1
|
Li R, Wang F, Huang L, Zhao L, Qin T, Liu S, Xu K, Wang B, Li L, He S. Morin inhibits the progression of 5-fluorouracil-resistant colorectal cancer by suppressing autophagy. Int J Biochem Cell Biol 2025:106783. [PMID: 40287051 DOI: 10.1016/j.biocel.2025.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/12/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Resistance to 5-fluorouracil (5-FU) poses a significant challenge in colorectal cancer (CRC) treatment. Morin is a flavonoid with anti-tumor properties. However, its role in overcoming acquired 5-FU resistance in CRC remains unclear. METHODS 5-FU-resistant CRC (5-FU/CRC) cell lines (HT29/5-FU and HCT116/5-FU) were established using the IC50 concentration increment method. After treatment with Morin and autophagy inhibitors (3-MA) or agonists (RAPA), cell viability, apoptosis, colony formation, migration, invasion, and autophagy were evaluated. In vivo, xenograft models of 5-FU/CRC assessed Morin's therapeutic effects. RESULTS 5-FU/CRC cells were successfully constructed. Morin inhibited the viability, migration, and invasion of 5-FU/CRC cells and promoted apoptosis. Morin also inhibited autophagy in 5-FU/CRC cells. Besides, autophagy activated by RAPA could eliminate the effect of Morin on 5-FU/CRC cells, while 3-MA enhanced the effects of Morin. In nude mouse models, Morin inhibited the growth and improved the pathological structure of 5-FU/CRC xenografts by inhibiting autophagy. CONCLUSION Morin suppresses the progression of 5-FU/CRC by inhibiting autophagy, suggesting its potential as a therapeutic agent to combat 5-FU resistance.
Collapse
Affiliation(s)
- Rui Li
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Fengxia Wang
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Lu Huang
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Lvheng Zhao
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Ting Qin
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Shan Liu
- The Second Clinical School of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, China
| | - Kunyao Xu
- Department of Geriatrics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, China
| | - Bi Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou 550002, China; Key Laboratory of Medical Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou 550002, China
| | - Ling Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou 550002, China; Key Laboratory of Medical Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou 550002, China
| | - Sha He
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China.
| |
Collapse
|
2
|
Sengul E, Yildirim S, Cinar İ, Tekin S, Dag Y, Bolat M, Gok M, Warda M. Mitigation of Acute Hepatotoxicity Induced by Cadmium Through Morin: Modulation of Oxidative and Pro-apoptotic Endoplasmic Reticulum Stress and Inflammatory Responses in Rats. Biol Trace Elem Res 2024; 202:5106-5117. [PMID: 38238535 PMCID: PMC11442647 DOI: 10.1007/s12011-024-04064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/06/2024] [Indexed: 10/01/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal with significant environmental health hazards. It enters the body through various routes with tissue accumulation. The relatively longer half-life with slow body clearance significantly results in hepatotoxicity during its liver detoxification. Therefore, researchers are exploring the potential use of herbal-derived phytocomponents to mitigate their toxicity. Here, we investigated, for the first time, the possible ameliorative effect of the phytochemical Morin (3,5,7,29,49-pentahydroxyflavone) against acute Cd-induced hepatotoxicity while resolving its underlying cellular mechanisms in a rat animal model. The study involved 50 adult male Sprague-Dawley rats weighing 200-250 g. The animals were divided into five equal groups: control, Cd, Morin100 + Cd, Morin200 + Cd, and Morin200. The 2nd, 3rd, and 4th groups were intraperitoneally treated with Cd (6.5 mg/kg), while the 3rd, 4th, and 5th groups were orally treated with Morin (100 and 200 mg/kg) for 5 consecutive days. On the 6th day, hepatic function (serum ALT, AST, ALP, LDH enzyme activities, and total bilirubin level) testing, transcriptome analysis, and immunohistochemistry were performed to elucidate the ameliorative effect of Morin on hepatotoxicity. In addition to restoring liver function and tissue injury, Morin alleviated Cd-induced hepatic oxidative/endoplasmic reticulum stress in a dose-dependent manner, as revealed by upregulating the expression of antioxidants (SOD, GSH, Gpx, CAT, and Nrf2) and decreasing the expression of ER stress markers. The expression of the proinflammatory mediators (TNF-α, IL-1-β, and IL-6) was also downregulated while improving the anti-inflammatory (IL-10 and IL-4) expression levels. Morin further slowed the apoptotic cascades by deregulating the expression of pro-apoptotic Bax and Caspase 12 markers concomitant with an increase in anti-apoptotic Blc2 mRNA expression. Furthermore, Morin restored Cd-induced tissue damage and markedly suppressed the cytoplasmic expression of JNK and p-PERK immunostained proteins. This study demonstrated the dose-dependent antioxidant hepatoprotective effect of Morin against acute hepatic Cd intoxication. This effect is likely linked with the modulation of upstream p-GRP78/PERK/ATF6 pro-apoptotic oxidative/ER stress and the downstream JNK/BAX/caspase 12 apoptotic signaling pathways.
