1
|
Chen J, Chen G, Li J, Wang D, Liang W, Zhao S. NLRC5 in Macrophages Promotes Atherosclerosis in Acute Coronary Syndrome by Regulating STAT3 Expression. Cardiovasc Toxicol 2025; 25:365-378. [PMID: 39833596 DOI: 10.1007/s12012-024-09957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
The mortality rate of cardiovascular and cerebrovascular diseases ranks first among all causes. This study elucidated the role and potential mechanism of the NLRC5 gene in atherosclerosis (AS). We enrolled patients (number = 30) diagnosed with AS and healthy volunteers (number = 30) as controls from our hospital. In patients with AS, the levels of serum NLRC5 were up-regulated (Fig. 1A) and positively correlated with CIMT/CRP. In a mouse model of AS, the expression of serum NLRC5 mRNA was increased at 6 or 12 weeks after inducing AS. The expression of NLRC5 protein was found to be elevated in a mouse model of AS. The inhibition of NLRC5 reduced development of AS in ApoE-/- Mice. Reducing NLRC5 inhibited the polarization of M2 macrophages and shifted macrophages towards proinflammatory M1 phenotype. STAT3 was identified as a target of NLRC5, with NLRC5 protein expression shown to reduce STAT3 ubiquitination. Methylation promoted NLRC5 DNA stability in vitro model of AS. Sh-NLRC5 increased M1/M2 macrophage ratio, foam cell formation and ox-LDL uptake. STAT3 reduced the effects of sh-NLRC5-mediated M1/M2 macrophage ratio in model of AS. These data confirmed that NLRC5 in macrophages promotes atherosclerosis in acute coronary syndrome by regulating STAT3 expression. This suggests that NLRC5 could be a potential target for the treatment of premature AS.
Collapse
Affiliation(s)
- Jun Chen
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China.
| | - Guoqin Chen
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China
| | - Jianhao Li
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China
| | - Dayu Wang
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China
| | - Weijie Liang
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China
| | - Shanjun Zhao
- Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China
| |
Collapse
|
2
|
Kong S, Zhang J, Wang L, Li W, Guo H, He Q, Lou H, Ding L, Yang B. Mechanisms of Low MHC I Expression and Strategies for Targeting MHC I with Small Molecules in Cancer Immunotherapy. Cancer Lett 2024:217432. [PMID: 39730087 DOI: 10.1016/j.canlet.2024.217432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Major histocompatibility complex (MHC) class I load antigens and present them on the cell surface, which transduces the tumor-associated antigens to CD8+ T cells, activating the acquired immune system. However, many tumors downregulate MHC I expression to evade immune surveillance. The low expression of MHC I not only reduce recognition by- and cytotoxicity of CD8+ T cells, but also seriously weakens the anti-tumor effect of immunotherapy by restoring CD8+ T cells, such as immune checkpoint inhibitors (ICIs). Accumulated evidence suggested that restoring MHC I expression is an effective strategy for enhancing tumor immunotherapy. This review focuses on mechanisms underlying MHC I downregulation include gene deletion and mutation, transcriptional inhibition, reduced mRNA stability, increased protein degradation, and disruption of endocytic trafficking. We also provide a comprehensive review of small molecules that restore or upregulate MHC I expression, as well as clinical trials involving the combination of ICIs and these small molecule drugs.
