1
|
Yang X, Ji C, Wang S, Yang Q, Li J, He S, Pang Q, Zhang A. Genome-wide identification of the bZIP family in Eutrema salsugineum and functional analysis of EsbZIP51 in regulating salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109562. [PMID: 39879829 DOI: 10.1016/j.plaphy.2025.109562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
The halophyte Eutrema salsugineum is naturally distributed in saline-alkali soil and has been proposed as a model plant for understanding plant salt tolerance. As one of the largest and most diverse TF families, basic leucine zipper motif (bZIP) TFs perform robust functions in plant growth and environmental response, however the generalized information of EsbZIP genes and its regulatory role in salt tolerance has not been systematically studied to date. Here, we identified and characterized the bZIP members in E. salsugineum, the sequence feature and phylogeny of EsbZIPs have been exhaustively described. Through the global detection on the transcriptional pattern of EsbZIPs under salt stress, it was found that EsbZIP51 is potentially involved in the positive regulation of salt response. The transgenic plants with heterologous expression of EsbZIP51 exhibited enhanced salt tolerance, as manifested by the healthier growth phenotype and increased capacity in maintaining ion and ROS homeostasis upon salt stress. DNA affinity purification sequencing revealed that a set of candidate genes targeted by EsbZIP51, and functional validation by dual-LUC assays showed EsbZIP51 can specifically bind to the promoter of EsNHX4 and regulates the gene expression, which is required for the modulation of ion balance under salt stress. Together, this study provides insight into the genomic information of EsbZIPs and uncovers a previously uncharacterized functional genes involved in plant salt tolerance.
Collapse
Affiliation(s)
- Xiaomin Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Chengcheng Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qinghua Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiawen Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shipeng He
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Cavusoglu E, Sari U, Tiryaki I. Genome-wide identification and expression analysis of Na+/ H+antiporter ( NHX) genes in tomato under salt stress. PLANT DIRECT 2023; 7:e543. [PMID: 37965196 PMCID: PMC10641485 DOI: 10.1002/pld3.543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023]
Abstract
Plant Na +/H + antiporter (NHX) genes enhance salt tolerance by preventing excessive Na+ accumulation in the cytosol through partitioning of Na+ ions into vacuoles or extracellular transport across the plasma membrane. However, there is limited detailed information regarding the salt stress responsive SlNHXs in the most recent tomato genome. We investigated the role of this gene family's expression patterns in the open flower tissues under salt shock in Solanum lycopersicum using a genome-wide approach. A total of seven putative SlNHX genes located on chromosomes 1, 4, 6, and 10 were identified, but no ortholog of the NHX5 gene was identified in the tomato genome. Phylogenetic analysis revealed that these genes are divided into three different groups. SlNHX proteins with 10-12 transmembrane domains were hypothetically localized in vacuoles or cell membranes. Promoter analysis revealed that SlNHX6 and SlNHX8 are involved with the stress-related MeJA hormone in response to salt stress signaling. The structural motif analysis of SlNHX1, -2, -3, -4, and -6 proteins showed that they have highly conserved amiloride binding sites. The protein-protein network revealed that SlNHX7 and SlNHX8 interact physically with Salt Overly Sensitive (SOS) pathway proteins. Transcriptome analysis demonstrated that the SlNHX2 and SlNHX6 genes were substantially expressed in the open flower tissues. Moreover, quantitative PCR analysis indicated that all SlNHX genes, particularly SlNHX6 and SlNHX8, are significantly upregulated by salt shock in the open flower tissues. Our results provide an updated framework for future genetic research and development of breeding strategies against salt stress in the tomato.
