1
|
Yao J, Dai X, Yv X, Zheng L, Zheng J, Kuang B, Teng W, Yu W, Li M, Cao H, Zou W. The role of potential oxidative biomarkers in the prognosis of intracerebral hemorrhage and the exploration antioxidants as possible preventive and treatment options. Front Mol Biosci 2025; 12:1541230. [PMID: 39967652 PMCID: PMC11832355 DOI: 10.3389/fmolb.2025.1541230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a non traumatic hemorrhage that occurs in a certain part of the brain. It usually leads to brain cell damage. According to a large number of experimental research, oxidative stress is an important pathophysiological processes of cerebral hemorrhage. In this paper, we aim to determine how changes in oxidative stress biomarkers indicate the damage degree of cerebral hemorrhage, and to explore and summarize potential treatments or interventions. We found that patients with cerebral hemorrhage are characterized by increased levels of oxidative stress markers, such as total malondialdehyde (MDA), F2 isoprostaglandin, hydroxynonenal, myeloperoxidase and protein hydroxyl. Therefore, the changes of oxidative stress caused by ICH on these markers can be used to evaluate and diagnose ICH, predict its prognosis, and guide preventive treatment to turn to antioxidant based treatment as a new treatment alternative.
Collapse
Affiliation(s)
- Jiayong Yao
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiaohong Dai
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xueping Yv
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Lei Zheng
- Key Laboratory of Clinical Molecular Biology of Integrated Traditional Chinese and Western Medicine in Heilongjiang Province, Harbin, Heilongjiang, China
| | - Jia Zheng
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Binglin Kuang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wei Teng
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Weiwei Yu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Mingyue Li
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hongtao Cao
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wei Zou
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Key Laboratory of Clinical Molecular Biology of Integrated Traditional Chinese and Western Medicine in Heilongjiang Province, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Luo L, Ma X, Kong D, Dai Y, Li T, Yu H, Liu J, Li M, Xu Y, Xiang G, Zhao Z, Zhong W, Wang D, Wang Y. Multiomics integrated analysis and experimental validation identify TLR4 and ALOX5 as oxidative stress-related biomarkers in intracranial aneurysms. J Neuroinflammation 2024; 21:225. [PMID: 39278904 PMCID: PMC11403828 DOI: 10.1186/s12974-024-03226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Intracranial aneurysm (IA) is a severe cerebrovascular disease, and effective gene therapy and drug interventions for its treatment are still lacking. Oxidative stress (OS) is closely associated with the IA, but the key regulatory genes involved are still unclear. Through multiomics analysis and experimental validation, we identified two diagnostic markers for IA associated with OS. METHODS In this study, we first analyzed the IA dataset GSE75436 and conducted a joint analysis of oxidative stress-related genes (ORGs). Differential analysis, functional enrichment analysis, immune infiltration, WGCNA, PPI, LASSO, and other methods were used to identify IA diagnostic markers related to OS. Next, the functions of TLR4 and ALOX5 expression in IA and their potential targeted therapeutic drugs were analyzed. We also performed single-cell sequencing of patient IA and control (superficial temporal artery, STA) tissues. 23,342 cells were captured from 2 IA and 3 STA samples obtained from our center. Cell clustering and annotation were conducted using R software to observe the distribution of TLR4 and ALOX5 expression in IAs. Finally, the expression of TLR4 and ALOX5 were validated in IA patients and in an elastase-induced mouse IA model using experiments such as WB and immunofluorescence. RESULTS Through bioinformatics analysis, we identified 16 key ORGs associated with IA pathogenesis. Further screening revealed that ALOX5 and TLR4 were highly expressed to activate a series of inflammatory responses and reduce the production of myocytes. Methotrexate (MTX) may be a potential targeted drug. Single-cell analysis revealed a notable increase in immune cells in the IA group, with ALOX5 and TLR4 primarily localized to monocytes/macrophages. Validation through patient samples and mouse models confirmed high expression of ALOX5 and TLR4 in IAs. CONCLUSIONS Bioinformatics analysis indicated that ALOX5 and TLR4 are the most significant ORGs associated with the pathogenesis of IA. Single-cell sequencing and experiments revealed that the high expression of ALOX5 and TLR4 are closely related to IA. These two genes are promising new targets for IA therapy.
