1
|
Xiao T, Shi Y, Ye Y, Wang J, Wang W, Yu H, Yan M, Yu J. Circ-SPATA13 regulates the osteogenic differentiation of human periodontal ligament stem cells through the miR-485-5p_R + 1/BMP7 axis. Cell Signal 2025; 127:111561. [PMID: 39667547 DOI: 10.1016/j.cellsig.2024.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Human periodontal ligament stem cells (PDLSCs) are widely available and have strong osteogenic differentiation ability, which makes them promising tools for bone regeneration. Circular RNAs (circRNAs) play a variety of functions in the process of cell differentiation and are potential therapeutic targets. Here, we identified a new circRNA, circ-SPATA13, and found that it was highly positively correlated with the osteogenic differentiation of PDLSCs. Therefore, in this study, we revealed the significance and mechanism of circ-SPATA13 in the osteogenic differentiation of PDLSCs. METHODS PDLSCs were isolated from third molars with incomplete apical development and induced to undergo chondrogenic, adipogenic, or osteogenic differentiation. Surface markers were detected via flow cytometry. Proliferation was assessed with EdU and CCK-8 assays. The circ-SPATA13 and miR-485-5p_R + 1-mediated control of mineral deposition was evaluated through alizarin red and alkaline phosphatase staining. Osteogenesis-related factor expression was detected through western blotting, immunofluorescence, and qRT-PCR. Fluorescence in situ hybridization was used to examine circ-SPATA13 localization within PDLSCs. The relationships among circ-SPATA13, miR-485-5p_R + 1, and BMP7 during PDLSCs osteogenesis were assessed through western blotting, qRT-PCR, dual-luciferase assay, rescue experiment, and bioinformatics approaches. RESULTS Primary PDLSCs expressing mesenchymal stem cell surface markers were isolated. Circ-SPATA13 was identified and found to have no impact on PDLSC proliferation, whereas it was a positive regulator of their osteogenic differentiation, a process which was antagonized by miR-485-5p_R + 1. Dual-luciferase reporter assays revealed that circ-SPATA13 was able to function as a molecular sponge to sequester miR-485-5p_R + 1 within PDLSCs, while this miRNA was able to bind to the 3'-UTR of the target mRNA BMP7. In rescue experiments, circ-SPATA13 was confirmed to regulate the osteogenic differentiation of PDLSCs via this miR-485-5p_R + 1/BMP7 axis. Moreover, in vivo experiments in rats demonstrated that the overexpression of circ-SPATA13 in PDLSCs was associated with the promotion of bone formation in a skull defect model system. CONCLUSION These data supported the osteogenic functions of circ-SPATA13 in PDLSCs. Mechanistically, this circRNA was found to function as a molecular sponge for miR-485-5p_R + 1, in turn targeting BMP7 to promote the osteogenic differentiation of PDLSCs. This circ-SPATA13/miR-485-5p_R + 1/BMP7 axis may be a novel target for treatments promoting PDLSCs osteogenic differentiation.
Collapse
Affiliation(s)
- Tong Xiao
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Yijia Shi
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Yu Ye
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jing Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Wenmin Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Haowen Yu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Maoshen Yan
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jinhua Yu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Mohammad Mirzapour S, Jalali F. Stem cell therapy for regenerating periodontal bony defects: A narrative review. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2025; 17:1-14. [PMID: 40265031 PMCID: PMC12010474 DOI: 10.34172/japid.025.3749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 04/24/2025]
Abstract
Periodontal bony defects pose a significant challenge in periodontology, necessitating advanced regenerative approaches to restore the lost structures. Stem cell-based therapies have emerged as a promising solution due to their ability to differentiate into various cells, modulating the regenerative microenvironment. This narrative review explores the potential of stem cells derived from multiple sources in treating periodontal bony defects. Additionally, we examine evidence from both animal and human studies, highlighting advancements, clinical outcomes, and limitations. By investigating these findings, this article provides a comprehensive overview of the advantages of stem cell-based therapies compared to other regenerative techniques in addressing periodontal bony defects and discusses the limitations of their translation into routine clinical practice.
