1
|
Kettrukat T, Petersen JS, Grochowska E, Therkildsen M. Effects of the early incubation temperature on the muscle physiology, meat quality, bone strength and gait score in Ross broilers. Br Poult Sci 2025; 66:401-412. [PMID: 39555608 DOI: 10.1080/00071668.2024.2419614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024]
Abstract
1. Modern broiler chickens are among the most efficient livestock in terms of resource requirements and production time. To maintain and improve production efficiency and meat quality and account for welfare problems, early interventions, such as incubation temperature, require investigation2. In this study, Ross 308 broiler eggs were incubated at either 36.5°C or 38.5°C on embryonic days (ED) 4-7. The control group eggs were incubated at a constant temperature of 37.5°C. Musculus pectoralis and musculus gastrocnemius samples were taken for the investigation of muscle physiology, and the tibia was sampled for bone strength analysis from chickens aged 35 and 36 d. In addition, meat quality was analysed and gait scoring was performed.3. The performance of chickens in the 36.5°C group was inferior to those in the other groups up to d 10 post-hatch, but compensatory growth was seen by d 35 of age. Meat quality was unaffected, but significant differences between sexes were observed. Males had lighter meat colour than females. Muscle glycogen and intramuscular fat were unaffected by the incubation temperature, but the muscularis pectoralis and gastrocnemius intramuscular fat contents were greater in males than in females, accompanied by the increased expression of enzymes involved in lipolysis. In the 38.5°C group, males had less bone elasticity than females, and the inverse was observed in the other groups. Gait scores were affected by sex but not incubation temperature.4. The results of this study showed a stronger effect of sex than incubation temperature on broiler muscle physiology, bone strength, performance and meat quality.
Collapse
Affiliation(s)
- T Kettrukat
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - J S Petersen
- Organic Innovation, SEGES Innovation, Aarhus, Denmark
| | - E Grochowska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology Bydgoszcz, University of Science and Technology, Bydgoszcz, Poland
| | - M Therkildsen
- Department of Food Science, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Chen Z, Hua G, Shu X, Zhuang W, Zhang J, Zhu R, Zheng X, Chen J. Screening of reliable reference genes for the normalization of RT-qPCR in chicken liver tissues and LMH cells. Sci Rep 2024; 14:17828. [PMID: 39090210 PMCID: PMC11294616 DOI: 10.1038/s41598-024-68752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
The liver plays a vital role in lipid synthesis and metabolism in poultry. To study the functional genes more effectively, it is essential to screen of reliable reference genes in the chicken liver, including females, males, embryos, as well as the Leghorn Male Hepatoma (LMH) cell line. Traditional reference gene screening involves selecting commonly used housekeeping genes (HKGs) for RT-qPCR experiments and using different algorithms to identify the most stable ones. However, this approach is limited in selecting the best reference gene from a small pool of HKGs. High-throughput sequencing technology may offer a solution to this limitation. This study aimed to identify the most consistently expressed genes by utilizing multiple published RNA-seq data of chicken liver and LMH cells. Subsequently, the stability of the newly identified reference genes was assessed in comparison to previously validated stable poultry liver expressed reference genes and the commonly employed HKGs using RT-qPCR. The findings indicated that there is a higher degree of similarity in stable expression genes between female and male liver (such as LSM14A and CDC40). In embryonic liver, the optimal new reference genes were SUDS3, TRIM33, and ERAL1. For LMH cells, the optimal new reference genes were ALDH9A1, UGGT1, and C21H1orf174. However, it is noteworthy that most HKGs did not exhibit stable expression across multiple samples, indicating potential instability under diverse conditions. Furthermore, RT-qPCR experiments proved that the stable expression genes identified from RNA-seq data outperformed commonly used HKGs and certain validated reference genes specific to poultry liver. Over all, this study successfully identified new stable reference genes in chicken liver and LMH cells using RNA-seq data, offering researchers a wider range of reference gene options for RT-qPCR in diverse situations.