Collapse
Affiliation(s)
- Shijia Kong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Honggang Lou
- Center of Clinical Pharmacology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, 310015, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Guo B, Zhu H, Xiao C, Zhang J, Liu X, Fang Y, Wei B, Zhang J, Cao Y, Zhan L. NLRC5 exerts anti-endometriosis effects through inhibiting ERβ-mediated inflammatory response. BMC Med 2024; 22:351. [PMID: 39218863 PMCID: PMC11367751 DOI: 10.1186/s12916-024-03571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Endometriosis is well known as a chronic inflammatory disease. The development of endometriosis is heavily influenced by the estrogen receptor β (ERβ), while NOD-like receptors (NLRs) family CARD domain-containing 5 (NLRC5) exhibits anti-inflammatory properties during endometriosis. However, whether NLRC5-mediated anti-inflammation is involved in the ERβ-mediated endometriosis is still uncertain. This study aimed to assess that relation. METHODS Nine cases of eutopic endometrial tissue and ten cases of ectopic endometrial tissue were collected from patients with endometriosis, and endometrial samples from ten healthy fertile women were analyzed, and the expression levels of ERβ were quantified using immunohistochemistry (IHC). Subsequently, we constructed mouse model of endometriosis by intraperitoneal injection. We detected the expression of ERβ, NLRC5, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-10 and measured the volume of ectopic lesions in mice with endometriosis. In vitro, human endometrial stromal cells (hESCs) were transfected respectively with ERβ-overexpressing and NLRC5-overexpressing plasmids. We then assessed the expression of ERβ and NLRC5 using quantitative real-time PCR (qRT-PCR) and western blot analysis. Furthermore, we measured the concentrations of TNF-α, IL-6, and IL-10 in the cell culture supernatant through enzyme-linked immunosorbent assay (ELISA). Additionally, we evaluated the migration and invasion ability of hESCs using transwell and wound healing assays. RESULTS Inhibition of NLRC5 expression promotes the development of ectopic lesions in mice with endometriosis, upregulates the expression of pro-inflammatory factors TNF-α and IL-6, and downregulates the expression of anti-inflammatory factor IL-10. The high expression of NLRC5 in endometriosis depended on the ERβ overexpression. And ERβ promoted the migration of hESCs partially depend on inflammatory microenvironment. Lastly, NLRC5 overexpression inhibited ERβ-mediated development and inflammatory response of endometriosis. CONCLUSIONS Our results suggest that the innate immune molecule NLRC5-mediated anti-inflammation participates in ERβ-mediated endometriosis development, and partly clarifies the pathological mechanism of endometriosis, expanding our knowledge of the specific molecules related to the inflammatory response involved in endometriosis and potentially providing a new therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Bao Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Haiqing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Chengwei Xiao
- Department of Obstetrics and Gynecology, Bengbu Hospital of Shanghai General Hospital, Bengbu, 233040, Anhui, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233040, Anhui, China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Xiaojing Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Yuan Fang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China
| | - Junhui Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei, 230601, Anhui, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
4
|
Pan JM, Liang Y, Zhu KC, Guo HY, Liu BS, Zhang N, Zhang DC. Identification of the NOD-like receptor family of golden pompano and expression in response to bacterial and parasitic exposure reveal its key role in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105123. [PMID: 38135022 DOI: 10.1016/j.dci.2023.105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
This study presents a genome-wide identification of NOD-like receptors (NLRs) in the golden pompano, key to its innate immunity. We identified 30 ToNLRs, analyzing their chromosomal positions, characteristics, evolutionary relationships, evidence of positive selection, and synteny with the yellowtail kingfish. Our findings categorize these NLRs into three main subgroups: NLRA, NLRC, and the distinct ToNLRX1. Post-exposure to Streptococcus agalactiae, most ToNLRs increased expression in the spleen, whereas NLRC3like13, NLRC3like16, and NLRC3like19 so in the kidneys. Upon Cryptocaryon irritans exposure, we categorized our groups based on the site of infection into the control group (BFS), the trophont-attached skin (TAS), and the nearby region skin (NRS). ToAPAF1 and ToNOD1 expressions rose in the NRS, in contrast to decreased expressions of ToNLRC5, ToNWD1 and ToCIITA. Other ToNLRs showed variable expressions in the TAS. Overall, this research lays the groundwork for further exploration of innate immunity in the golden pompano.