Collapse
Affiliation(s)
- Erman Cavusoglu
- Department of Agricultural Biotechnology, Faculty of AgricultureCanakkale Onsekiz Mart University, Terzioglu CampusCanakkaleTurkey
| | - Ugur Sari
- Department of Agricultural Biotechnology, Faculty of AgricultureCanakkale Onsekiz Mart University, Terzioglu CampusCanakkaleTurkey
| | - Iskender Tiryaki
- Department of Agricultural Biotechnology, Faculty of AgricultureCanakkale Onsekiz Mart University, Terzioglu CampusCanakkaleTurkey
| |
Collapse
|
3
|
Ikuyinminu E, Goñi O, Łangowski Ł, O'Connell S. Transcriptome, Biochemical and Phenotypic Analysis of the Effects of a Precision Engineered Biostimulant for Inducing Salinity Stress Tolerance in Tomato. Int J Mol Sci 2023; 24:ijms24086988. [PMID: 37108156 PMCID: PMC10138596 DOI: 10.3390/ijms24086988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Salinity stress is a major problem affecting plant growth and crop productivity. While plant biostimulants have been reported to be an effective solution to tackle salinity stress in different crops, the key genes and metabolic pathways involved in these tolerance processes remain unclear. This study focused on integrating phenotypic, physiological, biochemical and transcriptome data obtained from different tissues of Solanum lycopersicum L. plants (cv. Micro-Tom) subjected to a saline irrigation water program for 61 days (EC: 5.8 dS/m) and treated with a combination of protein hydrolysate and Ascophyllum nodosum-derived biostimulant, namely PSI-475. The biostimulant application was associated with the maintenance of higher K+/Na+ ratios in both young leaf and root tissue and the overexpression of transporter genes related to ion homeostasis (e.g., NHX4, HKT1;2). A more efficient osmotic adjustment was characterized by a significant increase in relative water content (RWC), which most likely was associated with osmolyte accumulation and upregulation of genes related to aquaporins (e.g., PIP2.1, TIP2.1). A higher content of photosynthetic pigments (+19.8% to +27.5%), increased expression of genes involved in photosynthetic efficiency and chlorophyll biosynthesis (e.g., LHC, PORC) and enhanced primary carbon and nitrogen metabolic mechanisms were observed, leading to a higher fruit yield and fruit number (47.5% and 32.5%, respectively). Overall, it can be concluded that the precision engineered PSI-475 biostimulant can provide long-term protective effects on salinity stressed tomato plants through a well-defined mode of action in different plant tissues.
Collapse
Affiliation(s)
- Elomofe Ikuyinminu
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92 CX88 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, V92 N6C8 Tralee, Co. Kerry, Ireland
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92 CX88 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, V92 N6C8 Tralee, Co. Kerry, Ireland
| | | | - Shane O'Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92 CX88 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, V92 N6C8 Tralee, Co. Kerry, Ireland
| |
Collapse
|
4
|
Gupta R, Leibman-Markus M, Anand G, Rav-David D, Yermiyahu U, Elad Y, Bar M. Nutrient Elements Promote Disease Resistance in Tomato by Differentially Activating Immune Pathways. PHYTOPATHOLOGY 2022; 112:2360-2371. [PMID: 35771048 DOI: 10.1094/phyto-02-22-0052-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nutrient elements play essential roles in plant growth, development, and reproduction. Balanced nutrition is critical for plant health and the ability to withstand biotic stress. Treatment with essential elements has been shown to induce disease resistance in certain cases. Understanding the functional mechanisms underlying plant immune responses to nutritional elements has the potential to provide new insights into crop improvement. In the present study, we investigated the effect of various elements-potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na)-in promoting resistance against the necrotrophic fungus Botrytis cinerea and the hemibiotrophic bacterium Xanthomonas euvesicatoria in tomato. We demonstrate that spray treatment of essential elements was sufficient to activate immune responses, inducing defense gene expression, cellular leakage, reactive oxygen species, and ethylene production. We report that different defense signaling pathways are required for induction of immunity in response to different elements. Our results suggest that genetic mechanisms that are modulated by nutrient elements can be exploited in agricultural practices to promote disease resistance.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, 68 Hamakabim Rd., Rishon LeZion 7534509, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, 68 Hamakabim Rd., Rishon LeZion 7534509, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, 68 Hamakabim Rd., Rishon LeZion 7534509, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, 68 Hamakabim Rd., Rishon LeZion 7534509, Israel
| | - Uri Yermiyahu
- Agricultural Research Organization, Gilat Research Center, D.N. Negev 2, Bet Dagan 85280, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, 68 Hamakabim Rd., Rishon LeZion 7534509, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, 68 Hamakabim Rd., Rishon LeZion 7534509, Israel
| |
Collapse
|
5
|
Hasan MN, Bhuiyan FH, Hoque H, Jewel NA, Ashrafuzzaman M, Prodhan SH. Ectopic expression of Vigna radiata's vacuolar Na+/H+ antiporter gene (VrNHX1) in indica rice (Oryza sativa L.). BIOTECHNOLOGY REPORTS 2022; 35:e00740. [PMID: 35646621 PMCID: PMC9130519 DOI: 10.1016/j.btre.2022.e00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
Successful Agrobacterium-mediated transformation of indica Dhan28 and BRRI Dhan29 Ectopic expression of the Na+/H+ exchanger 1 (VrNHX1) from Vigna radiata L. Wilczek in indica rice improves salinity tolerance. Under 150 mM NaCl salinity stress, transgenic lines performed significantly better than wild type.