Collapse
Affiliation(s)
- Ziwei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xin Shu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Wuchao Zhuang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Jilong Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Runbang Zhu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
3
|
Salmória LA, Ibelli AMG, Tavernari FC, Peixoto JO, Morés MAZ, Marcelino DEP, Pinto KDS, Coldebella A, Surek D, Kawski VL, Ledur MC. CYP24A1 and TRPC3 Gene Expression in Kidneys and Their Involvement in Calcium and Phosphate Metabolism in Laying Hens. Animals (Basel) 2024; 14:1407. [PMID: 38791624 PMCID: PMC11117318 DOI: 10.3390/ani14101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Ca and P homeostasis across the egg-laying cycle is a complex process involving absorption in the small intestine, reabsorption/excretion in the kidneys, and eggshell gland secretion. Diets with inadequate calcium and phosphorus can interfere with their absorption and digestibility, resulting in eggshell quality losses and reduced productive life, affecting egg production and welfare. A better understanding of gene expression profiles in the kidneys of laying hens during the late egg-laying period could clarify the renal role in mineral metabolism at this late stage. Therefore, the performance, egg quality and bone integrity-related traits, and expression profiles of kidney candidate genes were evaluated in 73-week-old laying hens receiving different Ca and P ratios in their diet: a high Ca/P ratio (HR, 22.43), a low ratio (LR, 6.71), and a medium ratio (MR, 11.43). The laying hens receiving the HR diet had improved egg production and eggshell quality traits compared to the other two groups. Humerus length was shorter in the HR than in the other groups. The CYP24A1 and TRPC3 genes were differentially expressed (p.adj ≤ 0.05) among the groups. Therefore, their expression profiles could be involved in calcium and phosphate transcellular transport in 73-week-old laying hens as a way to keep mineral absorption at adequate levels.
Collapse
Affiliation(s)
- Letícia Alves Salmória
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava 85015-430, PR, Brazil; (L.A.S.); (J.O.P.)
| | - Adriana Mércia Guaratini Ibelli
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava 85015-430, PR, Brazil; (L.A.S.); (J.O.P.)
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (F.C.T.); (M.A.Z.M.); (A.C.); (D.S.); (V.L.K.)
| | - Fernando Castro Tavernari
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (F.C.T.); (M.A.Z.M.); (A.C.); (D.S.); (V.L.K.)
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó 89815-630, SC, Brazil
| | - Jane Oliveira Peixoto
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava 85015-430, PR, Brazil; (L.A.S.); (J.O.P.)
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (F.C.T.); (M.A.Z.M.); (A.C.); (D.S.); (V.L.K.)
| | | | | | | | - Arlei Coldebella
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (F.C.T.); (M.A.Z.M.); (A.C.); (D.S.); (V.L.K.)
| | - Diego Surek
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (F.C.T.); (M.A.Z.M.); (A.C.); (D.S.); (V.L.K.)
| | - Vicky Lilge Kawski
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (F.C.T.); (M.A.Z.M.); (A.C.); (D.S.); (V.L.K.)
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia 89715-899, SC, Brazil; (F.C.T.); (M.A.Z.M.); (A.C.); (D.S.); (V.L.K.)
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Chapecó 89815-630, SC, Brazil
| |
Collapse
|
4
|
Yuan ZW, Zhang XH, Pang YZ, Qi YX, Wang QK, Ren SW, Hu YQ, Zhao YW, Wang T, Huo LK. Screening of Stably Expressed Internal Reference Genes for Quantitative Real-Time PCR Analysis in Quail. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Identification of appropriate housekeeping genes for gene expression studies in human renal cell carcinoma under hypoxic conditions. Mol Biol Rep 2022; 49:3885-3891. [PMID: 35277789 DOI: 10.1007/s11033-022-07236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Hypoxia pathways are deregulated in clear renal cell carcinoma (ccRCC) because of the loss of the von Hippel-Lindau tumor suppressor function. Quantitative PCR is a powerful tool for quantifying differential expression between normal and cancer cells. Reliable gene expression analysis requires the use of genes encoding housekeeping genes. Therefore, in this study, eight reference candidate genes were evaluated to determine their stability in 786-0 cells under normoxic and hypoxic conditions. METHODS AND RESULTS Four different tools were used to rank the most stable genes-geNorm, NormFinder, BestKeeper, and Comparative Ct (ΔCt), and a general ranking was performed using RankAggreg. According to the four algorithms, the TFRC reference gene was identified as the most stable. There was no agreement among the results from the algorithms for the 2nd and 3rd positions. A general classification was then established using the RankAggreg tool. Finally, the three most suitable reference genes for use in 786-0 cells under normoxic and hypoxic conditions were TFRC, RPLP0, and SDHA. CONCLUSIONS To the best of our knowledge, this is the first study to identify reliable genes that can be used for gene expression analysis in ccRCC in a hypoxic environment.