Collapse
Affiliation(s)
- Jin-Min Pan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China
| | - Yu Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
5
|
Sivasankar C, Hewawaduge C, Muthuramalingam P, Lee JH. Tumor-targeted delivery of lnc antisense RNA against RCAS1 by live-attenuated tryptophan-auxotrophic Salmonella inhibited 4T1 breast tumors and metastasis in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102053. [PMID: 37941832 PMCID: PMC10628790 DOI: 10.1016/j.omtn.2023.102053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Emerging chemo- and radiotherapy resistance exacerbated the cancer risk and necessitated novel treatment strategies. Although RNA therapeutics against pro-oncogenic genes are highly effective, tumor-specific delivery remains a barrier to the implementation of this valuable tool. In this study, we report a tryptophan-auxotrophic Salmonella typhimurium strain as an onco-therapeutic delivery system with tumor-targeting ability using 4T1 mice breast-cancer model. The receptor-binding cancer antigen expressed on SiSo cell (RCAS1) is a cancer-specific protein that induces the apoptosis of peripheral lymphocytes and confers tumor immune evasion. We designed a long non-coding antisense-RNA against RCAS1 (asRCAS1) and delivered by Salmonella using a non-antibiotic, auxotrophic-selective, eukaryotic expression plasmid, pJHL204. After in vivo tumor-to-tumor passaging, the JOL2888 (ΔtrpA, ΔtrpE, Δasd + asRCAS1) strain exhibited high sustainability in tumors, but did not last in healthy organs, thereby demonstrating tumor specificity and safety. RCAS1 inhibition in the tumor was confirmed by western blotting and qPCR. In mice, JOL2888 treatment reduced tumor-associated macrophages, improved the T cell population, elicited cell-mediated immunity, and suppressed cancer-promoting genes. Consequently, the JOL2888 treatment significantly decreased the tumor volume by 80%, decreased splenomegaly by 30%, and completely arrested lung metastasis. These findings highlight the intrinsic tumor-targeting ability of tryptophan-auxotrophic Salmonella for delivering onco-therapeutic macromolecules.
Collapse
Affiliation(s)
- Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus 54596, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus 54596, Republic of Korea
| | | | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus 54596, Republic of Korea
| |
Collapse
|
6
|
Lu ZH, Tu GJ, Fu SL, Shang K, Peng SJ, Chen L, Gu XJ. BMI1 induces ubiquitination and protein degradation of Nod-like receptor family CARD domain containing 5 and suppresses human leukocyte antigen class I expression to induce immune escape in non-small cell lung cancer. Kaohsiung J Med Sci 2022; 38:1190-1202. [PMID: 36194200 DOI: 10.1002/kjm2.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022] Open
Abstract
The Nod-like receptor (NLR) family CARD domain containing 5 (NLRC5) has been reported as an activator of human leukocyte antigen (HLA) class I that is responsible for immune activity in cancer treatment. This work focuses on the role of BMI1 proto-oncogene (BMI1) in the NLRC5-HLA class I axis and in immune escape in non-small cell lung cancer (NSCLC). First, immunoblot analysis and/or reverse transcription-quantitative polymerase chain reaction were performed, which identified decreased NLRC5 and HLA class I levels in NSCLC tissues and cell lines. NSCLCs were co-cultured with activated CD8+ T cells. Overexpression of NLRC5 in NSCLC cells elevated the expression of HLA class I and increased the activity of T cells and IL-2 production, and it reduced the PD-1/PD-L1 levels. The ubiquitination and immunoprecipitation assays confirmed that BMI1 bound to NLRC5 to induce is ubiquitination and protein degradation. Downregulation of BMI1 in NSCLC cells elevated NLRC5 and HLA class I levels, and consequently promoted T cell activation and decreased PD-1/PD-L1 levels in the co-culture system. However, overexpression of BMI1 in cells led to inverse trends. In summary, this study demonstrates that BMI1 induces ubiquitination and protein degradation of NLRC5 and suppresses HLA class I expression, which potentially helps immune escape in NSCLC.