It is essential to develop high salt-tolerant rice varieties in order to cultivate the salt-affected lands. In this study, Na+/H+ exchanger 1 (NHX1) gene isolated from Vigna radiata L. Wilczek was transferred in Bangladesh Rice Research Institute (BRRI) developed two indica rice genotypes BRRI Dhan28 and BRRI Dhan29 using in-planta approach for improvement of salinity tolerance. Embryonic axes of matured dehusked rice seeds were injured and co-cultivated with Agrobacterium strain harboring VrNHX1 gene and finally regenerated. GUS histochemical assay and PCR amplification of GUS-a and VrNHX1 were performed to confirm the transformation. Expression confirmation was done by semi-quantitative RT-PCR. Under salinity stress, transgenic lines showed higher chlorophyll, relative water content and decreased electrolyte leakage, proline content, lipid peroxidation level, and catalase enzyme activity which represent the better physiology than control plants. Moreover, under salinity stress (150 mM), transgenic lines exhibited superior growth and salt tolerant than non-transgenic plants.
Collapse
|
6
|
Raza A, Tabassum J, Mubarik MS, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H. Hydrogen sulfide: an emerging component against abiotic stress in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:540-558. [PMID: 34870354 DOI: 10.1111/plb.13368] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 05/05/2023]
Abstract
As a result of climate change, abiotic stresses are the most common cause of crop losses worldwide. Abiotic stresses significantly impair plants' physiological, biochemical, molecular and cellular mechanisms, limiting crop productivity under adverse climate conditions. However, plants can implement essential mechanisms against abiotic stressors to maintain their growth and persistence under such stressful environments. In nature, plants have developed several adaptations and defence mechanisms to mitigate abiotic stress. Moreover, recent research has revealed that signalling molecules like hydrogen sulfide (H2 S) play a crucial role in mitigating the adverse effects of environmental stresses in plants by implementing several physiological and biochemical mechanisms. Mainly, H2 S helps to implement antioxidant defence systems, and interacts with other molecules like nitric oxide (NO), reactive oxygen species (ROS), phytohormones, etc. These molecules are well-known as the key players that moderate the adverse effects of abiotic stresses. Currently, little progress has been made in understanding the molecular basis of the protective role of H2 S; however, it is imperative to understand the molecular basis using the state-of-the-art CRISPR-Cas gene-editing tool. Subsequently, genetic engineering could provide a promising approach to unravelling the molecular basis of stress tolerance mediated by exogenous/endogenous H2 S. Here, we review recent advances in understanding the beneficial roles of H2 S in conferring multiple abiotic stress tolerance in plants. Further, we also discuss the interaction and crosstalk between H2 S and other signal molecules; as well as highlighting some genetic engineering-based current and future directions.
Collapse
Affiliation(s)
- A Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - J Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - M S Mubarik
- Department of Biotechnology, University of Narowal (UON), Narowal, 51600, Pakistan
| | - S Anwar
- Department of Agronomy, University of Florida, Gainesville, USA
| | - N Zahra
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Y Sharif
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - M B Hafeez
- College of Agronomy, Northwest A&F University, Yangling, China
| | - C Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - F J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, CSIC, Granada, Spain
| | - H Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| |
Collapse
|
7
|
Behera TK, Krishna R, Ansari WA, Aamir M, Kumar P, Kashyap SP, Pandey S, Kole C. Approaches Involved in the Vegetable Crops Salt Stress Tolerance Improvement: Present Status and Way Ahead. FRONTIERS IN PLANT SCIENCE 2022; 12:787292. [PMID: 35281697 PMCID: PMC8916085 DOI: 10.3389/fpls.2021.787292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 05/12/2023]
Abstract
Salt stress is one of the most important abiotic stresses as it persists throughout the plant life cycle. The productivity of crops is prominently affected by soil salinization due to faulty agricultural practices, increasing human activities, and natural processes. Approximately 10% of the total land area (950 Mha) and 50% of the total irrigated area (230 Mha) in the world are under salt stress. As a consequence, an annual loss of 12 billion US$ is estimated because of reduction in agriculture production inflicted by salt stress. The severity of salt stress will increase in the upcoming years with the increasing world population, and hence the forced use of poor-quality soil and irrigation water. Unfortunately, majority of the vegetable crops, such as bean, carrot, celery, eggplant, lettuce, muskmelon, okra, pea, pepper, potato, spinach, and tomato, have very low salinity threshold (ECt, which ranged from 1 to 2.5 dS m-1 in saturated soil). These crops used almost every part of the world and lakes' novel salt tolerance gene within their gene pool. Salt stress severely affects the yield and quality of these crops. To resolve this issue, novel genes governing salt tolerance under extreme salt stress were identified and transferred to the vegetable crops. The vegetable improvement for salt tolerance will require not only the yield influencing trait but also target those characters or traits that directly influence the salt stress to the crop developmental stage. Genetic engineering and grafting is the potential tool which can improve salt tolerance in vegetable crop regardless of species barriers. In the present review, an updated detail of the various physio-biochemical and molecular aspects involved in salt stress have been explored.