Collapse
Affiliation(s)
- Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İrfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Yusuf Dag
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Melahat Gok
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Rech J, Żelaszczyk D, Marona H, Gunia-Krzyżak A, Żmudzki P, Bednarek IA. Hyperthermia Intensifies α-Mangostin and Synthetic Xanthones' Antimalignancy Properties. Int J Mol Sci 2024; 25:8874. [PMID: 39201559 PMCID: PMC11354364 DOI: 10.3390/ijms25168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
In order to improve naturally occurring xanthones' anticancer properties, chemical synthesis is proposed. In this study, from eight novel xanthone derivatives coupled to morpholine or aminoalkyl morpholine, only the two most active ones were chosen. For additional enhancement of the anticancer activity of our tested compounds, we combined chemotherapy with hyperthermia in the range of 39-41 °C, from which the mild conditions of 39 °C were the most influencing. This approach had a profound impact on the anticancer properties of the tested compounds. TOV-21G and SC-OV-3 ovarian cell line motility and metastasis behavior were tested in native and hyperthermia conditions, indicating decreased wound healing properties and clonogenic activity. Similarly, the expression of genes involved in metastasis was hampered. The expression of heat shock proteins involved in cancer progression (Hsc70, HSP90A, and HSP90B) was significantly influenced by xanthone derivatives. Chemotherapy in mild hyperthermia conditions had also an impact on decreasing mitochondria potential, visualized with JC-1. Synthetic xanthone ring modifications may increase the anticancer activity of the obtained substances. Additional improvement of their activity can be achieved by applying mild hyperthermia conditions. Further development of a combined anticancer therapy approach may result in increasing currently known chemotherapeutics, resulting in a greater recovery rate and diminishment of the cytotoxicity of drugs.
Collapse
Affiliation(s)
- Jakub Rech
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (D.Ż.); (H.M.); (A.G.-K.)
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (D.Ż.); (H.M.); (A.G.-K.)
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (D.Ż.); (H.M.); (A.G.-K.)
| | - Paweł Żmudzki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Ilona Anna Bednarek
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
4
|
Yang Y, Du Y, Cui B. Polyphenols targeting multiple molecular targets and pathways for the treatment of vitiligo. Front Immunol 2024; 15:1387329. [PMID: 39119340 PMCID: PMC11306171 DOI: 10.3389/fimmu.2024.1387329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Vitiligo, a pigmentary autoimmune disorder, is marked by the selective loss of melanocytes in the skin, leading to the appearance of depigmented patches. The principal pathological mechanism is the melanocyte destruction mediated by CD8+ T cells, modulated by oxidative stress and immune dysregulation. Vitiligo affects both physical health and psychological well-being, diminishing the quality of life. Polyphenols, naturally occurring compounds with diverse pharmacological properties, including antioxidant and anti-inflammatory activities, have demonstrated efficacy in managing various dermatological conditions through multiple pathways. This review provides a comprehensive analysis of vitiligo and the therapeutic potential of natural polyphenolic compounds. We examine the roles of various polyphenols in vitiligo management through antioxidant and immunomodulatory effects, melanogenesis promotion, and apoptosis reduction. The review underscores the need for further investigation into the precise molecular mechanisms of these compounds in vitiligo treatment and the exploration of their combination with current therapies to augment therapeutic outcomes.
