β1), exhibited that HA2 enhanced VEGF and α-SMA secretion but reduced TGF-β1 expression at early stage, which alleviated the wound inflammation, improved the skin regeneration and relieved the scar formation.
Collapse
Affiliation(s)
- Lei Hong
- The Medical School of Ningbo University, Ningbo, 315211, China
| | - Meiting Shen
- The Medical School of Ningbo University, Ningbo, 315211, China
| | - Jiaxi Fang
- The Medical School of Ningbo University, Ningbo, 315211, China
| | - Yezhao Wang
- The Medical School of Ningbo University, Ningbo, 315211, China
| | - Zhiyuan Bao
- The Medical School of Ningbo University, Ningbo, 315211, China
| | - Shizhong Bu
- The Medical School of Ningbo University, Ningbo, 315211, China
| | - Yabin Zhu
- The Medical School of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Montay-Gruel P, Meziani L, Yakkala C, Vozenin MC. Expanding the therapeutic index of radiation therapy by normal tissue protection. Br J Radiol 2018; 92:20180008. [PMID: 29694234 DOI: 10.1259/bjr.20180008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Normal tissue damages induced by radiation therapy remain dose-limiting factors in radiation oncology and this is still true despite recent advances in treatment planning and delivery of image-guided radiation therapy. Additionally, as the number of long-term cancer survivors increases, unacceptable complications emerge and dramatically reduce the patients' quality of life. This means that patients and clinicians expect discovery of new options for the therapeutic management of radiation-induced complications. Over the past four decades, research has enhanced our understanding of the pathophysiological, cellular and molecular processes governing normal tissue toxicity. Those processes are complex and involve the cross-talk between the various cells of a tissue, including fibroblasts, endothelial, immune and epithelial cells as well as soluble paracrine factors including growth factors and proteases. We will review the translatable pharmacological approaches that have been developed to prevent, mitigate, or reverse radiation injuries based upon the targeting of cellular and signalling pathways. We will summarize the different steps of the research strategy, from the definition of initial biological hypotheses to preclinical studies and clinical translation. We will also see how novel research and therapeutic hypotheses emerge along the way as well as briefly highlight innovative approaches based upon novel radiotherapy delivery procedures.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lydia Meziani
- INSERM, U1030, F-94805, Villejuif, Paris, France.,Université Paris Sud, Université Paris Saclay, Faculté de médecine du Kremlin-Bicêtre, Labex LERMIT, DHU TORINO, Paris, France
| | - Chakradhar Yakkala
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Laboratoire de Radio-Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
14
|
The repairing of full-thickness skin deficiency and its biological mechanism using decellularized human amniotic membrane as the wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:739-747. [PMID: 28532087 DOI: 10.1016/j.msec.2017.03.232] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/25/2017] [Indexed: 12/22/2022]
Abstract
Human amniotic membrane (HAM) was a biocompatible scaffold with advantages of anti-inflammatory, low antigen, feasibility, tolerance and low cost. In our previous work, HAM was treated to be decellularized using surfactant, lipase and DNAase methods and the efficacy as an implantable biological mesh was verified after decellularization treatment. In this work, we used the previous protocol to decellularize the fresh HAM, and applied it to repair full-thickness skin defects with Sprague-Dawley rats as the test animals. The wound healing progress was followed in the duration of 8months, and the biological repairing mechanism was explored. From the wound area alteration, white blood cell (WBC) measurements and H&E staining, dHAM was detected to promote the wound healing, comparing with the traditional clinic treatment. Immunohistochemical analyses of the bio-factors involved in the wound healing, vascular endothelial growth factor (VEGF), alpha-smooth muscle actin (α-SMA) and transforming growth factor beta-1 (TGF-β1), exhibited that dHAM enhanced VEGF and α-SMA secretion but reduced TGF-β1 expression at early stage, which alleviated the wound inflammation, promoted the tissue regeneration and relieved the scar formation.
Collapse
|
15
|
TMF and glycitin act synergistically on keratinocytes and fibroblasts to promote wound healing and anti-scarring activity. Exp Mol Med 2017; 49:e302. [PMID: 28303029 PMCID: PMC5382558 DOI: 10.1038/emm.2016.167] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/27/2016] [Accepted: 10/31/2016] [Indexed: 01/04/2023] Open
Abstract
Keratinocyte-fibroblast interactions are critical for skin repair after injury. During the proliferative phase of wound healing, proliferation, migration and differentiation of these cells are the major mechanisms leading to tissue remodeling. We have previously reported that glycitin, a major soy isoflavone, stimulates dermal fibroblast proliferation; and the phytochemical, 4′,6,7-trimethoxyisoflavone (TMF), induces migration of HaCaT keratinocyte cells. We therefore investigated whether these compounds display synergistic effects on skin cells during wound healing in vitro and in vivo. Co-treatment with TMF and glycitin synergistically promotes the proliferation and migration of both keratinocytes and dermal fibroblasts, with a 1:1 ratio of these compounds showing the greatest efficacy in our co-culture system. This keratinocyte-fibroblast interaction occurred via the secretion of TGF-β, and the induction of differentiation and proliferation was confirmed in both indirect and direct co-culture assays. In an excisional and burn wound animal model, mice treated with a 1:1 ratio of TMF and glycitin showed faster wound closure, regeneration and scar reduction than even the positive control drug. These data indicate that two isoflavones, TMF and glycitin, act synergistically to promote wound healing and anti-scarring and could potentially be developed together as a bioactive therapeutic for wound treatment.
Collapse
|
16
|
Lyons AJ, Brennan PA. Pentoxifylline - a review of its use in osteoradionecrosis. Br J Oral Maxillofac Surg 2016; 55:230-234. [PMID: 28034471 DOI: 10.1016/j.bjoms.2016.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023]
Abstract
Pentoxifylline has been used to treat complications related to fibrosis for over 20 years. Formerly used to treat those after radiotherapy such as osteoradionecrosis (ORN), it is now being tried for medication-related osteonecrosis of the jaw (MRONJ), which can occur after prolonged use of bisphosphonates. We review theories on the formation of fibrosis in patients with ORN, discuss the pharmacology of pentoxifylline and vitamin E, and report published outcomes. To our knowledge no prospective randomised controlled trial has investigated the benefits of these agents in cases of ORN, but reported outcomes in many published case series are encouraging.
Collapse
Affiliation(s)
- A J Lyons
- Head and Neck Unit, Guy's and St Thomas' NHS Foundation Trust, London SE1 9RT.
| | - P A Brennan
- Maxillofacial Unit, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK.
| |
Collapse
|