Collapse
Affiliation(s)
- Samira Mohammad Mirzapour
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Jalali
- Student Research Committee, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Cabaña-Muñoz ME, Pelaz Fernández MJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Merino JJ. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023; 15:2109. [PMID: 37631323 PMCID: PMC10459416 DOI: 10.3390/pharmaceutics15082109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are cells of ectomesenchymal origin, they reveal a high capacity for complete regeneration of dental pulp, periodontal tissue, and other biomedical applications; their differentiation into other types of cells promotes repair in muscle tissue, cardiac, pancreatic, nervous, bone, cartilage, skin, and corneal tissues, among others, with a high predictability of success. Therefore, stem and progenitor cells, with their exosomes of dental origin and surrounding areas in the oral cavity due to their plasticity, are considered a fundamental pillar in medicine and regenerative dentistry. Tissue engineering (MSCs, scaffolds, and bioactive molecules) sustains and induces its multipotent and immunomodulatory effects. It is of vital importance to guarantee the safety and efficacy of the procedures designed for patients, and for this purpose, more clinical trials are needed to increase the efficacy of several pathologies. Conclusion: From a bioethical and transcendental anthropological point of view, the human person as a unique being facilitates better clinical and personalized therapy, given the higher prevalence of dental and chronic systemic diseases.
Collapse
Affiliation(s)
- María Eugenia Cabaña-Muñoz
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José María Parmigiani-Cabaña
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), 28040 Madrid, Spain
| |
Collapse
|
4
|
Gaitán-Salvatella I, González-Alva P, Montesinos JJ, Alvarez-Perez MA. In Vitro Bone Differentiation of 3D Microsphere from Dental Pulp-Mesenchymal Stem Cells. Bioengineering (Basel) 2023; 10:bioengineering10050571. [PMID: 37237641 DOI: 10.3390/bioengineering10050571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Bone defects lead to the structural loss of normal architecture, and those in the field of bone tissue engineering are searching for new alternatives to aid bone regeneration. Dental pulp-mesenchymal stem cells (DP-MSC) could provide a promising alternative to repair bone defects, principally due to their multipotency and capacity to fabricate three-dimensional (3D) spheroids. The present study aimed to characterize the 3D DP-MSC microsphere and the osteogenic differentiation capacity potential cultured by a magnetic levitation system. To achieve this, the 3D DP-MSC microsphere was grown for 7, 14, and 21 days in an osteoinductive medium and compared to 3D human fetal osteoblast (hFOB) microspheres by examining the morphology, proliferation, osteogenesis, and colonization onto PLA fiber spun membrane. Our results showed good cell viability for both 3D microspheres with an average diameter of 350 μm. The osteogenesis examination of the 3D DP-MSC microsphere revealed the lineage commitment, such as the hFOB microsphere, as evidenced by ALP activity, the calcium content, and the expression of osteoblastic markers. Finally, the evaluation of the surface colonization exhibited similar patterns of cell-spreading over the fibrillar membrane. Our study demonstrated the feasibility of forming a 3D DP-MSC microsphere structure and the cell-behavior response as a strategy for the applications of bone tissue guiding.