Collapse
Affiliation(s)
| | - Ram Krishna
- ICAR-Directorate of Onion and Garlic Research, Pune, India
| | | | - Mohd Aamir
- ICAR-Indian Institute of Vegetable Research, Varanasi, Varanasi, India
| | - Pradeep Kumar
- ICAR-Central Arid Zone Research Institute, Jodhpur, India
| | | | - Sudhakar Pandey
- ICAR-Indian Institute of Vegetable Research, Varanasi, Varanasi, India
| | | |
Collapse
|
8
|
Bonarota MS, Kosma DK, Barrios-Masias FH. Salt tolerance mechanisms in the Lycopersicon clade and their trade-offs. AOB PLANTS 2022; 14:plab072. [PMID: 35079327 PMCID: PMC8782609 DOI: 10.1093/aobpla/plab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
Salt stress impairs growth and yield in tomato, which is mostly cultivated in arid and semi-arid areas of the world. A number of wild tomato relatives (Solanum pimpinellifolium, S. pennellii, S. cheesmaniae and S. peruvianum) are endemic to arid coastal areas and able to withstand higher concentration of soil salt concentrations, making them a good genetic resource for breeding efforts aimed at improving salt tolerance and overall crop improvement. However, the complexity of salt stress response makes it difficult to introgress tolerance traits from wild relatives that could effectively increase tomato productivity under high soil salt concentrations. Under commercial production, biomass accumulation is key for high fruit yields, and salt tolerance management strategies should aim to maintain a favourable plant water and nutrient status. In this review, we first compare the effects of salt stress on the physiology of the domesticated tomato and its wild relatives. We then discuss physiological and energetic trade-offs for the different salt tolerance mechanisms found within the Lycopersicon clade, with a focus on the importance of root traits to sustain crop productivity.
Collapse
Affiliation(s)
- Maria-Sole Bonarota
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
9
|
Maach M, Rodríguez-Rosales MP, Venema K, Akodad M, Moumen A, Skalli A, Baghour M. Improved yield, fruit quality, and salt resistance in tomato co-overexpressing LeNHX2 and SlSOS2 genes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:703-712. [PMID: 33967457 PMCID: PMC8055741 DOI: 10.1007/s12298-021-00974-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/09/2021] [Accepted: 03/09/2021] [Indexed: 05/14/2023]
Abstract
The K+, Na+/H+ antiporter LeNHX2 and the regulatory kinase SlSOS2 are important determinants of salt tolerance in tomato plants and their fruit production ability. In this work, we have analyzed the effects of LeNHX2 and SlSOS2 co-overexpression on fruit production, quality in tomato plants (Solanum lycopersicum L. cv. MicroTom), and analyzed physiological parameters related to salt tolerance. Plants overexpressing LeNHX2, SlSOS2 or both were grown in greenhouse. They were treated with 125 mM NaCl or left untreated and their salt tolerance was analyzed in terms of plant biomass and fruit yield. Under NaCl cultivation conditions, transgenic tomato plants overexpressing either SlSOS2 or LeNHX2 or both grew better and showed a higher biomass compared to their wild-type plants. Proline, glucose and protein content in leaves as well as pH and total soluble solid (TSS) in fruits were analyzed. Our results indicate that salinity tolerance of transgenic lines is associated with an increased proline, glucose and protein content in leaves of plants grown either with or without NaCl. Salt treatment significantly reduced yield, pH and TSS in fruits of WT plants but increased yield, pH and TSS in fruits of transgenic plants, especially those overexpressing both LeNHX2 and SlSOS2. All these results indicate that the co-overexpression of LeNHX2 and SlSOS2 improve yield and fruit quality of tomato grown under saline conditions.