Collapse
Affiliation(s)
| | | | - Bingnan Cui
- Department of Dermatology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Li Y, Zheng G, Tang Y, Chen Y, Yang M, Zheng Q, Bao Y. Naringenin alleviates bone cancer pain via NF-κB/uPA/PAR2 pathway in mice. J Orthop Surg (Hong Kong) 2024; 32:10225536241266671. [PMID: 39110834 DOI: 10.1177/10225536241266671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
PURPOSE This investigation aims to explore the protective role of Naringenin (Nar) in bone cancer pain (BCP) via TNF-α-mediated NF-κB/uPA/PAR2 pathway. METHODS BCP model was manipulated by the injection of LL2 cells into femur of mice. The levels of TNF-α and uPA in bone tissue and serum were studied by ELISA. The expressions of PAR2, PKC-γ, PKA and TRPV1 were determined by qPCR and western blot. Levels of p-IKKβ, IKKβ, p-p65, p65 were determined by western blot. Levels of p-p65 and uPA in bone tissue were studied by immunohistochemistry. Behavior tests in this investigation included paw withdrawal latency (PWL) and the paw withdrawal threshold (PWT). Radiological analysis and micro-CT were used to study bone structure. The lesions of bone tissue were determined by HE staining. The Dorsal root ganglia (DRG) isolated from mice were used to determine the level of PAR2 pathway. RESULTS Naringenin improved the BCP-induced bone damage based on the increases of BV/TV, Conn. D, BMD and BMC and the decrease of bone destruction score. Naringenin repressed the reductions of PWT and PWL in BCP mice. Naringenin decreased the levels of PAR2, PKC-γ, PKA and TRPV1 of DRG and reduced the levels of p-IKKβ, p-p65, and uPA in serum and bone tissue in BCP. Importantly, naringenin suppressed the enhancement of TNF-α in serum and bone tissue in BCP mice. CONCLUSION Naringenin alleviated pain sensitization and bone damage of mice with BCP via TNF-α-mediated NF-κB/uPA/PAR2 pathway. We demonstrated a novel pathway for anti-BCP treatment with naringenin.
Collapse
Affiliation(s)
- Yaoyuan Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiting Tang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yupeng Chen
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingzhu Yang
- Department of Hematology and Oncology, Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining, China
| | - Qiuhui Zheng
- Department of Hematology and Oncology, Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining, China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Yang JS, Chou CH, Hsieh YH, Lu PWA, Lin YC, Yang SF, Lu KH. Morin inhibits osteosarcoma migration and invasion by suppressing urokinase plasminogen activator through a signal transducer and an activator of transcription 3. ENVIRONMENTAL TOXICOLOGY 2024; 39:2024-2031. [PMID: 38093596 DOI: 10.1002/tox.24100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Osteosarcoma, the most common primary bone cancer that affects adolescents worldwide, has the early metastatic potential to be responsible for high mortality rates. Morin has a multipurpose role in numerous cancers, whereas little is known about its role in osteosarcoma migration and invasion. Therefore, we hypothesized that morin suppresses the invasive activities and the migratory potential of human osteosarcoma cells. Our results showed that morin reduced migration and invasion capabilities in human osteosarcoma U2OS and HOS cells. Moreover, morin inhibited the urokinase plasminogen activator (uPA) expression through a signal transducer and an activator of transcription-3 (STAT3) phosphorylation. After STAT3 overexpression, the decrease of the migratory potential and uPA expression caused by 100 μM of morin in U2OS cells was countered, indicating that STAT3 contributes to the antimetastatic property of morin in human osteosarcoma cells by reducing uPA. In conclusion, morin may be a potential candidate for the antimetastatic treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Jia-Sin Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Hsuan Chou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Peace Wun-Ang Lu
- Department of Natural Science and Mathematics, Emory University, Atlanta, Georgia, USA
| | - Ya-Chiu Lin
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Zhang K, Hu X, Su J, Li D, Thakur A, Gujar V, Cui H. Gastrointestinal Cancer Therapeutics via Triggering Unfolded Protein Response and Endoplasmic Reticulum Stress by 2-Arylbenzofuran. Int J Mol Sci 2024; 25:999. [PMID: 38256073 PMCID: PMC10816499 DOI: 10.3390/ijms25020999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Gastrointestinal cancers are a major global health challenge, with high mortality rates. This study investigated the anti-cancer activities of 30 monomers extracted from Morus alba L. (mulberry) against gastrointestinal cancers. Toxicological assessments revealed that most of the compounds, particularly immunotoxicity, exhibit some level of toxicity, but it is generally not life-threatening