Collapse
Affiliation(s)
- Zhi-Hui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Gan-Jie Tu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Si-Lv Fu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Kai Shang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Su-Juan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xi-Juan Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
7
|
Liang S, Xiang T, Liu S, Xiang W. Inhibition of NLRC5 attenuates the malignant growth and enhances the sensitivity of gastric cancer cells to 5‑FU chemotherapy by blocking the carcinogenic effect of YY1. Exp Ther Med 2022; 24:601. [PMID: 35949331 PMCID: PMC9353549 DOI: 10.3892/etm.2022.11538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022] Open
Abstract
Gastric cancer (GC) is one of the commonest malignant tumors of the digestive system, characterized by high morbidity and mortality rates. It has been reported that NOD like receptor (NLR) family, CARD domain containing 5 (NLRC5) serves an important role in the occurrence and development of GC. Therefore, the current study aimed to investigate the role of NLRC5 in GC. The mRNA and protein expression levels of NLRC5 in GC cell lines were determined by reverse transcription-quantitative PCR and western blot analysis, respectively. Additionally, following NLRC5 knockdown, cell proliferation, invasion and migration were evaluated using Cell Counting Kit 8, colony formation, wound healing and Transwell assays, and western blot analysis. The NLRC and Yin Yang 1 (YY1) expression in the AGS cells with 5-FU resistance were detected by western blotting. The sensitivity of GC cells to 5-fluorouracil (5-FU) was detected by flow cytometry and western blot analysis. Additionally, the binding capacity of YY1 on NLRC5 promoter was predicted using JASPAR database and it was further verified by chromatin immunoprecipitation and luciferase reporter assays. Finally, to elucidate the mechanism underlying the effect of NLRC5 on GC, YY1 was overexpressed and NLRC5 was silenced in GC cell lines. The results showed that NLRC5 was abnormally upregulated in GC cells. In addition, NLRC5 knockdown significantly attenuated the proliferation, invasion and migration abilities of GC cells, while it enhanced the sensitivity of GC cells to 5-FU. The above effects were regulated by the YY1 transcription factor. Overall, the results of the present study indicated that NLRC5 silencing could reduce the malignant growth and enhance the sensitivity of GC cells to 5-FU chemotherapy via inhibiting the carcinogenic effect of YY1.
Collapse
Affiliation(s)
- Shan Liang
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| | - Tingting Xiang
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| | - Shiyu Liu
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| | - Wei Xiang
- College of Modern Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408000, P.R. China
| |
Collapse
|
8
|
Liao X, Wang W, Yu B, Tan S. Thrombospondin-2 acts as a bridge between tumor extracellular matrix and immune infiltration in pancreatic and stomach adenocarcinomas: an integrative pan-cancer analysis. Cancer Cell Int 2022; 22:213. [PMID: 35701829 PMCID: PMC9195477 DOI: 10.1186/s12935-022-02622-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background Thrombospondin-2 (THBS2) is a versatile glycoprotein that regulates numerous biological functions, including the apoptosis-proliferation balance in endothelial cells, and it has been linked to tumor angiogenesis. However, the exact role of THBS2 in human cancer remains unknown. This study aimed to determine THBS2 expression in a pan-cancer analysis and its association with pan-cancer prognosis and to further identify its possible roles in tumor immunity and the extracellular matrix (ECM). Methods Data on THBS2 expression in cancers and normal tissues were downloaded from the Genotype-Tissue Expression portal and UCSC Xena visual exploration tool and analyzed using the ONCOMINE database, Perl programming language, and Gene Expression Profiling and Interactive Analyses vision 2 webserver. In addition, survival prognosis was analyzed using the survival, survminer, limma, and forestplot packages in R v. 4.0.3.Immune and matrix components were also analyzed using R v. 4.0.3. Most importantly, we partially validated the role and mechanism of THBS2 in pancreatic and gastric cancers in vitro using PANC1 and BGC-823 cell lines. Results THBS2 was significantly overexpressed in 17 of the 33 investigated cancers and linked to a poor prognosis in pan-cancer survival analysis. High THBS2 expression was an independent unfavorable prognostic factor in kidney renal papillary cell, mesothelioma, and stomach and pancreatic adenocarcinomas. Immune infiltration and THBS2 expression were also related. THBS2 expression has been linked to immune and stromal scores and immune checkpoint markers in various cancers. The protein–protein interaction network revealed that THBS2 is associated with multiple ECM and immune proteins. THBS2 knockdown decreased the expression of CD47 and matrix metallopeptidase 2 (MMP-2) as well as the proliferation, migration, and invasion of PANC1 and BGC-823 cells in vitro. Conclusions Our findings suggested that THBS2 might promote cancer progression by remodeling the tumor microenvironment, affecting CD47-mediated signaling pathways, activating the pro-tumor functions of a disintegrin and metalloproteinase with thrombospondin motifs, and enhancing MMP-2 expression. Furthermore, it functions as a bridge between the ECM and immune infiltration in cancer and serves as a potential prognostic biomarker for several cancers, especially pancreatic and gastric adenocarcinomas. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02622-x.