Collapse
|
6
|
Marciano CMM, Ibelli AMG, Marchesi JAP, de Oliveira Peixoto J, Fernandes LT, Savoldi IR, do Carmo KB, Ledur MC. Differential Expression of Myogenic and Calcium Signaling-Related Genes in Broilers Affected With White Striping. Front Physiol 2021; 12:712464. [PMID: 34381378 PMCID: PMC8349984 DOI: 10.3389/fphys.2021.712464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023] Open
Abstract
White Striping (WS) has been one of the main issues in poultry production in the last years since it affects meat quality. Studies have been conducted to understand WS and other myopathies in chickens, and some biological pathways have been associated to the prevalence of these conditions, such as extracellular calcium level, oxidative stress, localized hypoxia, possible fiber-type switching, and cellular repairing. Therefore, to understand the genetic mechanisms involved in WS, 15 functional candidate genes were chosen to be analyzed by quantitative PCR (qPCR) in breast muscle of normal and WS-affected chickens. To this, the pectoral major muscle (PMM) of 16 normal and 16 WS-affected broilers were collected at 42 days of age and submitted to qRT-PCR analysis. Out of the 15 genes studied, six were differentially expressed between groups. The CA2, CSRP3, and PLIN1 were upregulated, while CALM2, DNASE1L3, and MYLK2 genes were downregulated in the WS-affected when compared to the normal broilers. These findings highlight that the disruption on muscle and calcium signaling pathways can possibly be triggering WS in chickens. Improving our understanding on the genetic basis involved with this myopathy might contribute for reducing WS in poultry production.
Collapse
Affiliation(s)
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia, Brazil.,Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | | | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia, Brazil.,Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Brazil
| | | | - Igor Ricardo Savoldi
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina (UDESC-Oeste), Chapecó, Brazil
| | | | - Mônica Corrêa Ledur
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina (UDESC-Oeste), Chapecó, Brazil.,Embrapa Suínos e Aves, Concórdia, Brazil
| |
Collapse
|
7
|
Na W, Wang Y, Gong P, Zhang X, Zhang K, Zhang H, Wang N, Li H. Screening of Reference Genes for RT-qPCR in Chicken Adipose Tissue and Adipocytes. Front Physiol 2021; 12:676864. [PMID: 34054585 PMCID: PMC8160385 DOI: 10.3389/fphys.2021.676864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Reverse transcription quantitative real-time PCR is the most commonly used method to detect gene expression levels. In experiments, it is often necessary to correct and standardize the expression level of target genes with reference genes. Therefore, it is very important to select stable reference genes to obtain accurate quantitative results. Although application examples of reference genes in mammals have been reported, no studies have investigated the use of reference genes in studying the growth and development of adipose tissue and the proliferation and differentiation of preadipocytes in chickens. In this study, GeNorm, a reference gene stability statistical algorithm, was used to analyze the expression stability of 14 candidate reference genes in the abdominal adipose tissue of broilers at 1, 4, and 7 weeks of age, the proliferation and differentiation of primary preadipocytes, as well as directly isolated preadipocytes and mature adipocytes. The results showed that the expression of the TATA box binding protein (TBP) and hydroxymethylbilane synthase (HMBS) genes was most stable during the growth and development of abdominal adipose tissue of broilers, the expression of the peptidylprolyl isomerase A (PPIA) and HMBS genes was most stable during the proliferation of primary preadipocytes, the expression of the TBP and RPL13 genes was most stable during the differentiation of primary preadipocytes, and the expression of the TBP and HMBS genes was most stable in directly isolated preadipocytes and mature adipocytes. These results provide reference bases for accurately detecting the mRNA expression of functional genes in adipose tissue and adipocytes of chickens.
Collapse
Affiliation(s)
- Wei Na
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,College of Animal Science and Technology, Hainan University, Haikou, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Pengfei Gong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ke Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Reference gene selection for expression studies in the reproductive axis tissues of Magang geese at different reproductive stages under light treatment. Sci Rep 2021; 11:7573. [PMID: 33828187 PMCID: PMC8026621 DOI: 10.1038/s41598-021-87169-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/19/2021] [Indexed: 11/09/2022] Open
Abstract
In quantitative PCR research, appropriate reference genes are key to determining accurate mRNA expression levels. In order to screen the reference genes suitable for detecting gene expression in tissues of the reproductive axis, a total of 420 (males and females = 1:5) 3-year-old Magang geese were selected and subjected to light treatment. The hypothalamus, pituitary and testicular tissues were subsequently collected at different stages. Ten genes including HPRT1, GAPDH, ACTB, LDHA, SDHA, B2M, TUBB4, TFRC, RPS2 and RPL4 were selected as candidate reference genes. The expression of these genes in goose reproductive axis tissues was detected by real-time fluorescent quantitative PCR. The ΔCT, geNorm, NormFinder and BestKeeper algorithms were applied to sort gene expression according to stability. The results showed that ACTB and TUBB4 were the most suitable reference genes for the hypothalamic tissue of Magang goose in the three breeding stages; HPRT1 and RPL4 for pituitary tissue; and HPRT1 and LDHA for testicular tissue. For all three reproductive axis tissues, ACTB was the most suitable reference gene, whereas the least stable reference gene was GAPDH. Altogether, these results can provide references for tissue expression studies in geese under light treatment.