under normal conditions. Among these components, Sanggenol L, Sanggenon C, Kuwanon H, 3'-Geranyl-3-prenyl-5,7,2',4'-tetrahydroxyflavone, Morusinol, Mulberrin, Moracin P, Kuwanon E, and Kuwanon A demonstrate significant anti-cancer properties against various gastrointestinal cancers, including colon, pancreatic, and gastric cancers. The anti-cancer mechanism of these chemical components was explored in gastric cancer cells, revealing that they inhibit cell cycle and DNA replication-related gene expression, leading to the effective suppression of tumor cell growth. Additionally, they induced unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, potentially resulting in DNA damage, autophagy, and cell death. Moracin P, an active monomer characterized as a 2-arylbenzofuran, was found to induce ER stress and promote apoptosis in gastric cancer cells, confirming its potential to inhibit tumor cell growth in vitro and in vivo. These findings highlight the therapeutic potential of Morus alba L. monomers in gastrointestinal cancers, especially focusing on Moracin P as a potent inducer of ER stress and apoptosis.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Jingjing Su
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dong Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Abhimanyu Thakur
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Okhlahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Açar Y, Akbulut G. Nutritional Epigenetics and Phytochemicals in Cancer Formation. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:700-705. [PMID: 36416668 DOI: 10.1080/27697061.2022.2147106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Nutrigenetics and nutrigenomics are two concepts in the area of nutritional genomics. Epigenetics is a new discipline with significant potential in the prevention and management of certain carcinomas and diseases. Epigenetics consists of DNA methylation, histone modification, non-coding RNAs, and telomerase activity. Epigenetic-based mechanisms act on the inhibition of cancer cells by modulating enzymes such as DNA methyltransferase and histone deacetylase, as well as non-coding RNAs. Phytochemicals are natural bioactive components of plant origin that have antioxidant, anti-inflammatory, and anti-angiogenic effects on various diseases, especially cancer. The epigenetic diet is a nutritional model based on the consumption of various phytochemicals such as epigallocatechin-3-gallate, morin, caffeic acid phenyl ester, apigenin, genistein, curcumin, resveratrol, and sulforaphane. Phytochemicals exert their effects on cancer-based by reducing cell proliferation, invasion, and metastasis and increasing cell apoptosis. Simultaneously, it has functions such as reducing oncogenes that have effects on cancer etiology and increasing tumor suppressor genes.Key teaching pointsCancer is a chronic disease with a high mortality rate, in which various genetic and environmental factors are involved in its etiology.Protooncogenes, tumor suppressor genes, and DNA repair genes are among the gene groups that form the basis of cancer and genetic structure.The bidirectional interaction between nutrition and the human genome has been effective in the emergence of the concepts of nutrigenetics and nutrigenomics.Epigenetic diet is a diet based on the consumption of foods such as soy, grapes, blueberries, turmeric, cruciferous vegetables, and green tea, which induce epigenetic mechanisms that protect against cancer and aging.
Collapse
Affiliation(s)
- Yasemin Açar
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| | - Gamze Akbulut
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Wendlocha D, Krzykawski K, Mielczarek-Palacz A, Kubina R. Selected Flavonols in Breast and Gynecological Cancer: A Systematic Review. Nutrients 2023; 15:2938. [PMID: 37447264 DOI: 10.3390/nu15132938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The consumption of foods that are rich in phenolic compounds has chemopreventive effects on many cancers, including breast cancer, ovarian cancer, and endometrial cancer. A wide spectrum of their health-promoting properties such as antioxidant, anti-inflammatory, and anticancer activities, has been demonstrated. This paper analyzes the mechanisms of the anticancer action of selected common flavonols, including kemferol, myricetin, quercetin, fisetin, galangin, isorhamnetin, and morin, in preclinical studies, with particular emphasis on in vitro studies in gynecological cancers and breast cancer. In the future, these compounds may find applications in the prevention and treatment of gynecological cancers and breast cancer, but this requires further, more advanced research.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
10
|
Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update. J Nutr Biochem 2022; 110:109147. [PMID: 36049673 DOI: 10.1016/j.jnutbio.2022.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.