Collapse
Affiliation(s)
- Lvyin Luo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xinlong Ma
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Debin Kong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yuxiang Dai
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Tao Li
- Department of Neurosurgery, the Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Han Yu
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingzheng Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Maogui Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yangyang Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Guo Xiang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Zhimin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Weiying Zhong
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yunyan Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.
| |
Collapse
|
3
|
Ishiguro T, Furukawa H, Polen K, Take Y, Sato H, Kudo D, Morgan J, Uchikawa H, Maeda T, Cisneros O, Rahmani R, Ai J, Eguchi S, Lawton M, Hashimoto T. Pharmacological Inhibition of Epidermal Growth Factor Receptor Prevents Intracranial Aneurysm Rupture by Reducing Endoplasmic Reticulum Stress. Hypertension 2024; 81:572-581. [PMID: 38164754 PMCID: PMC10922815 DOI: 10.1161/hypertensionaha.123.21235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Multiple pathways and factors are involved in the rupture of intracranial aneurysms. The EGFR (epidermal growth factor receptor) has been shown to mediate inflammatory vascular diseases, including atherosclerosis and aortic aneurysm. However, the role of EGFR in mediating intracranial aneurysm rupture and its underlying mechanisms have yet to be determined. Emerging evidence indicates that endoplasmic reticulum (ER) stress might be the link between EGFR activation and the resultant inflammation. ER stress is strongly implicated in inflammation and apoptosis of vascular smooth muscle cells, both of which are key components of the pathophysiology of aneurysm rupture. Therefore, we hypothesized that EGFR activation promotes aneurysmal rupture by inducing ER stress. METHODS Using a preclinical mouse model of intracranial aneurysm, we examined the potential roles of EGFR and ER stress in developing aneurysmal rupture. RESULTS Pharmacological inhibition of EGFR markedly decreased the rupture rate of intracranial aneurysms without altering the formation rate. EGFR inhibition also significantly reduced the mRNA (messenger RNA) expression levels of ER-stress markers and inflammatory cytokines in cerebral arteries. Similarly, ER-stress inhibition also significantly decreased the rupture rate. In contrast, ER-stress induction nullified the protective effect of EGFR inhibition on aneurysm rupture. CONCLUSIONS Our data suggest that EGFR activation is an upstream event that contributes to aneurysm rupture via the induction of ER stress. Pharmacological inhibition of EGFR or downstream ER stress may be a promising therapeutic strategy for preventing aneurysm rupture and subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Taichi Ishiguro
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Hajime Furukawa
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Kyle Polen
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Yushiro Take
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Hiroki Sato
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Daisuke Kudo
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Jordan Morgan
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Hiroki Uchikawa
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Takuma Maeda
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Oscar Cisneros
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Redi Rahmani
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Jinglu Ai
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, U.S.A
| | - Michael Lawton
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| | - Tomoki Hashimoto
- Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, Arizona, U.S.A
| |
Collapse
|
4
|
Wang H, Wang L, Liu Y, Men W, Hao W, Fang C, Li C, Zhang L. Plasma levels of CD36 and glutathione as biomarkers for ruptured intracranial aneurysm. Open Life Sci 2023; 18:20220757. [PMID: 38196515 PMCID: PMC10775171 DOI: 10.1515/biol-2022-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Accepted: 09/24/2023] [Indexed: 01/11/2024] Open
Abstract
Evidence has proved that intracranial aneurysm (IA) formation and rupture might be closely related to inflammatory response and oxidative stress. Our objective was to evaluate the potential of CD36 and glutathione (GSH) as biomarkers for IA. In this study, the enzyme-linked immunosorbent assay was used to measure the plasma levels of CD36 and GSH in 30 IA patients and 30 healthy controls. Then, correlation analysis, receiver operating characteristic (ROC) curve, and logistic regression analysis were performed. The results showed that the plasma level of CD36 in IA patients was significantly higher than that in the control group (P < 0.0001), and plasma GSH was significantly lower compared with that in the control group (P < 0.0001). ROC analysis showed that CD36 and GSH had high sensitivity (90.0 and 96.6%) and specificity (96.6 and 86.6%) for IA diagnosis. The combined sensitivity and specificity achieved were 100 and 100%, respectively. The plasma levels of CD36 and GSH did not show a significant correlation with age, the Glasgow Coma Scale, Hunter-Hess score, aneurysm size, aneurysm height, aneurysm neck, and aspect ratio. The AUC of the logistic regression model based on CD36 and GSH was 0.505. Our results suggested that the combination of plasma CD36 and GSH could serve as potential biomarkers for IA rupture.