Collapse
Affiliation(s)
- Xingchen Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Key Laboratory of Hubei Province for Digestive Disease, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Lu T, Xu R, Wang CH, Zhao JY, Peng B, Wang J, Zhang LY. Identification of Tumor Antigens and Immune Subtypes of Esophageal Squamous Cell Carcinoma for mRNA Vaccine Development. Front Genet 2022; 13:853113. [PMID: 35734437 PMCID: PMC9207414 DOI: 10.3389/fgene.2022.853113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: The applicability of mRNA vaccines against esophageal squamous cell carcinoma (ESCC) remains unclear. Here, we identified potential antigens for developing mRNA vaccines against ESCC and characterized immune subtypes to select appropriate patients for vaccination. Methods: RNA-seq, genetic alteration data, and corresponding clinical information of ESCC patients were obtained from the Cancer Genome Atlas (TCGA) database. The RNA-seq data of normal esophageal tissue were obtained from the Genotype-Tissue Expression (GTEx) database. Potential tumor antigens were screened by analyzing differentially expressed and mutated genes and potential antigens with significant differences in prognosis were screened using the Kaplan-Meier method. The proportion of immune cell infiltration in the tumor microenvironment was estimated using CIBERSORT and MCPcounter, and the correlation of potential antigens with antigen-presenting cells and major histocompatibility complex class II was analyzed. Subsequently, immune subtypes were constructed using consensus clustering analysis and characterized by single-sample gene set enrichment analysis and weighted gene co-expression network analysis (WGCNA). The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to analyze the drug sensitivity of different immune subtypes. Results: Four overexpressed and mutated tumor antigens associated with antigen presentation and poor prognosis were identified in ESCC, including NLRC5, FCRL4, TMEM229B, and LCP2. By consensus clustering, we identified two immune-associated ESCC subtypes, immune subtype 1 (IS1) and immune subtype 2 (IS2); the prognosis of the two subtypes was statistically different. In addition, the two immune subtypes had distinctly different cellular, molecular, and clinical characteristics. IS1 patients have a distinct immune “hot” phenotype with strong immune tolerance, whereas patients with IS2 have an immune “cold” phenotype. Differential expression of immune checkpoints and immunogenic cell death modulators was observed between the different immune subtypes. Finally, we found that IS1 and IS2 patients showed different drug sensitivities to common anti-tumor drugs, possibly facilitating the development of individualized treatment regimens for patients. Conclusion: NLRC5, LCP2, TMEM229B, and FCRL4 are potential antigens for ESCC mRNA vaccines, and such vaccines may be more suitable for IS2 patients. This study provides a theoretical basis for mRNA vaccines against ESCC, by identifying the critical characteristics to predict ESCC prognosis and select suitable patients for vaccination.