Collapse
|
11
|
Mahabady MK, Mirzaei S, Saebfar H, Gholami MH, Zabolian A, Hushmandi K, Hashemi F, Tajik F, Hashemi M, Kumar AP, Aref AR, Zarrabi A, Khan H, Hamblin MR, Nuri Ertas Y, Samarghandian S. Noncoding RNAs and their therapeutics in paclitaxel chemotherapy: Mechanisms of initiation, progression, and drug sensitivity. J Cell Physiol 2022; 237:2309-2344. [PMID: 35437787 DOI: 10.1002/jcp.30751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
The identification of agents that can reverse drug resistance in cancer chemotherapy, and enhance the overall efficacy is of great interest. Paclitaxel (PTX) belongs to taxane family that exerts an antitumor effect by stabilizing microtubules and inhibiting cell cycle progression. However, PTX resistance often develops in tumors due to the overexpression of drug transporters and tumor-promoting pathways. Noncoding RNAs (ncRNAs) are modulators of many processes in cancer cells, such as apoptosis, migration, differentiation, and angiogenesis. In the present study, we summarize the effects of ncRNAs on PTX chemotherapy. MicroRNAs (miRNAs) can have opposite effects on PTX resistance (stimulation or inhibition) via influencing YES1, SK2, MRP1, and STAT3. Moreover, miRNAs modulate the growth and migration rates of tumor cells in regulating PTX efficacy. PIWI-interacting RNAs, small interfering RNAs, and short-hairpin RNAs are other members of ncRNAs regulating PTX sensitivity of cancer cells. Long noncoding RNAs (LncRNAs) are similar to miRNAs and can modulate PTX resistance/sensitivity by their influence on miRNAs and drug efflux transport. The cytotoxicity of PTX against tumor cells can also be affected by circular RNAs (circRNAs) and limitation is that oncogenic circRNAs have been emphasized and experiments should also focus on onco-suppressor circRNAs.
Collapse
Affiliation(s)
- Mahmood K Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad H Gholami
- Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Amirhossein Zabolian
- Resident of Orthopedics, Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alan P Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amir R Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
12
|
The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022; 12:biom12030367. [PMID: 35327559 PMCID: PMC8945214 DOI: 10.3390/biom12030367] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.
Collapse
|
13
|
Ullah MF, Ahmad A, Bhat SH, Abuduhier FM, Mustafa SK, Usmani S. Diet-derived small molecules (nutraceuticals) inhibit cellular proliferation by interfering with key oncogenic pathways: an overview of experimental evidence in cancer chemoprevention. Biol Futur 2022; 73:55-69. [PMID: 35040098 DOI: 10.1007/s42977-022-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Discouraging statistics of cancer disease has projected an increase in the global cancer burden from 19.3 to 28.4 million incidences annually within the next two decades. Currently, there has been a revival of interest in nutraceuticals with evidence of pharmacological properties against human diseases including cancer. Diet is an integral part of lifestyle, and it has been proposed that an estimated one-third of human cancers can be prevented through appropriate lifestyle modification including dietary habits; hence, it is considered significant to explore the pharmacological benefits of these agents, which are easily accessible and have higher safety index. Accordingly, an impressive embodiment of evidence supports the concept that the dietary factors are critical modulators to prevent, retard, block, or reverse carcinogenesis. Such an action reflects the ability of these molecules to interfere with multitude of pathways to subdue and neutralize several oncogenic factors and thereby keep a restraint on neoplastic transformations. This review provides a series of experimental evidence based on the current literature to highlight the translational potential of nutraceuticals for the prevention of the disease through consumption of enriched diets and its efficacious management by means of novel interventions. Specifically, this review provides the current understanding of the chemopreventive pharmacology of nutraceuticals such as cucurbitacins, morin, fisetin, curcumin, luteolin and garcinol toward their potential as anticancer agents.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia.