Collapse
Affiliation(s)
- Iñigo Gaitán-Salvatella
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), POST, Mexico City 06720, Mexico
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
5
|
Xue J, Liu Y. Mesenchymal Stromal/Stem Cell (MSC)-Based Vector Biomaterials for Clinical Tissue Engineering and Inflammation Research: A Narrative Mini Review. J Inflamm Res 2023; 16:257-267. [PMID: 36713049 PMCID: PMC9875582 DOI: 10.2147/jir.s396064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) have the ability of self-renewal, the potential of multipotent differentiation, and a strong paracrine capacity, which are mainly used in the field of clinical medicine including dentistry and orthopedics. Therefore, tissue engineering research using MSCs as seed cells is a current trending directions. However, the healing effect of direct cell transplantation is unstable, and the paracrine/autocrine effects of MSCs cannot be effectively elicited. Tumorigenicity and heterogeneity are also concerns. The combination of MSCs as seed cells and appropriate vector materials can form a stable cell growth environment, maximize the secretory features of stem cells, and improve the biocompatibility and mechanical properties of vector materials that facilitate the delivery of drugs and various secretory factors. There are numerous studies on tissue engineering and inflammation of various biomaterials, mainly involving bioceramics, alginate, chitosan, hydrogels, cell sheets, nanoparticles, and three-dimensional printing. The combination of bioceramics, hydrogels and cell sheets with stem cells has demonstrated good therapeutic effects in clinical applications. The application of alginate, chitosan, and nanoparticles in animal models has also shown good prospects for clinical applications. Three-dimensional printing technology can circumvent the shortage of biomaterials, greatly improve the properties of vector materials, and facilitate the transplantation of MSCs. The purpose of this narrative review is to briefly discuss the current use of MSC-based carrier biomaterials to provide a useful resource for future tissue engineering and inflammation research using stem cells as seed cells.
Collapse
Affiliation(s)
- Junshuai Xue
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Yang Liu
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan City, People’s Republic of China,Correspondence: Yang Liu, Department of General surgery, Vascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People’s Republic of China, Tel +86 18560088317, Email
| |
Collapse
|
6
|
Liu C, Li Y, Han G. Advances of Mesenchymal Stem Cells Released Extracellular Vesicles in Periodontal Bone Remodeling. DNA Cell Biol 2022; 41:935-950. [PMID: 36315196 DOI: 10.1089/dna.2022.0359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles that include exosomes, microvesicles, and apoptotic bodies; they interact with target cell surface receptors and transport contents, including mRNA, proteins, and enzymes into the cytoplasm of target cells to function. The biological fingerprints of EVs practically mirror those of the parental cells they originated from. In the bone remodeling microenvironment, EVs could act on osteoblasts to regulate the bone formation, promote osteoclast differentiation, and regulate bone resorption. Therefore, there have been many attempts wherein EVs were used to achieve targeted therapy in bone-related diseases. Periodontitis, a common bacterial infectious disease, could cause severe alveolar bone resorption, resulting in tooth loss, whereas research on periodontal bone regeneration is also an urgent question. Therefore, EVs-related studies are important for periodontal bone remodeling. In this review, we summarize the current knowledge of mesenchymal stem cell-EVs involved in periodontal bone remodeling and explore the functional gene expression through a comparative analysis of transcriptomic content.
Collapse
Affiliation(s)
- Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
7
|
Stem Cells and Their Derivatives-Implications for Alveolar Bone Regeneration: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms222111746. [PMID: 34769175 PMCID: PMC8583713 DOI: 10.3390/ijms222111746] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oral and craniofacial bone defects caused by congenital disease or trauma are widespread. In the case of severe alveolar bone defect, autologous bone grafting has been considered a “gold standard”; however, the procedure has several disadvantages, including limited supply, resorption, donor site morbidity, deformity, infection, and bone graft rejection. In the last few decades, bone tissue engineering combined with stem cell-based therapy may represent a possible alternative to current bone augmentation techniques. The number of studies investigating different cell-based bone tissue engineering methods to reconstruct alveolar bone damage is rapidly rising. As an interdisciplinary field, bone tissue engineering combines the use of osteogenic cells (stem cells/progenitor cells), bioactive molecules, and biocompatible scaffolds, whereas stem cells play a pivotal role. Therefore, our work highlights the osteogenic potential of various dental tissue-derived stem cells and induced pluripotent stem cells (iPSCs), the progress in differentiation techniques of iPSCs into osteoprogenitor cells, and the efforts that have been made to fabricate the most suitable and biocompatible scaffold material with osteoinductive properties for successful bone graft generation. Moreover, we discuss the application of stem cell-derived exosomes as a compelling new form of “stem-cell free” therapy.