Collapse
Affiliation(s)
- Hanbin Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Yunmei Liu
- Department of Reproductive Medicine, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Weidong Men
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Wanjiao Hao
- Department of Reproductive Medicine, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| | - Lijian Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071000, Hebei Province, China
| |
Collapse
|
5
|
Boulieris S, Zampakis P, Panagoulias I, Mouzaki A, Constantoyannis C, Theofanopoulos A, Panagiotopoulos V. Intraluminal assessment of inflammatory factors in patients with intracranial aneurysms. Acta Neurochir (Wien) 2023; 165:3685-3695. [PMID: 37882876 DOI: 10.1007/s00701-023-05851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND The formation, growth, and rupture of intracranial aneurysms (IA) are due to several pathophysiological mechanisms, including focal hemodynamic injury and inflammation of the arterial wall. We investigated the differences between venous, parent artery, and intra-aneurysmal blood by measuring inflammatory factors and antibodies in patients with ruptured (rIA) or unruptured intracranial aneurysms (uIA). METHOD A prospective study was performed in patients who presented with IA and required endovascular treatment. Blood was drawn from the lumen of the aneurysm sac, the parent artery, and the peripheral veins, to determine the serum concentrations of complement factors C3, C4, IgG, IgM, IgA antibodies, and C-reactive protein (CRP). RESULTS Thirty-six patients (15 with uIA and 21 with rIA) were enrolled in the study. In both groups, C3, C4, IgM, IgG, and IgA showed a gradual decrease from venous to intra-aneurysmal samples, but only IgG in the parent artery and intra-aneurysmal samples reached a significant decrease in uIA compared with venous samples. Accordingly, C3 and IgG concentrations in the intra-aneurysmal samples showed a significant decrease in rIA compared with venous samples. A significant increase in CRP concentrations was observed in parent artery and intra-aneurysmal samples from patients with rIA compared with patients with uIA; a significant increase in C3 concentrations was observed in parent artery samples from patients with rIA compared with patients with uIA, and a significant decrease in IgM concentrations was observed in venous, parent artery, and intra-aneurysmal samples from patients with rIA compared with patients with uIA. CONCLUSIONS A decrease in C3 and IgG in the aneurysm sac indicates activation of the complement system in the arterial wall. CRP in the aneurysm sac and lumen of the parent artery was significantly increased in ruptured compared with unruptured aneurysms, whereas venous, parent artery, and intra-aneurysmal IgM were decreased in ruptured compared with unruptured aneurysms. These results argue for the role of an ongoing inflammatory process in aneurysms leading to their growth and rupture.
Collapse
Affiliation(s)
- Spyridon Boulieris
- Department of Neurosurgery, University Hospital of Patras, Patras, Greece.
| | - Petros Zampakis
- Department of Interventional Neuroradiology/Endovascular Neurosurgery, University Hospital of Patras, Patras, Greece
| | - Ioannis Panagoulias
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Laboratory of Immunohematology, Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | | | | | - Vasilios Panagiotopoulos
- Department of Neurosurgery, University Hospital of Patras, Patras, Greece
- Department of Interventional Neuroradiology/Endovascular Neurosurgery, University Hospital of Patras, Patras, Greece
| |
Collapse
|
6
|
Kim M, Jeon H, Chung Y, Lee SU, Park W, Park JC, Ahn JS, Lee S. Efficacy of Acetylcysteine and Selenium in Aneurysmal Subarachnoid Hemorrhage Patients: A Prospective, Multicenter, Single Blind Randomized Controlled Trial. J Korean Med Sci 2023; 38:e161. [PMID: 37270916 DOI: 10.3346/jkms.2023.38.e161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/16/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) patients have oxidative stress results in inflammation, tissue degeneration and neuronal damage. These deleterious effects cause aggravation of the perihematomal edema (PHE), vasospasm, and even hydrocephalus. We hypothesized that antioxidants may have a neuroprotective role in acute aneurysmal SAH (aSAH) patients. METHODS We conducted a prospective, multicenter randomized (single blind) trial between January 2017 and October 2019, investigating whether antioxidants (acetylcysteine and selenium) have the potential to improve the neurologic outcome in aSAH patients. The antioxidant patient group received antioxidants of acetylcysteine (2,000 mg/day) and selenium (1,600 µg/day) intravenously (IV) for 14 days. These drugs were administrated within 24 hours of admission. The non-antioxidant patient group received a placebo IV. RESULTS In total, 293 patients were enrolled with 103 patients remaining after applying the inclusion and exclusion criteria. No significant differences were observed in the baseline characteristics between the antioxidant (n = 53) and non-antioxidant (n = 50) groups. Among clinical factors, the duration of intensive care unit (ICU) stay was significantly shortened in patients who received antioxidants (11.2, 95% confidence interval [CI], 9.7-14.5 vs. 8.3, 95% CI, 6.2-10.2 days, P = 0.008). However, no beneficial effects were observed on radiological outcomes. CONCLUSION In conclusion, antioxidant treatment failed to show the reduction of PHE volume, mid-line shifting, vasospasm and hydrocephalus in acute SAH patients. A significant reduction in ICU stay was observed but need more optimal dosing schedule and precise outcome targets are required to clarify the clinical impacts of antioxidants in these patients. TRIAL REGISTRATION Clinical Research Information Service Identifier: KCT0004628.