Collapse
|
10
|
Torkamandi S, Bahrami S, Ghorashi T, Dehani M, Bayat H, Hoseini SM, Rezaei S, Soosanabadi M. Dysregulation of long noncoding RNA MEG3 and NLRC5 expressions in patients with relapsing-remitting multiple sclerosis: is there any correlation? Genes Immun 2021; 22:322-326. [PMID: 34782775 DOI: 10.1038/s41435-021-00154-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022]
Abstract
Long noncoding RNA MEG3 and NLRC5 genes are both involved in the immune system and the regulation of NLRC5 by MEG3 is documented in rheumatoid arthritis. Therefore, we intended to evaluate the association between the expressions of MEG3 and NLRC5 in multiple sclerosis (MS). Forty relapsing and remitting MS (RRMS) patients (20 in each group) and twenty healthy individuals were enrolled. The expression level of MEG3 and NLRC5 was assessed in peripheral blood mononuclear cells. Sub-group analysis demonstrated that the expression level of MEG3 is reduced in the relapse patient group compared to remission and healthy groups (p < 0.001). The expression level of NLRC5 was higher in whole patients compared with healthy controls (p < 0.05). Moreover, a negative correlation was observed between the expression of these two genes (r = -0.73, p < 0.0001). To conclude, our findings showed the dysregulation of MEG3 and NLRC5 expressions in RRMS patients. Also, the converse association of MEG3 and NLRC5 reflects that the role of MEG3 in MS development is probably mediated by modulation of NLRC5.
Collapse
Affiliation(s)
- Shahram Torkamandi
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shima Bahrami
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Tahereh Ghorashi
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Dehani
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Bayat
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Molecular genetics, Faculty of biological sciences, Tarbiat modares university, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Somaye Rezaei
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran.,Department of Neurology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Soosanabadi
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
11
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
12
|
Lv L, Wei Q, Wang Z, Zhao Y, Chen N, Yi Q. Clinical and Molecular Correlates of NLRC5 Expression in Patients With Melanoma. Front Bioeng Biotechnol 2021; 9:690186. [PMID: 34307322 PMCID: PMC8299757 DOI: 10.3389/fbioe.2021.690186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
NLRC5 is an important regulator in antigen presentation and inflammation, and its dysregulation promotes tumor progression. In melanoma, the impact of NLRC5 expression on molecular phenotype, clinical characteristics, and tumor features is largely unknown. In the present study, public datasets from the Cancer Cell Line Encyclopedia (CCLE), Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and cBioPortal were used to address these issues. We identify that NLRC5 is expressed in both immune cells and melanoma cells in melanoma samples and its expression is regulated by SPI1 and DNA methylation. NLRC5 expression is closely associated with Breslow thickness, Clark level, recurrence, pathologic T stage, and ulceration status in melanoma. Truncating/splice mutations rather than missense mutations in NLRC5 could compromise the expression of downstream genes. Low expression of NLRC5 is associated with poor prognosis, low activity of immune-related signatures, low infiltrating level of immune cells, and low cytotoxic score in melanoma. Additionally, NLRC5 expression correlates with immunotherapy efficacy in melanoma. In summary, these findings suggest that NLRC5 acts as a tumor suppressor in melanoma via modulating the tumor immune microenvironment. Targeting the NLRC5 related pathway might improve efficacy of immunotherapy for melanoma patients.
Collapse
Affiliation(s)
- Lei Lv
- Anhui Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qinqin Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhiwen Wang
- Anhui Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ni Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Shklovskaya E, Rizos H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int J Mol Sci 2021; 22:ijms22136741. [PMID: 34201655 PMCID: PMC8268865 DOI: 10.3390/ijms22136741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
It is now well accepted that the immune system can control cancer growth. However, tumors escape immune-mediated control through multiple mechanisms and the downregulation or loss of major histocompatibility class (MHC)-I molecules is a common immune escape mechanism in many cancers. MHC-I molecules present antigenic peptides to cytotoxic T cells, and MHC-I loss can render tumor cells invisible to the immune system. In this review, we examine the dysregulation of MHC-I expression in cancer, explore the nature of MHC-I-bound antigenic peptides recognized by immune cells, and discuss therapeutic strategies that can be used to overcome MHC-I deficiency in solid tumors, with a focus on the role of natural killer (NK) cells and CD4 T cells.