Collapse
|
8
|
Cold Atmospheric Plasma Promotes Regeneration-Associated Cell Functions of Murine Cementoblasts In Vitro. Int J Mol Sci 2021; 22:ijms22105280. [PMID: 34067898 PMCID: PMC8156616 DOI: 10.3390/ijms22105280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of the study was to examine the efficacy of cold atmospheric plasma (CAP) on the mineralization and cell proliferation of murine dental cementoblasts. Cells were treated with CAP and enamel matrix derivates (EMD). Gene expression of alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (BGLAP), periostin (POSTN), osteopontin (OPN), osterix (OSX), collagen type I alpha 1 chain (COL1A1), dentin matrix acidic phosphoprotein (DMP)1, RUNX family transcription factor (RUNX)2, and marker of proliferation Ki-67 (KI67) was quantified by real-time PCR. Protein expression was analyzed by immunocytochemistry and ELISA. ALP activity was determined by ALP assay. Von Kossa and alizarin red staining were used to display mineralization. Cell viability was analyzed by XTT assay, and morphological characterization was performed by DAPI/phalloidin staining. Cell migration was quantified with an established scratch assay. CAP and EMD upregulated both mRNA and protein synthesis of ALP, POSTN, and OPN. Additionally, DMP1 and COL1A1 were upregulated at both gene and protein levels. In addition to upregulated RUNX2 mRNA levels, treated cells mineralized more intensively. Moreover, CAP treatment resulted in an upregulation of KI67, higher cell viability, and improved cell migration. Our study shows that CAP appears to have stimulatory effects on regeneration-associated cell functions in cementoblasts.
Collapse
|
9
|
Sinenko SA, Ponomartsev SV, Tomilin AN. Pluripotent stem cell-based gene therapy approach: human de novo synthesized chromosomes. Cell Mol Life Sci 2021; 78:1207-1220. [PMID: 33011821 PMCID: PMC11072874 DOI: 10.1007/s00018-020-03653-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
A novel approach in gene therapy was introduced 20 years ago since artificial non-integrative chromosome-based vectors containing gene loci size inserts were engineered. To date, different human artificial chromosomes (HAC) were generated with the use of de novo construction or "top-down" engineering approaches. The HAC-based therapeutic approach includes ex vivo gene transferring and correction of pluripotent stem cells (PSCs) or highly proliferative modified stem cells. The current progress in the technology of induced PSCs, integrating with the HAC technology, resulted in a novel platform of stem cell-based tissue replacement therapy for the treatment of genetic disease. Nowadays, the sophisticated and laborious HAC technology has significantly improved and is now closer to clinical studies. In here, we reviewed the achievements in the technology of de novo synthesized HACs for a chromosome transfer for developing gene therapy tissue replacement models of monogenic human diseases.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia.
| | - Sergey V Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave, St-Petersburg, 194064, Russia.
- Institute of Translational Biomedicine, St-Petersburg State University, 7-9, Universitetskaya Emb, St-Petersburg, 199034, Russia.
| |
Collapse
|
10
|
Angiogenesis in Regenerative Dentistry: Are We Far Enough for Therapy? Int J Mol Sci 2021; 22:ijms22020929. [PMID: 33477745 PMCID: PMC7832295 DOI: 10.3390/ijms22020929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is a broad spread term of high interest in regenerative medicine and tissue engineering including the dental field. In the last two decades, researchers worldwide struggled to find the best ways to accelerate healing, stimulate soft, and hard tissue remodeling. Stem cells, growth factors, pathways, signals, receptors, genetics are just a few words that describe this area in medicine. Dental implants, bone and soft tissue regeneration using autologous grafts, or xenografts, allografts, their integration and acceptance rely on their material properties. However, the host response, through its vascularization, plays a significant role. The present paper aims to analyze and organize the latest information about the available dental stem cells, the types of growth factors with pro-angiogenic effect and the possible therapeutic effect of enhanced angiogenesis in regenerative dentistry.
Collapse
|