| | - Aamir Ahmad
- University of Alabama at Birmingham, Birmingham, AL, USA
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Showket H Bhat
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology and Molecular Diagnostics, Center for Vocational Studies, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Faisel M Abuduhier
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
14
|
Mottaghi S, Abbaszadeh H. The anticarcinogenic and anticancer effects of the dietary flavonoid, morin: Current status, challenges, and future perspectives. Phytother Res 2021; 35:6843-6861. [PMID: 34498311 DOI: 10.1002/ptr.7270] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Flavonoids constitute one of the most important classes of polyphenols, which have been found to have a wide range of biological activities such as anticancer effects. A large body of evidence demonstrates that morin as a pleiotropic dietary flavonoid possesses potent anticarcinogenic and anticancer activities with minimal toxicity against normal cells. The present review comprehensively elaborates the molecular mechanisms underlying antitumorigenic and anticancer effects of morin. Morin exerts its anticarcinogenic effects through multiple cancer preventive mechanisms, including reduction of oxidative stress, activation of phase II enzymes, induction of apoptosis, attenuation of inflammatory mediators, and downregulation of p-Akt and NF-κB expression. A variety of molecular targets and signaling pathways such as apoptosis, cell cycle, reactive oxygen species (ROS), matrix metalloproteinases (MMPs), epithelial-mesenchymal transition (EMT), and microRNAs (miRNAs) as well as signal transducer and activator of transcription 3 (STAT3), NF-κB, phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK), and Hippo pathways have been found to be involved in the anticancer effects of morin. In the adjuvant therapy, morin has been shown to have synergistic anticancer effects with several chemotherapeutic drugs. The findings of this review indicate that morin can act as a promising chemopreventive and chemotherapeutic agent.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Hossain R, Islam MT, Mubarak MS, Jain D, Khan R, Saikat AS. Natural-Derived Molecules as a Potential Adjuvant in Chemotherapy: Normal Cell Protectors and Cancer Cell Sensitizers. Anticancer Agents Med Chem 2021; 22:836-850. [PMID: 34165416 DOI: 10.2174/1871520621666210623104227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a global threat to humans and a leading cause of death worldwide. Cancer treatment includes, among other things, the use of chemotherapeutic agents, compounds that are vital for treating and preventing cancer. However, chemotherapeutic agents produce oxidative stress along with other side effects that would affect the human body. OBJECTIVE To reduce the oxidative stress of chemotherapeutic agents in cancer and normal cells by naturally derived compounds with anti-cancer properties, and protect normal cells from the oxidation process. Therefore, the need to develop more potent chemotherapeutics with fewer side effects has become increasingly important. METHOD Recent literature dealing with the antioxidant and anticancer activities of the naturally naturally-derived compounds: morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin has been surveyed and examined in this review. For this, data were gathered from different search engines, including Google Scholar, ScienceDirect, PubMed, Scopus, Web of Science, Scopus, and Scifinder, among others. Additionally, several patient offices such as WIPO, CIPO, and USPTO were consulted to obtain published articles related to these compounds. RESULT Numerous plants contain flavonoids and polyphenolic compounds such as morin, myricetin, malvidin, naringin, eriodictyol, isovitexin, daidzein, naringenin, chrysin, and fisetin, which exhibit antioxidant, anti-inflammatory, and anti-carcinogenic actions via several mechanisms. These compounds show sensitizers of cancer cells and protectors of healthy cells. Moreover, these compounds can reduce oxidative stress, which is accelerated by chemotherapeutics and exhibit a potent anticancer effect on cancer cells. CONCLUSIONS Based on these findings, more research is recommended to explore and evaluate such flavonoids and polyphenolic compounds.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh
| | | | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan-304022, India
| | - Rasel Khan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna-9280, Bangladesh
| | - Abu Saim Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
16
|
Rajput SA, Wang XQ, Yan HC. Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed Pharmacother 2021; 138:111511. [PMID: 33744757 DOI: 10.1016/j.biopha.2021.111511] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Flavonoids are natural plant-derived dietary bioactive compounds having a substantial impact on human health. Morin hydrate is a bioflavonoid mainly obtained from fruits, stem, and leaves of Moraceae family members' plants. Plenty of evidences supported that morin hydrate exerts its beneficial effects against various chronic and life-threatening degenerative diseases. Our current article discloses the recent advances that have been studied to explore the biological/pharmacological properties and molecular mechanisms to better understand the beneficial and multiple health benefits of morin hydrate. Indeed, Morin hydrate exerts free radical scavenging, antioxidant, anti-inflammatory, anti-cancerous, anti-microbial, antidiabetic, anti-arthritis, cardioprotective, neuroprotective, nephroprotective, and