Collapse
|
14
|
Zhang L, Jiao C, Liu L, Wang A, Tang L, Ren Y, Huang P, Xu J, Mao D, Liu L. NLRC5: A Potential Target for Central Nervous System Disorders. Front Immunol 2021; 12:704989. [PMID: 34220868 PMCID: PMC8250149 DOI: 10.3389/fimmu.2021.704989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Nucleotide oligomerization domain-like receptors (NLRs), a class of pattern recognition receptors, participate in the host’s first line of defense against invading pathogenic microorganisms. NLR family caspase recruitment domain containing 5 (NLRC5) is the largest member of the NLR family and has been shown to play an important role in inflammatory processes, angiogenesis, immunity, and apoptosis by regulating the nuclear factor-κB, type I interferon, and inflammasome signaling pathways, as well as the expression of major histocompatibility complex I genes. Recent studies have found that NLRC5 is also associated with neuronal development and central nervous system (CNS) diseases, such as CNS infection, cerebral ischemia/reperfusion injury, glioma, multiple sclerosis, and epilepsy. This review summarizes the research progress in the structure, expression, and biological characteristics of NLRC5 and its relationship with the CNS.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cui Jiao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Aiping Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Pilsworth JA, Cochrane DR, Neilson SJ, Moussavi BH, Lai D, Munzur AD, Senz J, Wang YK, Zareian S, Bashashati A, Wong A, Keul J, Staebler A, van Meurs HS, Horlings HM, Kommoss S, Kommoss F, Oliva E, Färkkilä AEM, Gilks B, Huntsman DG. Adult-type granulosa cell tumor of the ovary: a FOXL2-centric disease. J Pathol Clin Res 2021; 7:243-252. [PMID: 33428330 PMCID: PMC8072996 DOI: 10.1002/cjp2.198] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Adult-type granulosa cell tumors (aGCTs) account for 90% of malignant ovarian sex cord-stromal tumors and 2-5% of all ovarian cancers. These tumors are usually diagnosed at an early stage and are treated with surgery. However, one-third of patients relapse between 4 and 8 years after initial diagnosis, and there are currently no effective treatments other than surgery for these relapsed patients. As the majority of aGCTs (>95%) harbor a somatic mutation in FOXL2 (c.C402G; p.C134W), the aim of this study was to identify genetic mutations besides FOXL2 C402G in aGCTs that could explain the clinical diversity of this disease. Whole-genome sequencing of 10 aGCTs and their matched normal blood was performed to identify somatic mutations. From this analysis, a custom amplicon-based panel was designed to sequence 39 genes of interest in a validation cohort of 83 aGCTs collected internationally. KMT2D inactivating mutations were present in 10 of 93 aGCTs (10.8%), and the frequency of these mutations was similar between primary and recurrent aGCTs. Inactivating mutations, including a splice site mutation in candidate tumor suppressor WNK2 and nonsense mutations in PIK3R1 and NLRC5, were identified at a low frequency in our cohort. Missense mutations were identified in cell cycle-related genes TP53, CDKN2D, and CDK1. From these data, we conclude that aGCTs are comparatively a homogeneous group of tumors that arise from a limited set of genetic events and are characterized by the FOXL2 C402G mutation. Secondary mutations occur in a subset of patients but do not explain the diverse clinical behavior of this disease. As the FOXL2 C402G mutation remains the main driver of this disease, progress in the development of therapeutics for aGCT would likely come from understanding the functional consequences of the FOXL2 C402G mutation.