Collapse
|
9
|
Liu L, Han H, Li Q, Chen M, Zhou S, Wang H, Chen L. Selection and Validation of the Optimal Panel of Reference Genes for RT-qPCR Analysis in the Developing Rat Cartilage. Front Genet 2020; 11:590124. [PMID: 33391345 PMCID: PMC7772434 DOI: 10.3389/fgene.2020.590124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
Real-time fluorescence quantitative PCR (RT-qPCR) is widely used to detect gene expression levels, and selection of reference genes is crucial to the accuracy of RT-qPCR results. Minimum Information for Publication of RT-qPCR Experiments (MIQE) proposes that using the panel of reference genes for RT-qPCR is conducive to obtaining accurate experimental results. However, the selection of the panel of reference genes for RT-qPCR in rat developing cartilage has not been well documented. In this study, we selected eight reference genes commonly used in rat cartilage from literature (GAPDH, ACTB, 18S, GUSB, HPRT1, RPL4, RPL5, and SDHA) as candidates. Then, we screened out the optimal panel of reference genes in female and male rat cartilage of fetus (GD20), juvenile (PW6), and puberty (PW12) in physiology with stability analysis software of genes expression. Finally, we verified the reliability of the selected panel of reference genes with the rat model of intrauterine growth retardation (IUGR) induced by prenatal dexamethasone exposure (PDE). The results showed that the optimal panel of reference genes in cartilage at GD20, PW6, and PW12 in physiology was RPL4 + RPL5, which was consistent with the IUGR model, and there was no significant gender difference. Further, the results of standardizing the target genes showed that RPL4 + RPL5 performed smaller intragroup differences than other panels of reference genes or single reference genes. In conclusion, we found that the optimal panel of reference genes in female and male rat developing cartilage was RPL4 + RPL5, and there was no noticeable difference before and after birth.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Han
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingxian Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siqi Zhou
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
10
|
Hul LM, Ibelli AMG, Peixoto JDO, Souza MR, Savoldi IR, Marcelino DEP, Tremea M, Ledur MC. Reference genes for proximal femoral epiphysiolysis expression studies in broilers cartilage. PLoS One 2020; 15:e0238189. [PMID: 32841273 PMCID: PMC7447007 DOI: 10.1371/journal.pone.0238189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
The use of reference genes is required for relative quantification in gene expression analysis and the stability of these genes can be variable depending on the experimental design. Therefore, it is indispensable to test the reliability of endogenous genes previously to their use. This study evaluated nine candidate reference genes to select the most stable genes to be used as reference in gene expression studies with the femoral cartilage of normal and epiphysiolysis-affected broilers. The femur articular cartilage of 29 male broilers with 35 days of age was collected, frozen and further submitted to RNA extraction and quantitative PCR (qPCR) analysis. The candidate reference genes evaluated were GAPDH, HMBS, HPRT1, MRPS27, MRPS30, RPL30, RPL4, RPL5, and RPLP1. For the gene stability evaluation, three software were used: GeNorm, BestKeeper and NormFinder, and a global ranking was generated using the function RankAggreg. In this study, the RPLP1 and RPL5 were the most reliable endogenous genes being recommended for expression studies with femur cartilage in broilers with epiphysiolysis and possible other femur anomalies.
Collapse
Affiliation(s)
- Ludmila Mudri Hul
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
| | - Adriana Mércia Guaratini Ibelli
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
| | - Jane de Oliveira Peixoto
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
| | - Mayla Regina Souza
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, Santa Catarina, Brazil
| | - Igor Ricardo Savoldi
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, Santa Catarina, Brazil
| | | | - Mateus Tremea
- Universidade Federal de Santa Maria, campus Palmeira das Missões, Rio Grande do Sul, Brazil
| | - Mônica Corrêa Ledur
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Programa de Pós-Graduação em Zootecnia, UDESC-Oeste, Chapecó, Santa Catarina, Brazil
- * E-mail:
| |
Collapse
|