hepatoprotective effects. Moreover, morin hydrate exhibits its pharmacological activities by modulating various cellular signaling pathways such as Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-қB), Mitogen-activated protein kinase (MAPK), Janus kinases/ Signal transducer and activator of transcription proteins (JAKs/STATs), Kelch-like ECH-associated protein1/Nuclear erythroid-2-related factor (Keap1/Nrf2), Endoplasmic reticulum (ER), Mitochondrial-mediated apoptosis, Wnt/β-catenin, and Mechanistic target of rapamycin (mTOR). Most importantly, morin hydrate has the potential to modulate a variety of biological networks. Therefore, it can be predicted that this therapeutically potent compound could serve as a dietary agent for the expansion of human health and might be helpful for the development of the novel drug in the future. However, due to the lack of clinical trials, special human clinical trials are needed to address the effects of morin hydrate on various life-threatening disparities to recommend morin and/or morin-rich foods with other foods or bioactive dietary components, as well as dose-response interaction and safety profile.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Carullo G, Mazzotta S, Koch A, Hartmann KM, Friedrich O, Gilbert DF, Vega-Holm M, Schneider-Stock R, Aiello F. New Oleoyl Hybrids of Natural Antioxidants: Synthesis and In Vitro Evaluation as Inducers of Apoptosis in Colorectal Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9111077. [PMID: 33153029 PMCID: PMC7692320 DOI: 10.3390/antiox9111077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Nowadays, the beneficial role of a healthy lifestyle, particularly emphasizing the quality of foods and cancer management, is accepted worldwide. Polyphenols and oleic acid play a key role in this context, but are still scarcely used as anti-cancer agents due to their bio-accessibility limits. Therefore, we aimed to synthesize a set of new oleoyl-hybrids of quercetin, morin, pinocembrin, and catechin to overcome the low bioavailability of polyphenols, throughout a bio-catalytic approach using pancreatic porcine lipase as a catalyst. The in vitro assays, using a wide panel of human cancer cell lines showed, mainly for two novel regioisomer oleoyl-hybrids of quercetin, a remarkable increase in apoptotic cell populations. We suggested that the DNA damage shown as ɣH2AX signals might be the major cause of apoptotic cell death. Finally, we demonstrated convincing data about two novel polyphenol-based hybrids displaying a highly selective anti-cancer cytotoxicity and being superior compared to their reference/parental compounds.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Sarah Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
- Department of Pharmaceutical Sciences, University of Milan Via Luigi Mangiagalli 25, 20133 Milano, Italy;
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41071 Seville, Spain;
| | - Adrian Koch
- Institiute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany;
- Experimental Tumorpathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany
| | - Kristin M. Hartmann
- Institute of Medical Biotechnology Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany; (K.M.H.); (O.F.); (D.F.G.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany; (K.M.H.); (O.F.); (D.F.G.)
| | - Daniel F. Gilbert
- Institute of Medical Biotechnology Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany; (K.M.H.); (O.F.); (D.F.G.)
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41071 Seville, Spain;
| | - Regine Schneider-Stock
- Institiute of Pathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany;
- Experimental Tumorpathology, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg Universitätsstr. 22, 91054 Erlangen, Germany
- Correspondence: (R.S.-S.); (F.A.)
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
- Correspondence: (R.S.-S.); (F.A.)
| |
Collapse
|
18
|
Pereira WL, de Oliveira TT, Kanashiro MM, Filardi MA, da Costa MR, da Costa LM. Morin exhibits leukemic cellular apoptosis through caspase pathway. Nat Prod Res 2020; 35:5554-5558. [PMID: 32674703 DOI: 10.1080/14786419.2020.1795656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study investigated the possibility of apoptosis-inducing activity in human leukemia U-937 and THP-1 cells by the flavonoid morin. The treatments were evaluated by using the MTT and LDH assays; analysis of mitochondrial membrane potential (ΔΨm) was evaluated by flow cytometry, cell death by apoptosis was confirmed by fluorescence microscopy and by assessing the activity of caspases-3 and -6. The data indicated that the flavonoid morin has promoted a decrease in cell viability in a concentration-dependent way for both of the cancerous cell lines. An increase in the percentage of cell death caused by apoptosis was associated to a potential alteration in the mitochondrial membrane (ΔΨm) suggesting the involvement of cell death in intrinsic apoptotic pathways. Activation of caspases-3 and -6 confirmed the presence of apoptotic activity from morin. The results reinforce the antileukemic potential of flavonol morin.
Collapse
Affiliation(s)
- Wander Lopes Pereira
- Department of Biochemistry and Cell Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | - Milton Masahiko Kanashiro
- Recognizing Biology Laboratory, Bioscience and Biotechnology Center, North Fluminense State University, Rio de Janeiro, Brazil
| | | | - Marcelo Rocha da Costa
- Department of Biochemistry and Cell Biology, Federal University of Viçosa, Viçosa, Brazil
| | | |
Collapse
|