Collapse
Affiliation(s)
- Moinay Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hanwool Jeon
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeongu Chung
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Si Un Lee
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Wonhyoung Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Cheol Park
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Sharma HS, Muresanu DF, Ozkizilcik A, Sahib S, Tian ZR, Lafuente JV, Castellani RJ, Nozari A, Feng L, Buzoianu AD, Menon PK, Patnaik R, Wiklund L, Sharma A. Superior antioxidant and anti-ischemic neuroprotective effects of cerebrolysin in heat stroke following intoxication of engineered metal Ag and Cu nanoparticles: A comparative biochemical and physiological study with other stroke therapies. PROGRESS IN BRAIN RESEARCH 2021; 266:301-348. [PMID: 34689862 DOI: 10.1016/bs.pbr.2021.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Military personnel are often exposed to high environmental heat associated with industrial or ambient abundance of nanoparticles (NPs) affecting brain function. We have shown that engineered metal NPs Ag and Cu exacerbate hyperthermia induced brain pathology. Thus, exploration of novel drug therapy is needed for effective neuroprotection in heat stroke intoxicated with NPs. In this investigation neuroprotective effects of cerebrolysin, a balanced composition of several neurotrophic factors and active peptides fragments exhibiting powerful antioxidant and anti-ischemic effects was examined in heat stroke after NPs intoxication. In addition, its efficacy is compared to currently used drugs in post-stroke therapies in clinics. Thus, levertiracetam, pregabalin, topiramat and valproate were compared in standard doses with cerebrolysin in heat stroke intoxicated with Cu or Ag NPs (50-60nm, 50mg/kg, i.p./day for 7 days). Rats were subjected to 4h heat stress (HS) in a biological oxygen demand incubator at 38°C (Relative Humidity 45-47%; Wind velocity 22.4-25.6cm/s) that resulted in profound increase in oxidants Luminol, Lucigenin, Malondialdehyde and Myeloperoxidase, and a marked decrease in antioxidant Glutathione. At this time severe reductions in the cerebral blood flow (CBF) was seen together with increased blood-brain barrier (BBB) breakdown and brain edema formation. These pathophysiological responses were exacerbated in NPs treated heat-stressed animals. Pretreatment with cerebrolysin (2.5mL/kg, i.v.) once daily for 3 days significantly attenuated the oxidative stress, BBB breakdown and brain edema and improved CBF in the heat stressed group. The other drugs were least effective on brain pathology following heat stroke. However, in NPs treated heat stressed animals 5mL/kg conventional cerebrolysin and 2.5mL/kg nanowired cerebrolysin is needed to attenuate oxidative stress, BBB breakdown, brain edema and to improve CBF. Interestingly, the other drugs even in higher doses used are unable to alter brain pathologies in NPs and heat stress. These observations are the first to demonstrate that cerebrolysin is the most superior antioxidant and anti-ischemic drug in NPs exposed heat stroke, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Acik V, Kulahcı O, Arslan A, İstemen İ, Olguner SK, Arslan B, Gezercan Y, Ökten Aİ. The Impact of Myeloperoxidase in the Rupturing of Cerebral Aneurysms. World Neurosurg 2020; 147:e105-e110. [PMID: 33285335 DOI: 10.1016/j.wneu.2020.11.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In this study, we aimed to examine the effect of myeloperoxidase on aneurysm rupture in patients with cerebral aneurysms with and without rupture. METHODS The study included 53 patients with subarachnoid hemorrhage operated on due to cerebral aneurysm in our clinic, and 49 patients without subarachnoid hemorrhage. After the operation, the domes taken from the aneurysms were embedded in paraffin blocks and scored after hematoxylin and eosin and immunohistochemical staining was carried out. RESULTS The myeloperoxidase score was 1 in 29.4% of the patients, 2 in 40.2%, 3 in 12.7%, and 4 in 17.6%. Multiple aneurysms were detected in 24.5% of the patients. The median myeloperoxidase score was higher in patients with bleeding aneurysms than those that did not bleed (3 vs. 1; P < 0.001). In addition, the ratio of patients with a myeloperoxidase score of 2 or above was higher among patients with bleeding aneurysms. CONCLUSIONS In our study, finding myeloperoxidase scores higher in cases of ruptured aneurysms compared with unruptured aneurysms reveals the relationship of myeloperoxidase with ruptured cerebral aneurysms.
Collapse
Affiliation(s)
- Vedat Acik
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey.
| | - Ozgur Kulahcı
- Department of Pathology, Adana City Training and Research Hospital, Adana, Turkey
| | - Ali Arslan
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| | - İsmail İstemen
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| | - Semih Kivanc Olguner
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| | - Baris Arslan
- Department of Anesthesia, Adana City Training and Research Hospital, Adana, Turkey
| | - Yurdal Gezercan
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| | - Ali İhsan Ökten
- Department of Neurosurgery, Adana City Training and Research Hospital, Adana, Turkey
| |
Collapse
|