Collapse
Affiliation(s)
- Mostapha Maach
- Laboratoire OLMAN, Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, Nador, Morocco
| | - María Pilar Rodríguez-Rosales
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda, 1, 18008 Granada, Spain
| | - Kees Venema
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda, 1, 18008 Granada, Spain
| | - Mustapha Akodad
- Laboratoire OLMAN, Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, Nador, Morocco
| | - Abdelmajid Moumen
- Laboratoire OLMAN, Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, Nador, Morocco
| | - Ali Skalli
- Laboratoire OLMAN, Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, Nador, Morocco
| | - Mourad Baghour
- Laboratoire OLMAN, Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, Nador, Morocco
| |
Collapse
|
10
|
Liu X, Pi B, Pu J, Cheng C, Fang J, Yu B. Genome-wide analysis of chloride channel-encoding gene family members and identification of CLC genes that respond to Cl -/salt stress in upland cotton. Mol Biol Rep 2020; 47:9361-9371. [PMID: 33244663 DOI: 10.1007/s11033-020-06023-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023]
Abstract
Chloride channels (CLCs) are kinds of anion transport protein family members that are mainly distributed in cell endomembrane systems of prokaryotic and eukaryotic organisms and mediate anion (Cl-, as a representative) transport and homeostasis. Some CLC genes have been reported to be involved in Cl-/salt tolerance of plants exposed to NaCl stress. Through BLAST in cotton database, a total of 22 CLCs were identified in genomes A and D in upland cotton (Gossypium hirsutum L.), and except for GhCLC6 and GhCLC17, they formed highly similar homologous genes pairs. According to the prediction in PlantCARE database, many cis-acting elements related to abiotic stress responses, including ABREs, AREs, GT-1s, G-boxes, MYBs, MYCs, etc., were found in the promoters of GhCLCs. qRT-PCR revealed that most GhCLC gene expression was upregulated in the roots and leaves of cotton seedlings under salt stress, and those of homologous GhCLC4/15, GhCLC5/16, and GhCLC7/18 displayed more obvious expression. Furthermore, according to leaf virus-induced gene silencing (VIGS) assay and compared with the salt-stressed GhCLC4/15- and GhCLC7/18-silenced cotton plants, the salt-stressed GhCLC5/16-silenced plants displayed relatively better growth with significant increases in both Cl- content and Cl-/NO3- ratio in the roots and drop of the same parameters in the leaves. These results indicate that homologous GhCLC5/16, with the highest NaCl-induced upregulation of expression and the maximum number of MYC cis-acting elements, might be the key members contributing to cotton Cl-/salt tolerance by regulating the transport, interaction and homeostasis of Cl- and NO3-.
Collapse
Affiliation(s)
- Xun Liu
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Boyi Pi
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianwei Pu
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Cong Cheng
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiajia Fang
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bingjun Yu
- Lab of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
11
|
Gazara RK, Khan S, Iqrar S, Ashrafi K, Abdin MZ. Comparative transcriptome profiling of rice colonized with beneficial endophyte, Piriformospora indica, under high salinity environment. Mol Biol Rep 2020; 47:7655-7673. [PMID: 32979167 DOI: 10.1007/s11033-020-05839-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023]
Abstract
The salinity stress tolerance in plants has been studied enormously, reflecting its agronomic relevance. Despite the extensive research, limited success has been achieved in relation to the plant tolerance mechanism. The beneficial interaction between Piriformospora indica and rice could essentially improve the performance of the plant during salt stress. In this study, the transcriptomic data between P. indica treated and untreated rice roots were compared under control and salt stress conditions. Overall, 661 salt-responsive differentially expressed genes (DEGs) were detected with 161 up- and 500 down-regulated genes in all comparison groups. Gene ontology analyses indicated the DEGs were mainly enriched in "auxin-activated signaling pathway", "water channel activity", "integral component of plasma membrane", "stress responses", and "metabolic processes". Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were primarily related to "Zeatin biosynthesis", "Fatty acid elongation", "Carotenoid biosynthesis", and "Biosynthesis of secondary metabolites". Particularly, genes related to cell wall modifying enzymes (e.g. invertase/pectin methylesterase inhibitor protein and arabinogalactans), phytohormones (e.g. Auxin-responsive Aux/IAA gene family, ent-kaurene synthase, and 12-oxophytodienoate reductase) and receptor-like kinases (e.g. AGC kinase and receptor protein kinase) were induced in P. indica colonized rice under salt stress condition. The differential expression of these genes implies that the coordination between hormonal crosstalk, signaling, and cell wall dynamics contributes to the higher growth and tolerance in P. indica-inoculated rice. Our results offer a valuable resource for future functional studies on salt-responsive genes that should improve the resilience and adaptation of rice against salt stress.
Collapse
Affiliation(s)
- Rajesh K Gazara
- Centro de Bioiências e Biotecnologia, Universidade Estadual do Norte Fluminense "Darcy Ribeiro" University, Campos dos goytacazes, Rio de Janeiro, Brazil
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shazia Khan
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Sadia Iqrar
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Kudsiya Ashrafi
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Malik Z Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|