Collapse
Affiliation(s)
- Jessica A Pilsworth
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Dawn R Cochrane
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Samantha J Neilson
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Bahar H Moussavi
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Daniel Lai
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Aslı D Munzur
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Janine Senz
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Yi Kan Wang
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Sina Zareian
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
| | - Ali Bashashati
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- School of Biomedical EngineeringUniversity of British ColumbiaVancouverBCCanada
| | - Adele Wong
- Department of PathologyMassachusetts General HospitalBostonMAUSA
| | - Jacqueline Keul
- Department of Women's HealthTübingen University HospitalTübingenGermany
| | - Annette Staebler
- Institute of Pathology and NeuropathologyTübingen University HospitalTübingenGermany
| | - Hannah S van Meurs
- Department of GynecologyCenter for Gynecologic Oncology Amsterdam, Academic Medical CenterAmsterdamThe Netherlands
| | - Hugo M Horlings
- Department of PathologyThe Netherlands Cancer Institute – Antoni van LeeuwenhoekAmsterdamThe Netherlands
| | - Stefan Kommoss
- Department of Women's HealthTübingen University HospitalTübingenGermany
| | - Friedrich Kommoss
- Institute of Pathology, Medizin Campus BodenseeFriedrichshafenGermany
| | - Esther Oliva
- Department of PathologyMassachusetts General HospitalBostonMAUSA
| | - Anniina EM Färkkilä
- Research Program for Systems OncologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Blake Gilks
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - David G Huntsman
- Department of Molecular OncologyBritish Columbia Cancer Research CentreVancouverBCCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
16
|
NFE2L2 Is a Potential Prognostic Biomarker and Is Correlated with Immune Infiltration in Brain Lower Grade Glioma: A Pan-Cancer Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3580719. [PMID: 33101586 PMCID: PMC7569466 DOI: 10.1155/2020/3580719] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/17/2020] [Accepted: 09/20/2020] [Indexed: 01/07/2023]
Abstract
Nuclear factor, erythroid 2 like 2 (NFE2L2, NRF2) is a transcription factor that regulates various antioxidant enzymes. It plays a vital physiological role in regulating oxidative stress and inflammatory response. However, the roles of NFE2L2 in human cancers are still unclear. Our study is aimed at analyzing the prognostic value of NFE2L2 in pan-cancer and at revealing the relationship between NFE2L2 expression and tumor immunity. The present study revealed that NFE2L2 was abnormally expressed and significantly correlated with mismatch repair (MMR) gene mutation levels and DNA methyltransferase expression in human pan-cancer. In particular, pan-cancer survival analysis indicated that NFE2L2 expression was associated with adverse outcomes-overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI)-in adrenocortical carcinoma (ACC), brain lower grade glioma (LGG), and pancreatic adenocarcinoma (PAAD) patients. A positive relationship was also found between NFE2L2 expression and immune infiltration, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells, especially in breast invasive carcinoma (BRCA), colon adenocarcinoma (COAD), kidney renal clear cell carcinoma (KIRC), LGG, liver hepatocellular carcinoma (LIHC), and prostate adenocarcinoma (PRAD). Additionally, NFE2L2 expression was positively correlated with the immune score and the expression of immune checkpoint markers in LGG. In conclusion, these results indicate that transcription factor NFE2L2 is a potential prognostic biomarker and is correlated with immune infiltration in LGG.
Collapse
|
17
|
MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071760. [PMID: 32630675 PMCID: PMC7409324 DOI: 10.3390/cancers12071760] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, major advances have been made in cancer immunotherapy. This has led to significant improvement in prognosis of cancer patients, especially in the hematological setting. Nonetheless, translation of these successes to solid tumors was found difficult. One major mechanism through which solid tumors can avoid anti-tumor immunity is the downregulation of major histocompatibility complex class I (MHC-I), which causes reduced recognition by- and cytotoxicity of CD8+ T-cells. Downregulation of MHC-I has been described in 40-90% of human tumors, often correlating with worse prognosis. Epigenetic and (post-)transcriptional dysregulations relevant in the stabilization of NFkB, IRFs, and NLRC5 are often responsible for MHC-I downregulation in cancer. The intrinsic reversible nature of these dysregulations provides an opportunity to restore MHC-I expression and facilitate adaptive anti-tumor immunity. In this review, we provide an overview of the mechanisms underlying reversible MHC-I downregulation and describe potential strategies to counteract this reduction in MHC-I antigen presentation in cancer.
Collapse
|